git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/StarBioTrek@125020 bc3139a8-67e5-0310-9ffc-ced21a209358

Claudia Cava authored on 12/12/2016 11:06:41
Showing 13 changed files

... ...
@@ -1,8 +1,8 @@
1 1
 Package: StarBioTrek
2 2
 Type: Package
3 3
 Title: StarBioTrek
4
-Version: 1.1.0
5
-Date: 10-16-2016
4
+Version: 1.1.1
5
+Date: 12-12-2016
6 6
 Author: Claudia Cava,
7 7
     Isabella Castiglioni
8 8
 Maintainer: Claudia Cava <claudia.cava@ibfm.cnr.it>
... ...
@@ -8,6 +8,8 @@ export(euc_dist_crtlk)
8 8
 export(getKEGGdata)
9 9
 export(getNETdata)
10 10
 export(list_path_net)
11
+export(matrix_plot)
12
+export(path_net)
11 13
 export(plotting_cross_talk)
12 14
 export(proc_path)
13 15
 export(st_dv)
... ...
@@ -19,6 +21,7 @@ importFrom(KEGGREST,keggList)
19 21
 importFrom(ROCR,performance)
20 22
 importFrom(ROCR,prediction)
21 23
 importFrom(SpidermiR,SpidermiRdownload_net)
24
+importFrom(SpidermiR,SpidermiRprepare_NET)
22 25
 importFrom(SpidermiR,SpidermiRquery_spec_networks)
23 26
 importFrom(SpidermiR,SpidermiRquery_species)
24 27
 importFrom(e1071,svm)
... ...
@@ -124,7 +124,10 @@ if (KEGG_path=="KEGG_path") {
124 124
 pathway.codes <- sub("path:", "", names(pathways.list))
125 125
 pathways.list<-list(pathways.list)
126 126
 pathways.list<-pathways.list[lapply(pathways.list,length)!=0] 
127
-a<-do.call("cbind", pathways.list)
127
+list_pathkeg<-do.call("cbind", pathways.list)
128
+c<-list(pathway.codes,list_pathkeg)
129
+a<-c[[2]]
130
+
128 131
 }
129 132
 pathway.codes<-c[[1]]
130 133
 genes.by.pathway <- sapply(pathway.codes,
... ...
@@ -170,7 +173,7 @@ return(PROVA)
170 173
 #' SHpd for Shared_protein_domains
171 174
 #' @param organism organism==NULL default value is homo sapiens
172 175
 #' @export
173
-#' @importFrom SpidermiR SpidermiRquery_species SpidermiRquery_spec_networks SpidermiRdownload_net 
176
+#' @importFrom SpidermiR SpidermiRquery_species SpidermiRquery_spec_networks SpidermiRdownload_net SpidermiRprepare_NET
174 177
 #' @return dataframe with gene-gene (or protein-protein interactions)
175 178
 #' @examples
176 179
 #' organism="Saccharomyces_cerevisiae"
... ...
@@ -180,22 +183,22 @@ getNETdata<-function(network,organism=NULL){
180 183
   if (is.null(organism)) {
181 184
   net_shar_prot<-SpidermiRquery_spec_networks(organismID = org_shar_pro[6,],network)
182 185
   out_net_shar_pro<-SpidermiRdownload_net(net_shar_prot)
183
- # geneSymb_net_shar_pro<-SpidermiRprepare_NET(organismID = org_shar_pro[6,],data = out_net_shar_pro)
186
+  geneSymb_net_shar_pro<-SpidermiRprepare_NET(organismID = org_shar_pro[6,],data = out_net_shar_pro)
184 187
   }
185 188
   if( !is.null(organism) ){
186 189
     net_shar_prot<-SpidermiRquery_spec_networks(organismID = org_shar_pro[9,],network)
187 190
     out_net_shar_pro<-SpidermiRdownload_net(net_shar_prot)
188
-  #  geneSymb_net_shar_pro<-SpidermiRprepare_NET(organismID = org_shar_pro[9,],data = out_net_shar_pro)
191
+    geneSymb_net_shar_pro<-SpidermiRprepare_NET(organismID = org_shar_pro[9,],data = out_net_shar_pro)
189 192
 }
190
-  #ds_shar_pro<-do.call("rbind", geneSymb_net_shar_pro)
191
-  #data_shar_pro<-as.data.frame(ds_shar_pro[!duplicated(ds_shar_pro), ]) 
192
-  #sdc_shar_pro<-unlist(data_shar_pro$gene_symbolA,data_shar_pro$gene_symbolB)
193
-  #m_shar_pro<-c(data_shar_pro$gene_symbolA)
194
-  #m2_shar_pro<-c(data_shar_pro$gene_symbolB)
195
-  #ss_shar_pro<-cbind(m_shar_pro,m2_shar_pro)
196
-  #data_pr_shar_pro<-as.data.frame(ss_shar_pro[!duplicated(ss_shar_pro), ]) 
197
-  #colnames(data_pr_shar_pro) <- c("m_shar_pro", "m2_shar_pro")
198
-return(out_net_shar_pro)
193
+  ds_shar_pro<-do.call("rbind", geneSymb_net_shar_pro)
194
+  data_shar_pro<-as.data.frame(ds_shar_pro[!duplicated(ds_shar_pro), ]) 
195
+  sdc_shar_pro<-unlist(data_shar_pro$gene_symbolA,data_shar_pro$gene_symbolB)
196
+  m_shar_pro<-c(data_shar_pro$gene_symbolA)
197
+  m2_shar_pro<-c(data_shar_pro$gene_symbolB)
198
+  ss_shar_pro<-cbind(m_shar_pro,m2_shar_pro)
199
+  data_pr_shar_pro<-as.data.frame(ss_shar_pro[!duplicated(ss_shar_pro), ]) 
200
+  colnames(data_pr_shar_pro) <- c("m_shar_pro", "m2_shar_pro")
201
+return(data_pr_shar_pro)
199 202
 }
200 203
 
201 204
 
... ...
@@ -1,16 +1,4 @@
1
-#overlap <- function(net_type,x,currentPathway_genes){
2
- # de<-net_type[which(net_type$m_shar_pro==x),]
3
-#  fr<-intersect(de$m2_shar_pro,currentPathway_genes)
4
- # go=list()
5
-  #if(length(fr)!=0)    {
6
-   # for (i in 1:length(fr)){
7
-   #   de2<-de[which(de$m2_shar_pro==fr[i]),]
8
-    #  go[[i]]<-de2
9
-    #}
10
-  #}            
11
-#  dst<-do.call("rbind", go)
12
- # return(dst)
13
-#}
1
+
14 2
 
15 3
 
16 4
 select_path_carb<-function(Carbohydrate){
... ...
@@ -30,7 +18,9 @@ n<-paste("Propanoate metabolism", species)
30 18
 o<-paste("Butanoate metabolism", species)
31 19
 p<-paste("C5-Branched dibasic acid metabolism", species)
32 20
 q<-paste("Inositol phosphate metabolism", species)
33
-mer<-c(a,b,c,d,e,f,g,h,i,l,m,n,o,p,q)
21
+r<-paste("Enzymes", species)
22
+s<-paste("Compounds with biological roles",species)
23
+mer<-c(a,b,c,d,e,f,g,h,i,l,m,n,o,p,q,r,s)
34 24
 return(mer)
35 25
 }
36 26
 
... ...
@@ -525,10 +515,25 @@ for (i in 1:length(pathways.list)){
525 515
     names(lo)[[i]]<-names(pathways.list)[[i]]
526 516
   }
527 517
 }
528
-
529 518
 pathways.list<-lo[lapply(lo,length)!=0] 
530 519
 pathway.codes <- sub("path:", "", names(pathways.list))
531 520
 b<-do.call("rbind", pathways.list)
532 521
 list_pathkegg<-list(pathway.codes,b)
533 522
 return(list_pathkegg)
534 523
 }
524
+
525
+
526
+overlap <- function(net_type,x,currentPathway_genes){
527
+  de<-net_type[which(net_type$m_shar_pro==x),]
528
+  fr<-intersect(de$m2_shar_pro,currentPathway_genes)
529
+  go=list()
530
+  if(length(fr)!=0)    {
531
+    for (i in 1:length(fr)){
532
+      de2<-de[which(de$m2_shar_pro==fr[i]),]
533
+      go[[i]]<-de2
534
+    }
535
+  }            
536
+  dst<-do.call("rbind", go)
537
+  return(dst)
538
+}
539
+
... ...
@@ -1,33 +1,92 @@
1 1
 #' @title Get human KEGG pathway data and network data in order to define the common gene.
2
-#' @description list_path_net creates a list of interacting genes for each human pathway.   
2
+#' @description path_net creates a list of network data for each human pathway. The network data will be generated when interacting genes belong to that pathway.  
3 3
 #' @param net_type  network data as provided by getNETdata
4 4
 #' @param pathway  pathway data as provided by getKEGGdata
5 5
 #' @export
6
+#' @return a list of network data for each pathway (interacting genes belong to that pathway)
7
+#' @examples
8
+#' lista_net<-path_net(pathway=path,net_type=netw)
9
+path_net<-function(pathway,net_type){
10
+  lista_int<-list()
11
+  for (k in 1:ncol(pathway)){
12
+    #k=1 
13
+    print(paste(k,"PATHWAY",colnames(pathway)[k]))
14
+    currentPathway_genes<-pathway[,k]
15
+    common1 <- intersect( net_type$m_shar_pro, currentPathway_genes)
16
+    common2 <- intersect( net_type$m2_shar_pro, currentPathway_genes)
17
+    if (length(common1)==0 & length(common2)==0 ){
18
+      mago2<-character(length = 0)
19
+    }
20
+    if (length(common1)!=0 | length(common2)!=0 ){
21
+      b=list()
22
+      for (i in 1:length(common1)){
23
+        x<-common1[i]
24
+        n<-overlap(net_type,x,currentPathway_genes)
25
+        b[[i]]<-n
26
+      }
27
+      v<-do.call("rbind", b)
28
+      c=list()
29
+      for (i in 1:length(common2)){
30
+        x<-common1[i]
31
+        n<-overlap(net_type,x,currentPathway_genes)
32
+        c[[i]]<-n
33
+      }
34
+      v2<-do.call("rbind", b)
35
+      mago<-rbind(v,v2)
36
+      mago2<-mago[!duplicated(mago), ]
37
+    }
38
+    
39
+    if (length(mago2)!=0){
40
+      lista_int[[k]]<-mago2
41
+    }
42
+    if (length(mago2)==0){
43
+      lista_int[[k]]<-"0"} 
44
+    
45
+    names(lista_int)[k]<-colnames(pathway)[k] 
46
+  }   
47
+  return(lista_int)
48
+}
49
+
50
+
51
+#' @title Get human KEGG pathway data and output of path_net in order to define the common genes.
52
+#' @description list_path_net creates a list of interacting genes for each human pathway.   
53
+#' @param lista_net  output of path_net
54
+#' @param pathway  pathway data as provided by getKEGGdata
55
+#' @export
6 56
 #' @return a list of genes for each pathway (interacting genes belong to that pathway)
7 57
 #' @examples
8
-#' list_path<-list_path_net(net_type=netw,pathway=path)
9
-list_path_net<-function(net_type,pathway){
10
-  i <- sapply(net_type, is.factor) 
11
-  net_type[i] <- lapply(net_type[i], as.character)
12
-  m<-c(net_type$m_shar_pro)
13
-  m2<-c(net_type$m2_shar_pro)
58
+#' lista_netw<-path_net(pathway=path,net_type=netw)
59
+#' list_path<-list_path_net(lista_net=lista_netw,pathway=path)
60
+list_path_net<-function(lista_net,pathway){
61
+v=list()
62
+bn=list()
63
+for (j in 1:length(lista_net)){
64
+  cf<-lista_net[[j]]
65
+  i <- sapply(cf, is.factor) 
66
+  cf[i] <- lapply(cf[i], as.character)
67
+  m<-c(cf$m_shar_pro)
68
+  m2<-c(cf$m2_shar_pro)
14 69
   s<-c(m,m2)
15 70
   fr<- unique(s)
16 71
   n<-as.data.frame(fr)
72
+  if(length(n)==0){
73
+    v[[j]]<-NULL
74
+    
75
+  }
76
+  if(length(n)!=0){
17 77
   i <- sapply(n, is.factor) 
18 78
   n[i] <- lapply(n[i], as.character)
19
-  v=list()
20
-    for (k in  1:ncol(pathway)){
21
-      if (length(intersect(n$fr,pathway[,k])!=0)){
22
-        print(colnames(pathway)[k])
23
-        aa<-intersect(n$fr,pathway[,k])
24
-        v[[k]]<-aa
25
-        names(v)[k]<-colnames(pathway)[k]
26
-      }
27
-    }
28
-  
29
-  return(v)
30
-}
79
+  #for (k in  1:ncol(pathway)){
80
+  if (length(intersect(n$fr,pathway[,j]))==nrow(n)){
81
+    print(paste("List of genes interacting in the same pathway:",colnames(pathway)[j]))
82
+    aa<-intersect(n$fr,pathway[,j])
83
+    v[[j]]<-aa
84
+    names(v)[j]<-colnames(pathway)[j]
85
+  }
86
+}}
87
+return(v)}
88
+
89
+
31 90
 
32 91
 
33 92
 #' @title Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the gene expression for only pathways given in input .
... ...
@@ -37,12 +96,13 @@ list_path_net<-function(net_type,pathway){
37 96
 #' @export
38 97
 #' @return a matrix for each pathway ( gene expression level belong to that pathway)
39 98
 #' @examples
40
-#' list_path_plot<-GE_matrix(DataMatrix=tumo[,1:2],pathway=path)
99
+#' list_path_gene<-GE_matrix(DataMatrix=tumo[,1:2],pathway=path)
41 100
 GE_matrix<-function(DataMatrix,pathway) {
42 101
   path_name<-sub(' ', '_',colnames(pathway))
43 102
 d_pr<- gsub(" - Homo sapiens (human)", "", path_name, fixed="TRUE")
44 103
 colnames(pathway)<-d_pr
45
-zz<-as.data.frame(rowMeans(DataMatrix))
104
+#zz<-as.data.frame(rowMeans(DataMatrix))
105
+zz<-as.data.frame(DataMatrix)
46 106
 v<-list()
47 107
 for ( k in 1: ncol(pathway)){
48 108
   #k=2
... ...
@@ -51,26 +111,74 @@ for ( k in 1: ncol(pathway)){
51 111
   currentPathway_genes_list_common <- intersect(rownames(zz), currentPathway_genes<-pathway[,k])
52 112
   currentPathway_genes_list_commonMatrix <- as.data.frame(zz[currentPathway_genes_list_common,])
53 113
   rownames(currentPathway_genes_list_commonMatrix)<-currentPathway_genes_list_common
54
-  v[[k]]<- currentPathway_genes_list_common
114
+  v[[k]]<- currentPathway_genes_list_commonMatrix
55 115
   names(v)[k]<-colnames(pathway)[k]
56 116
   }
57 117
 }  
58
-PEAmatrix <- matrix( 0,nrow(DataMatrix),ncol(pathway))
59
-rownames(PEAmatrix) <- as.factor(rownames(DataMatrix))
60
-colnames(PEAmatrix) <-  as.factor(colnames(pathway))
61
-for (i in 1:length(v)){
62
-PEAmatrix[v[[i]],i]<-zz[v[[i]],]
118
+#PEAmatrix <- matrix( 0,nrow(DataMatrix),ncol(pathway))
119
+#rownames(PEAmatrix) <- as.factor(rownames(DataMatrix))
120
+#colnames(PEAmatrix) <-  as.factor(colnames(pathway))
121
+#for (i in 1:length(v)){
122
+#PEAmatrix[v[[i]],i]<-zz[v[[i]],]
123
+#}
124
+#PEAmatrix<-PEAmatrix[which(rowSums(PEAmatrix) > 0),]
125
+return(v)
63 126
 }
64
-PEAmatrix<-PEAmatrix[which(rowSums(PEAmatrix) > 0),]
65
-return(PEAmatrix)
127
+
128
+
129
+
130
+#' @title Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the mean gene expression for only pathways given in input .
131
+#' @description GE_matrix creates a matrix of mean gene expression for pathways given by the user.   
132
+#' @param DataMatrix  gene expression matrix (eg.TCGA data)
133
+#' @param pathway  pathway data as provided by getKEGGdata
134
+#' @export
135
+#' @return a matrix for each pathway (mean gene expression level belong to that pathway)
136
+#' @examples
137
+#' list_path_plot<-matrix_plot(DataMatrix=tumo[,1:2],pathway=path)
138
+matrix_plot<-function(DataMatrix,pathway) {
139
+  path_name<-sub(' ', '_',colnames(pathway))
140
+  d_pr<- gsub(" - Homo sapiens (human)", "", path_name, fixed="TRUE")
141
+  colnames(pathway)<-d_pr
142
+  zz<-as.data.frame(rowMeans(DataMatrix))
143
+  v<-list()
144
+  for ( k in 1: ncol(pathway)){
145
+    #k=2
146
+    if (length(intersect(rownames(zz),pathway[,k])!=0)){
147
+      print(colnames(path)[k])
148
+      currentPathway_genes_list_common <- intersect(rownames(zz), currentPathway_genes<-pathway[,k])
149
+      currentPathway_genes_list_commonMatrix <- as.data.frame(zz[currentPathway_genes_list_common,])
150
+      rownames(currentPathway_genes_list_commonMatrix)<-currentPathway_genes_list_common
151
+      v[[k]]<- currentPathway_genes_list_common
152
+      names(v)[k]<-colnames(pathway)[k]
153
+    }
154
+  }  
155
+  PEAmatrix <- matrix( 0,nrow(DataMatrix),ncol(pathway))
156
+  rownames(PEAmatrix) <- as.factor(rownames(DataMatrix))
157
+  colnames(PEAmatrix) <-  as.factor(colnames(pathway))
158
+  for (i in 1:length(v)){
159
+  PEAmatrix[v[[i]],i]<-zz[v[[i]],]
160
+  }
161
+  PEAmatrix<-PEAmatrix[which(rowSums(PEAmatrix) > 0),]
162
+  return(PEAmatrix)
66 163
 }
67 164
 
68 165
 
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
69 177
 #' @title Get human KEGG pathway data and a gene expression matrix we obtain a matrix with the gene expression for only pathways given in input .
70 178
 #' @description plotting_matrix creates a matrix of gene expression for pathways given by the user.   
71 179
 #' @param DataMatrix  gene expression matrix (eg.TCGA data)
72 180
 #' @param pathway  pathway data as provided by getKEGGdata
73
-#' @param path_matrix  output of the function GE_matrix
181
+#' @param path_matrix  output of the function matrix_plot
74 182
 #' @export
75 183
 #' @return a plot for pathway cross talk
76 184
 #' @examples
... ...
@@ -92,7 +200,9 @@ plotting_cross_talk<-function(DataMatrix,pathway,path_matrix){
92 200
     }
93 201
   }
94 202
   vv<-list()
95
-  dc<-cor(t(path_matrix))
203
+  mi<-t(path_matrix)
204
+  
205
+  dc<-cor(mi)
96 206
   for ( k in 1: length(v)){
97 207
     currentPathway_genes_list_common <- intersect(rownames(dc), v[[k]])
98 208
     a<-match(currentPathway_genes_list_common,rownames(dc))
... ...
@@ -1,7 +1,8 @@
1 1
 citHeader("To cite StarBioTrek in publications use:")
2 2
 
3 3
 citEntry(entry = "article",
4
-         title        = "StarBioTrek",
4
+         title        = "StarBioTrek 
5
+    miRNA data",
5 6
          author       = personList(as.person("Claudia Cava"),
6 7
                                    as.person("Isabella Castiglioni")
7 8
          ),
... ...
@@ -18,6 +18,6 @@ a matrix for each pathway ( gene expression level belong to that pathway)
18 18
 GE_matrix creates a matrix of gene expression for pathways given by the user.
19 19
 }
20 20
 \examples{
21
-list_path_plot<-GE_matrix(DataMatrix=tumo[,1:2],pathway=path)
21
+list_path_gene<-GE_matrix(DataMatrix=tumo[,1:2],pathway=path)
22 22
 }
23 23
 
... ...
@@ -2,12 +2,12 @@
2 2
 % Please edit documentation in R/path_star.R
3 3
 \name{list_path_net}
4 4
 \alias{list_path_net}
5
-\title{Get human KEGG pathway data and network data in order to define the common gene.}
5
+\title{Get human KEGG pathway data and output of path_net in order to define the common genes.}
6 6
 \usage{
7
-list_path_net(net_type, pathway)
7
+list_path_net(lista_net, pathway)
8 8
 }
9 9
 \arguments{
10
-\item{net_type}{network data as provided by getNETdata}
10
+\item{lista_net}{output of path_net}
11 11
 
12 12
 \item{pathway}{pathway data as provided by getKEGGdata}
13 13
 }
... ...
@@ -18,6 +18,7 @@ a list of genes for each pathway (interacting genes belong to that pathway)
18 18
 list_path_net creates a list of interacting genes for each human pathway.
19 19
 }
20 20
 \examples{
21
-list_path<-list_path_net(net_type=netw,pathway=path)
21
+lista_netw<-path_net(pathway=path,net_type=netw)
22
+list_path<-list_path_net(lista_net=lista_netw,pathway=path)
22 23
 }
23 24
 
24 25
new file mode 100644
... ...
@@ -0,0 +1,23 @@
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/path_star.R
3
+\name{matrix_plot}
4
+\alias{matrix_plot}
5
+\title{Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the mean gene expression for only pathways given in input .}
6
+\usage{
7
+matrix_plot(DataMatrix, pathway)
8
+}
9
+\arguments{
10
+\item{DataMatrix}{gene expression matrix (eg.TCGA data)}
11
+
12
+\item{pathway}{pathway data as provided by getKEGGdata}
13
+}
14
+\value{
15
+a matrix for each pathway (mean gene expression level belong to that pathway)
16
+}
17
+\description{
18
+GE_matrix creates a matrix of mean gene expression for pathways given by the user.
19
+}
20
+\examples{
21
+list_path_plot<-matrix_plot(DataMatrix=tumo[,1:2],pathway=path)
22
+}
23
+
0 24
new file mode 100644
... ...
@@ -0,0 +1,23 @@
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/path_star.R
3
+\name{path_net}
4
+\alias{path_net}
5
+\title{Get human KEGG pathway data and network data in order to define the common gene.}
6
+\usage{
7
+path_net(pathway, net_type)
8
+}
9
+\arguments{
10
+\item{pathway}{pathway data as provided by getKEGGdata}
11
+
12
+\item{net_type}{network data as provided by getNETdata}
13
+}
14
+\value{
15
+a list of network data for each pathway (interacting genes belong to that pathway)
16
+}
17
+\description{
18
+path_net creates a list of network data for each human pathway. The network data will be generated when interacting genes belong to that pathway.
19
+}
20
+\examples{
21
+lista_net<-path_net(pathway=path,net_type=netw)
22
+}
23
+
... ...
@@ -11,7 +11,7 @@ plotting_cross_talk(DataMatrix, pathway, path_matrix)
11 11
 
12 12
 \item{pathway}{pathway data as provided by getKEGGdata}
13 13
 
14
-\item{path_matrix}{output of the function GE_matrix}
14
+\item{path_matrix}{output of the function matrix_plot}
15 15
 }
16 16
 \value{
17 17
 a plot for pathway cross talk
... ...
@@ -457,17 +457,38 @@ netwa<-getNETdata(network="SHpd",organism)
457 457
 
458 458
 # `Integration data`: Integration between KEGG pathway and network data 
459 459
 
460
+## `path_net`: Network of interacting genes for each pathway according a network type (PHint,COloc,GENint,PATH,SHpd)
461
+
462
+The function `path_net` creates a network of interacting genes for each pathway. Interacting genes are genes belonging to the same pathway and the interaction is given from network chosen by the user, according the paramenters of the function `getNETdata`.
463
+The output will be a network of genes belonging to the same pathway.  
464
+
465
+```{r, eval = TRUE}
466
+network_path<-path_net(pathway=path,net_type=netw)
467
+```
468
+
469
+
460 470
 ## `list_path_net`: List of interacting genes for each pathway (list of genes) according a network type (PHint,COloc,GENint,PATH,SHpd)
461 471
 
462 472
 The function `list_path_net` creates a list of interacting genes for each pathway. Interacting genes are genes belonging to the same pathway and the interaction is given from network chosen by the user, according the paramenters of the function `getNETdata`.
463 473
 The output will be a list of genes belonging to the same pathway and those having an interaction in the network.  
464 474
 
465 475
 ```{r, eval = TRUE}
466
-list_path<-list_path_net(net_type=netw,pathway=path)
476
+list_path<-list_path_net(lista_net=network_path,pathway=path)
467 477
 ```
468 478
 
479
+
480
+
481
+
469 482
 # `Pathway summary indexes`: Score for each pathway 
470 483
 
484
+## `GE_matrix`: Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the gene expression for only genes given containing in the pathways given in input by the user.
485
+
486
+Starting from a matrix of gene expression (rows are genes and columns are samples, TCGA data) the function `GE_matrix` creates a of gene expression levels for each pathway given by the user:
487
+
488
+```{r, eval = TRUE}
489
+list_path_gene<-GE_matrix(DataMatrix=tumo[,1:2],pathway=path)
490
+```
491
+
471 492
 ## `average`: Average of genes for each pathway starting from a matrix of gene expression 
472 493
 Starting from a matrix of gene expression (rows are genes and columns are samples, TCGA data) the function `average` creates an average matrix of gene expression for each pathway:
473 494
 
... ...
@@ -10,9 +10,9 @@
10 10
 
11 11
 <meta name="author" content="Claudia Cava, Isabella Castiglioni" />
12 12
 
13
-<meta name="date" content="2016-10-13" />
13
+<meta name="date" content="2016-12-12" />
14 14
 
15
-<title>Working with StarTrek package</title>
15
+<title>Working with StarBioTrek package</title>
16 16
 
17 17
 
18 18
 
... ...
@@ -73,9 +73,9 @@ document.addEventListener("DOMContentLoaded", function() {
73 73
 
74 74
 
75 75
 <div id="header">
76
-<h1 class="title">Working with StarTrek package</h1>
76
+<h1 class="title">Working with StarBioTrek package</h1>
77 77
 <h4 class="author"><em>Claudia Cava, Isabella Castiglioni</em></h4>
78
-<h4 class="date"><em>2016-10-13</em></h4>
78
+<h4 class="date"><em>2016-12-12</em></h4>
79 79
 </div>
80 80
 
81 81
 <h1>Contents</h1>
... ...
@@ -88,9 +88,11 @@ document.addEventListener("DOMContentLoaded", function() {
88 88
 <li><a href="#getnetdata-searching-network-data-for-download"><code>getNETdata</code>: Searching network data for download</a></li>
89 89
 </ul></li>
90 90
 <li><a href="#integration-data-integration-between-kegg-pathway-and-network-data"><code>Integration data</code>: Integration between KEGG pathway and network data</a><ul>
91
+<li><a href="#path_net-network-of-interacting-genes-for-each-pathway-according-a-network-type-phintcolocgenintpathshpd"><code>path_net</code>: Network of interacting genes for each pathway according a network type (PHint,COloc,GENint,PATH,SHpd)</a></li>
91 92
 <li><a href="#list_path_net-list-of-interacting-genes-for-each-pathway-list-of-genes-according-a-network-type-phintcolocgenintpathshpd"><code>list_path_net</code>: List of interacting genes for each pathway (list of genes) according a network type (PHint,COloc,GENint,PATH,SHpd)</a></li>
92 93
 </ul></li>
93 94
 <li><a href="#pathway-summary-indexes-score-for-each-pathway"><code>Pathway summary indexes</code>: Score for each pathway</a><ul>
95
+<li><a href="#ge_matrix-get-human-kegg-pathway-data-and-a-gene-expression-matrix-in-order-to-obtain-a-matrix-with-the-gene-expression-for-only-genes-given-containing-in-the-pathways-given-in-input-by-the-user."><code>GE_matrix</code>: Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the gene expression for only genes given containing in the pathways given in input by the user.</a></li>
94 96
 <li><a href="#average-average-of-genes-for-each-pathway-starting-from-a-matrix-of-gene-expression"><code>average</code>: Average of genes for each pathway starting from a matrix of gene expression</a></li>
95 97
 <li><a href="#st_dv-standard-deviations-of-genes-for-each-pathway-starting-from-a-matrix-of-gene-expression"><code>st_dv</code>: Standard deviations of genes for each pathway starting from a matrix of gene expression</a></li>
96 98
 </ul></li>
... ...
@@ -108,13 +110,13 @@ document.addEventListener("DOMContentLoaded", function() {
108 110
 
109 111
 <div id="introduction" class="section level1">
110 112
 <h1>Introduction</h1>
111
-<p>Motivation: New technologies have made possible to identify marker gene signatures. However, gene expression-based signatures present some limitations because they do not consider metabolic role of the genes and are affected by genetic heterogeneity across patient cohorts. Considering the activity of entire pathways rather than the expression levels of individual genes can be a way to exceed these limits. This tool <code>StarTrek</code> presents some methodologies to measure pathway activity and cross-talk among pathways integrating also the information of network and TCGA data. New measures are under development.</p>
113
+<p>Motivation: New technologies have made possible to identify marker gene signatures. However, gene expression-based signatures present some limitations because they do not consider metabolic role of the genes and are affected by genetic heterogeneity across patient cohorts. Considering the activity of entire pathways rather than the expression levels of individual genes can be a way to exceed these limits. This tool <code>StarBioTrek</code> presents some methodologies to measure pathway activity and cross-talk among pathways integrating also the information of network and TCGA data. New measures are under development.</p>
112 114
 </div>
113 115
 <div id="installation" class="section level1">
114 116
 <h1>Installation</h1>
115 117
 <p>To install use the code below.</p>
116 118
 <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">source</span>(<span class="st">&quot;https://bioconductor.org/biocLite.R&quot;</span>)
117
-<span class="kw">biocLite</span>(<span class="st">&quot;StarTrek&quot;</span>)</code></pre></div>
119
+<span class="kw">biocLite</span>(<span class="st">&quot;StarBioTrek&quot;</span>)</code></pre></div>
118 120
 </div>
119 121
 <div id="get-data-get-kegg-pathway-network-and-tcga-data" class="section level1">
120 122
 <h1><code>Get data</code>: Get KEGG pathway, network and TCGA data</h1>
... ...
@@ -159,19 +161,16 @@ document.addEventListener("DOMContentLoaded", function() {
159 161
 <li><strong>sens_syst </strong> Sensory_system</li>
160 162
 </ul>
161 163
 <p>The following code is an example to download the pathways involved in Transcription:</p>
162
-<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">path&lt;-<span class="kw">getKEGGdata</span>(<span class="dt">KEGG_path=</span><span class="st">&quot;Transcript&quot;</span>)</code></pre></div>
164
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">patha&lt;-<span class="kw">getKEGGdata</span>(<span class="dt">KEGG_path=</span><span class="st">&quot;Transcript&quot;</span>)</code></pre></div>
163 165
 <p>For example the group Transcript contains different pathways:</p>
164 166
 <table>
165 167
 <caption>List of patwhays for the group Transcript</caption>
166 168
 <tbody>
167 169
 <tr class="odd">
168
-<td align="left">RNA polymerase - Homo sapiens (human)</td>
170
+<td align="left">Cell cycle - Homo sapiens (human)</td>
169 171
 </tr>
170 172
 <tr class="even">
171
-<td align="left">Basal transcription factors - Homo sapiens (human)</td>
172
-</tr>
173
-<tr class="odd">
174
-<td align="left">Spliceosome - Homo sapiens (human)</td>
173
+<td align="left">p53 signaling pathway - Homo sapiens (human)</td>
175 174
 </tr>
176 175
 </tbody>
177 176
 </table>
... ...
@@ -189,21 +188,39 @@ document.addEventListener("DOMContentLoaded", function() {
189 188
 </ul>
190 189
 <p>For default the organism is homo sapiens. The example show the shared protein domain network for Saccharomyces_cerevisiae. For more information see <code>SpidermiR</code> package.</p>
191 190
 <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">organism=<span class="st">&quot;Saccharomyces_cerevisiae&quot;</span>
192
-netw&lt;-<span class="kw">getNETdata</span>(<span class="dt">network=</span><span class="st">&quot;SHpd&quot;</span>,organism)</code></pre></div>
191
+netwa&lt;-<span class="kw">getNETdata</span>(<span class="dt">network=</span><span class="st">&quot;SHpd&quot;</span>,organism)</code></pre></div>
192
+<pre><code>## [1] &quot;Downloading: http://genemania.org/data/current/Saccharomyces_cerevisiae/Shared_protein_domains.INTERPRO.txt ... reference n. 1 of 2&quot;
193
+## [1] &quot;Downloading: http://genemania.org/data/current/Saccharomyces_cerevisiae/Shared_protein_domains.PFAM.txt ... reference n. 2 of 2&quot;
194
+## [1] &quot;Preprocessing of the network n. 1 of 2&quot;
195
+## [1] &quot;Preprocessing of the network n. 2 of 2&quot;</code></pre>
193 196
 </div>
194 197
 </div>
195 198
 <div id="integration-data-integration-between-kegg-pathway-and-network-data" class="section level1">
196 199
 <h1><code>Integration data</code>: Integration between KEGG pathway and network data</h1>
200
+<div id="path_net-network-of-interacting-genes-for-each-pathway-according-a-network-type-phintcolocgenintpathshpd" class="section level2">
201
+<h2><code>path_net</code>: Network of interacting genes for each pathway according a network type (PHint,COloc,GENint,PATH,SHpd)</h2>
202
+<p>The function <code>path_net</code> creates a network of interacting genes for each pathway. Interacting genes are genes belonging to the same pathway and the interaction is given from network chosen by the user, according the paramenters of the function <code>getNETdata</code>. The output will be a network of genes belonging to the same pathway.</p>
203
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">network_path&lt;-<span class="kw">path_net</span>(<span class="dt">pathway=</span>path,<span class="dt">net_type=</span>netw)</code></pre></div>
204
+<pre><code>## [1] &quot;1 PATHWAY Cell cycle - Homo sapiens (human)&quot;
205
+## [1] &quot;2 PATHWAY p53 signaling pathway - Homo sapiens (human)&quot;</code></pre>
206
+</div>
197 207
 <div id="list_path_net-list-of-interacting-genes-for-each-pathway-list-of-genes-according-a-network-type-phintcolocgenintpathshpd" class="section level2">
198 208
 <h2><code>list_path_net</code>: List of interacting genes for each pathway (list of genes) according a network type (PHint,COloc,GENint,PATH,SHpd)</h2>
199 209
 <p>The function <code>list_path_net</code> creates a list of interacting genes for each pathway. Interacting genes are genes belonging to the same pathway and the interaction is given from network chosen by the user, according the paramenters of the function <code>getNETdata</code>. The output will be a list of genes belonging to the same pathway and those having an interaction in the network.</p>
200
-<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">list_path&lt;-<span class="kw">list_path_net</span>(<span class="dt">net_type=</span>netw,<span class="dt">pathway=</span>path)</code></pre></div>
201
-<pre><code>## [1] &quot;Basal transcription factors - Homo sapiens (human)&quot;
202
-## [1] &quot;Spliceosome - Homo sapiens (human)&quot;</code></pre>
210
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">list_path&lt;-<span class="kw">list_path_net</span>(<span class="dt">lista_net=</span>network_path,<span class="dt">pathway=</span>path)</code></pre></div>
211
+<pre><code>## [1] &quot;List of genes interacting in the same pathway: Cell cycle - Homo sapiens (human)&quot;
212
+## [1] &quot;List of genes interacting in the same pathway: p53 signaling pathway - Homo sapiens (human)&quot;</code></pre>
203 213
 </div>
204 214
 </div>
205 215
 <div id="pathway-summary-indexes-score-for-each-pathway" class="section level1">
206 216
 <h1><code>Pathway summary indexes</code>: Score for each pathway</h1>
217
+<div id="ge_matrix-get-human-kegg-pathway-data-and-a-gene-expression-matrix-in-order-to-obtain-a-matrix-with-the-gene-expression-for-only-genes-given-containing-in-the-pathways-given-in-input-by-the-user." class="section level2">
218
+<h2><code>GE_matrix</code>: Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the gene expression for only genes given containing in the pathways given in input by the user.</h2>
219
+<p>Starting from a matrix of gene expression (rows are genes and columns are samples, TCGA data) the function <code>GE_matrix</code> creates a of gene expression levels for each pathway given by the user:</p>
220
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">list_path_gene&lt;-<span class="kw">GE_matrix</span>(<span class="dt">DataMatrix=</span>tumo[,<span class="dv">1</span>:<span class="dv">2</span>],<span class="dt">pathway=</span>path)</code></pre></div>
221
+<pre><code>## [1] &quot;Cell cycle - Homo sapiens (human)&quot;
222
+## [1] &quot;p53 signaling pathway - Homo sapiens (human)&quot;</code></pre>
223
+</div>
207 224
 <div id="average-average-of-genes-for-each-pathway-starting-from-a-matrix-of-gene-expression" class="section level2">
208 225
 <h2><code>average</code>: Average of genes for each pathway starting from a matrix of gene expression</h2>
209 226
 <p>Starting from a matrix of gene expression (rows are genes and columns are samples, TCGA data) the function <code>average</code> creates an average matrix of gene expression for each pathway:</p>
... ...
@@ -212,10 +229,9 @@ netw&lt;-<span class="kw">getNETdata</span>(<span class="dt">network=</span><spa
212 229
 <div id="st_dv-standard-deviations-of-genes-for-each-pathway-starting-from-a-matrix-of-gene-expression" class="section level2">
213 230
 <h2><code>st_dv</code>: Standard deviations of genes for each pathway starting from a matrix of gene expression</h2>
214 231
 <p>Starting from a matrix of gene expression (rows are genes and columns are samples, TCGA data) the function <code>st_dv</code> creates a standard deviation matrix of gene expression for each pathway:</p>
215
-<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">score_st_dev&lt;-<span class="kw">st_dv</span>(<span class="dt">dataFilt=</span>tumo[,<span class="dv">1</span>:<span class="dv">2</span>],<span class="dt">pathway=</span>path)</code></pre></div>
216
-<pre><code>## [1] &quot;RNA polymerase - Homo sapiens (human)&quot;
217
-## [1] &quot;Basal transcription factors - Homo sapiens (human)&quot;
218
-## [1] &quot;Spliceosome - Homo sapiens (human)&quot;</code></pre>
232
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">score_st_dev&lt;-<span class="kw">st_dv</span>(<span class="dt">DataMatrix=</span>tumo[,<span class="dv">1</span>:<span class="dv">2</span>],<span class="dt">pathway=</span>path)</code></pre></div>
233
+<pre><code>## [1] &quot;Cell cycle - Homo sapiens (human)&quot;
234
+## [1] &quot;p53 signaling pathway - Homo sapiens (human)&quot;</code></pre>
219 235
 </div>
220 236
 </div>
221 237
 <div id="pathway-cross-talk-indexes-score-for-pairwise-pathways" class="section level1">
... ...
@@ -223,15 +239,14 @@ netw&lt;-<span class="kw">getNETdata</span>(<span class="dt">network=</span><spa
223 239
 <div id="euc_dist_crtlk-euclidean-distance-for-cross-talk-measure" class="section level2">
224 240
 <h2><code>euc_dist_crtlk</code>: Euclidean distance for cross-talk measure</h2>
225 241
 <p>Starting from a matrix of gene expression (rows are genes and columns are samples, TCGA data) the function <code>euc_dist_crtlk</code> creates an euclidean distance matrix of gene expression for pairwise pathway.</p>
226
-<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">score_euc_dist&lt;-<span class="kw">euc_dist_crtlk</span>(<span class="dt">dataFilt=</span>Data_CANCER_normUQ_filt,<span class="dt">pathway=</span>path)</code></pre></div>
242
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">score_euc_dista&lt;-<span class="kw">euc_dist_crtlk</span>(<span class="dt">dataFilt=</span>tumo[,<span class="dv">1</span>:<span class="dv">2</span>],<span class="dt">pathway=</span>path)</code></pre></div>
227 243
 </div>
228 244
 <div id="ds_score_crtlk-discriminating-score-for-cross-talk-measure" class="section level2">
229 245
 <h2><code>ds_score_crtlk</code>: Discriminating score for cross-talk measure</h2>
230 246
 <p>Starting from a matrix of gene expression (rows are genes and columns are samples, TCGA data) the function <code>ds_score_crtlk</code> creates an discriminating score matrix for pairwise pathway as measure of cross-talk. Discriminating score is given by |M1-M2|/S1+S2 where M1 and M2 are mean and S1 and S2 standard deviation of expression levels of genes in a pathway 1 and and in a pathway 2 .</p>
231 247
 <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">cross_talk_st_dv&lt;-<span class="kw">ds_score_crtlk</span>(<span class="dt">dataFilt=</span>tumo[,<span class="dv">1</span>:<span class="dv">2</span>],<span class="dt">pathway=</span>path)</code></pre></div>
232
-<pre><code>## [1] &quot;RNA polymerase - Homo sapiens (human)&quot;
233
-## [1] &quot;Basal transcription factors - Homo sapiens (human)&quot;
234
-## [1] &quot;Spliceosome - Homo sapiens (human)&quot;</code></pre>
248
+<pre><code>## [1] &quot;Cell cycle - Homo sapiens (human)&quot;
249
+## [1] &quot;p53 signaling pathway - Homo sapiens (human)&quot;</code></pre>
235 250
 </div>
236 251
 </div>
237 252
 <div id="selection-of-pathway-cross-talk-selection-of-pathway-cross-talk" class="section level1">
... ...
@@ -240,10 +255,10 @@ netw&lt;-<span class="kw">getNETdata</span>(<span class="dt">network=</span><spa
240 255
 <h2><code>svm_classification</code>: SVM classification</h2>
241 256
 <p>Given the substantial difference in the activities of many pathways between two classes (e.g. normal and cancer), we examined the effectiveness to classify the classes based on their pairwise pathway profiles. This function is used to find the interacting pathways that are altered in a particular pathology in terms of Area Under Curve (AUC).AUC was estimated by cross-validation method (k-fold cross-validation, k=10).It randomly selected some fraction of TCGA data (e.g. nf= 60; 60% of original dataset) to form the training set and then assigned the rest of the points to the testing set (40% of original dataset). For each pairwise pathway the user can obtain using the methods mentioned above a score matrix ( e.g.dev_std_crtlk ) and can focus on the pairs of pathways able to differentiate a particular subtype with respect to the normal type.</p>
242 257
 <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">nf &lt;-<span class="st"> </span><span class="dv">60</span>
243
-res_class&lt;-<span class="kw">svm_classification</span>(<span class="dt">TCGA_matrix=</span>score_euc_dist,<span class="dt">nfs=</span>nf,<span class="dt">normal=</span><span class="kw">colnames</span>(norm[,<span class="dv">1</span>:<span class="dv">12</span>]),<span class="dt">tumour=</span><span class="kw">colnames</span>(tumo[,<span class="dv">1</span>:<span class="dv">12</span>]))</code></pre></div>
244
-<pre><code>## [1] &quot;RNApolymerase_Basaltranscriptionfactors&quot;</code></pre>
245
-<pre><code>## [1] &quot;RNApolymerase_Spliceosome&quot;
246
-## [1] &quot;Basaltranscriptionfactors_Spliceosome&quot;</code></pre>
258
+res_class&lt;-<span class="kw">svm_classification</span>(<span class="dt">TCGA_matrix=</span>score_euc_dist[<span class="dv">1</span>:<span class="dv">2</span>,],<span class="dt">nfs=</span>nf,<span class="dt">normal=</span><span class="kw">colnames</span>(norm[,<span class="dv">1</span>:<span class="dv">12</span>]),<span class="dt">tumour=</span><span class="kw">colnames</span>(tumo[,<span class="dv">1</span>:<span class="dv">12</span>]))</code></pre></div>
259
+<pre><code>## [1] &quot;Cellcycle_p53signalingpathway&quot;</code></pre>
260
+<p><img src="" /></p>
261
+<pre><code>## [1] &quot;Cellcycle_Apoptosis&quot;</code></pre>
247 262
 </div>
248 263
 </div>
249 264
 <div id="plotting_cross_talk-plot-pathway-cross-talk" class="section level1">
... ...
@@ -271,172 +286,155 @@ res_class&lt;-<span class="kw">svm_classification</span>(<span class="dt">TCGA_m
271 286
 ##  [8] datasets  methods   base     
272 287
 ## 
273 288
 ## other attached packages:
289
+## [1] png_0.1-7            StarBioTrek_1.1.1    miRNAtap_1.6.0      
274 290
 ## [4] AnnotationDbi_1.34.4 IRanges_2.6.1        S4Vectors_0.10.3    
275 291
 ## [7] Biobase_2.32.0       BiocGenerics_0.18.0  BiocStyle_2.0.3     
276 292
 ## 
277 293
 ## loaded via a namespace (and not attached):
278
-##   [1] proto_0.3-10                           
279
-##   [2] R.utils_2.4.0                          
280
-##   [3] lme4_1.1-12                            
281
-##   [4] htmlwidgets_0.7                        
282
-##   [5] RSQLite_1.0.0                          
283
-##   [6] trimcluster_0.1-2                      
294
+##   [1] circlize_0.3.9                         
295
+##   [2] aroma.light_3.2.0                      
296
+##   [3] plyr_1.8.4                             
297
+##   [4] igraph_1.0.1                           
298
+##   [5] ConsensusClusterPlus_1.36.0            
299
+##   [6] splines_3.3.1                          
284 300
 ##   [7] BiocParallel_1.6.6                     
285
-##   [8] devtools_1.12.0                        
286
-##   [9] DESeq_1.24.0                           
287
-##  [10] munsell_0.4.3                          
288
-##  [11] codetools_0.2-15                       
289
-##  [12] preprocessCore_1.34.0                  
290
-##  [13] chron_2.3-47                           
291
-##  [14] withr_1.0.2                            
292
-##  [15] colorspace_1.2-6                       
293
-##  [16] BiocInstaller_1.22.3                   
294
-##  [17] highr_0.6                              
295
-##  [18] knitr_1.14                             
296
-##  [19] supraHex_1.10.0                        
301
+##   [8] GenomeInfoDb_1.8.7                     
302
+##   [9] ggplot2_2.1.0                          
303
+##  [10] TH.data_1.0-7                          
304
+##  [11] digest_0.6.10                          
305
+##  [12] foreach_1.4.3                          
306
+##  [13] BiocInstaller_1.22.3                   
307
+##  [14] htmltools_0.3.5                        
308
+##  [15] gdata_2.17.0                           
309
+##  [16] magrittr_1.5                           
310
+##  [17] memoise_1.0.0                          
311
+##  [18] cluster_2.0.5                          
312
+##  [19] doParallel_1.0.10                      
297 313
 ##  [20] ROCR_1.0-7                             
298
-##  [21] robustbase_0.92-6                      
299
-##  [22] mnormt_1.5-4                           
300
-##  [23] hwriter_1.3.2                          
301
-##  [24] downloader_0.4                         
302
-##  [25] TH.data_1.0-7                          
303
-##  [26] ggthemes_3.2.0                         
304
-##  [27] EDASeq_2.6.2                           
305
-##  [28] diptest_0.75-7                         
306
-##  [29] R6_2.2.0                               
307
-##  [30] doParallel_1.0.10                      
308
-##  [31] GenomeInfoDb_1.8.7                     
309
-##  [32] flexmix_2.3-13                         
310
-##  [33] bitops_1.0-6                           
311
-##  [34] reshape_0.8.5                          
312
-##  [35] assertthat_0.1                         
313
-##  [36] networkD3_0.2.13                       
314
-##  [37] scales_0.4.0                           
315
-##  [38] multcomp_1.4-6                         
316
-##  [39] nnet_7.3-12                            
317
-##  [40] gtable_0.2.0                           
318
-##  [41] affy_1.50.0                            
319
-##  [42] sandwich_2.3-4                         
320
-##  [43] genefilter_1.54.2                      
321
-##  [44] sjPlot_2.1.0                           
322
-##  [45] GlobalOptions_0.0.10                   
323
-##  [46] splines_3.3.1                          
324
-##  [47] rtracklayer_1.32.2                     
325
-##  [48] SpidermiR_1.2.5                        
326
-##  [49] hexbin_1.27.1                          
327
-##  [50] broom_0.4.1                            
328
-##  [51] yaml_2.1.13                            
329
-##  [52] reshape2_1.4.1                         
330
-##  [53] GenomicFeatures_1.24.5                 
331
-##  [54] tools_3.3.1                            
332
-##  [55] psych_1.6.9                            
333
-##  [56] ggplot2_2.1.0                          
334
-##  [57] affyio_1.42.0                          
335
-##  [58] gplots_3.0.1                           
336
-##  [59] RColorBrewer_1.1-2                     
337
-##  [60] gsubfn_0.6-6                           
338
-##  [61] Rcpp_0.12.7                            
339
-##  [62] plyr_1.8.4                             
340
-##  [63] visNetwork_1.0.2                       
341
-##  [64] zlibbioc_1.18.0                        
342
-##  [65] purrr_0.2.2                            
343
-##  [66] RCurl_1.95-4.8                         
314
+##  [21] limma_3.28.21                          
315
+##  [22] ComplexHeatmap_1.10.2                  
316
+##  [23] Biostrings_2.40.2                      
317
+##  [24] readr_1.0.0                            
318
+##  [25] annotate_1.50.1                        
319
+##  [26] matrixStats_0.51.0                     
320
+##  [27] R.utils_2.5.0                          
321
+##  [28] sandwich_2.3-4                         
322
+##  [29] colorspace_1.2-7                       
323
+##  [30] rvest_0.3.2                            
324
+##  [31] ggrepel_0.6.3                          
325
+##  [32] dplyr_0.5.0                            
326
+##  [33] jsonlite_1.1                           
327
+##  [34] RCurl_1.95-4.8                         
328
+##  [35] hexbin_1.27.1                          
329
+##  [36] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
330
+##  [37] graph_1.50.0                           
331
+##  [38] roxygen2_5.0.1                         
332
+##  [39] genefilter_1.54.2                      
333
+##  [40] supraHex_1.10.0                        
334
+##  [41] survival_2.40-1                        
335
+##  [42] miRNAtap.db_0.99.7                     
336
+##  [43] zoo_1.7-13                             
337
+##  [44] iterators_1.0.8                        
338
+##  [45] ape_3.5                                
339
+##  [46] gtable_0.2.0                           
340
+##  [47] zlibbioc_1.18.0                        
341
+##  [48] XVector_0.12.1                         
342
+##  [49] GetoptLong_0.1.5                       
343
+##  [50] kernlab_0.9-25                         
344
+##  [51] Rgraphviz_2.16.0                       
345
+##  [52] shape_1.4.2                            
346
+##  [53] prabclus_2.2-6                         
347
+##  [54] DEoptimR_1.0-6                         
348
+##  [55] scales_0.4.1                           
349
+##  [56] DESeq_1.24.0                           
350
+##  [57] mvtnorm_1.0-5                          
351
+##  [58] DBI_0.5-1                              
352
+##  [59] GGally_1.2.0                           
353
+##  [60] edgeR_3.14.0                           
354
+##  [61] ggthemes_3.2.0                         
355
+##  [62] Rcpp_0.12.7                            
356
+##  [63] xtable_1.8-2                           
357
+##  [64] matlab_1.0.2                           
358
+##  [65] mclust_5.2                             
359
+##  [66] preprocessCore_1.34.0                  
344 360
 ##  [67] sqldf_0.4-10                           
345
-##  [68] GetoptLong_0.1.5                       
346
-##  [69] cowplot_0.6.3                          
347
-##  [70] zoo_1.7-13                             
348
-##  [71] SummarizedExperiment_1.2.3             
349
-##  [72] haven_1.0.0                            
350
-##  [73] ggrepel_0.5                            
351
-##  [74] cluster_2.0.5                          
352
-##  [75] magrittr_1.5                           
353
-##  [76] data.table_1.9.6                       
354
-##  [77] dnet_1.0.9                             
355
-##  [78] circlize_0.3.9                         
356
-##  [79] effects_3.1-2                          
357
-##  [80] mvtnorm_1.0-5                          
358
-##  [81] whisker_0.3-2                          
359
-##  [82] sjmisc_2.0.0                           
360
-##  [83] matrixStats_0.51.0                     
361
-##  [84] aroma.light_3.2.0                      
362
-##  [85] evaluate_0.9                           
363
-##  [86] xtable_1.8-2                           
364
-##  [87] XML_3.98-1.4                           
365
-##  [88] sjstats_0.5.0                          
366
-##  [89] mclust_5.2                             
367
-##  [90] gridExtra_2.2.1                        
368
-##  [91] shape_1.4.2                            
369
-##  [92] biomaRt_2.28.0                         
370
-##  [93] tibble_1.2                             
371
-##  [94] KernSmooth_2.23-15                     
372
-##  [95] minqa_1.2.4                            
373
-##  [96] R.oo_1.20.0                            
374
-##  [97] htmltools_0.3.5                        
375
-##  [98] tidyr_0.6.0                            
376
-##  [99] geneplotter_1.50.0                     
377
-## [100] DBI_0.5-1                              
378
-## [101] formatR_1.4                            
379
-## [102] matlab_1.0.2                           
380
-## [103] ComplexHeatmap_1.10.2                  
381
-## [104] MASS_7.3-45                            
382
-## [105] fpc_2.1-10                             
383
-## [106] ShortRead_1.30.0                       
384
-## [107] Matrix_1.2-6                           
385
-## [108] readr_1.0.0                            
386
-## [109] parmigene_1.0.2                        
387
-## [110] R.methodsS3_1.7.1                      
388
-## [111] gdata_2.17.0                           
389
-## [112] igraph_1.0.1                           
390
-## [113] GenomicRanges_1.24.3                   
391
-## [114] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
392
-## [115] GenomicAlignments_1.8.4                
393
-## [116] coin_1.1-2                             
394
-## [117] foreign_0.8-66                         
395
-## [118] xml2_1.0.0                             
396
-## [119] roxygen2_5.0.1                         
397
-## [120] foreach_1.4.3                          
398
-## [121] annotate_1.50.1                        
399
-## [122] stringdist_0.9.4.2                     
400
-## [123] XVector_0.12.1                         
401
-## [124] rvest_0.3.2                            
402
-## [125] stringr_1.1.0                          
403
-## [126] digest_0.6.10                          
404
-## [127] ConsensusClusterPlus_1.36.0            
405
-## [128] graph_1.50.0                           
406
-## [129] Biostrings_2.40.2                      
407
-## [130] rmarkdown_1.0                          
408
-## [131] TCGAbiolinks_2.1.6                     
409
-## [132] dendextend_1.3.0                       
410
-## [133] edgeR_3.14.0                           
411
-## [134] miRNAtap.db_0.99.7                     
412
-## [135] curl_2.1                               
413
-## [136] kernlab_0.9-25                         
414
-## [137] Rsamtools_1.24.0                       
415
-## [138] gtools_3.5.0                           
416
-## [139] modeltools_0.2-21                      
417
-## [140] rjson_0.2.15                           
418
-## [141] nloptr_1.0.4                           
419
-## [142] nlme_3.1-128                           
420
-## [143] jsonlite_1.1                           
421
-## [144] limma_3.28.21                          
422
-## [145] lattice_0.20-33                        
423
-## [146] GGally_1.2.0                           
424
-## [147] KEGGREST_1.12.3                        
425
-## [148] httr_1.2.1                             
426
-## [149] DEoptimR_1.0-6                         
427
-## [150] survival_2.39-4                        
428
-## [151] prabclus_2.2-6                         
429
-## [152] iterators_1.0.8                        
430
-## [153] Rgraphviz_2.16.0                       
431
-## [154] class_7.3-14                           
432
-## [155] stringi_1.1.2                          
433
-## [156] org.Hs.eg.db_3.3.0                     
434
-## [157] latticeExtra_0.6-28                    
435
-## [158] caTools_1.17.1                         
436
-## [159] memoise_1.0.0                          
437
-## [160] dplyr_0.5.0                            
438
-## [161] e1071_1.6-7                            
439
-## [162] ape_3.5</code></pre>
361
+##  [68] htmlwidgets_0.8                        
362
+##  [69] httr_1.2.1                             
363
+##  [70] gplots_3.0.1                           
364
+##  [71] RColorBrewer_1.1-2                     
365
+##  [72] fpc_2.1-10                             
366
+##  [73] modeltools_0.2-21                      
367
+##  [74] reshape_0.8.6                          
368
+##  [75] XML_3.98-1.4                           
369
+##  [76] R.methodsS3_1.7.1                      
370
+##  [77] flexmix_2.3-13                         
371
+##  [78] nnet_7.3-12                            
372
+##  [79] visNetwork_1.0.2                       
373
+##  [80] munsell_0.4.3                          
374
+##  [81] tools_3.3.1                            
375
+##  [82] downloader_0.4                         
376
+##  [83] gsubfn_0.6-6                           
377
+##  [84] RSQLite_1.0.0                          
378
+##  [85] devtools_1.12.0                        
379
+##  [86] evaluate_0.10                          
380
+##  [87] stringr_1.1.0                          
381
+##  [88] yaml_2.1.13                            
382
+##  [89] org.Hs.eg.db_3.3.0                     
383
+##  [90] knitr_1.15                             
384
+##  [91] robustbase_0.92-6                      
385
+##  [92] caTools_1.17.1                         
386
+##  [93] KEGGREST_1.12.3                        
387
+##  [94] dendextend_1.3.0                       
388
+##  [95] coin_1.1-2                             
389
+##  [96] TCGAbiolinks_2.3.2                     
390
+##  [97] EDASeq_2.6.2                           
391
+##  [98] nlme_3.1-128                           
392
+##  [99] whisker_0.3-2                          
393
+## [100] R.oo_1.21.0                            
394
+## [101] xml2_1.0.0                             
395
+## [102] biomaRt_2.28.0                         
396
+## [103] curl_2.2                               
397
+## [104] e1071_1.6-7                            
398
+## [105] affyio_1.42.0                          
399
+## [106] tibble_1.2                             
400
+## [107] geneplotter_1.50.0                     
401
+## [108] stringi_1.1.2                          
402
+## [109] highr_0.6                              
403
+## [110] GenomicFeatures_1.24.5                 
404
+## [111] lattice_0.20-34                        
405
+## [112] trimcluster_0.1-2                      
406
+## [113] Matrix_1.2-7.1                         
407
+## [114] networkD3_0.2.13                       
408
+## [115] GlobalOptions_0.0.10                   
409
+## [116] parmigene_1.0.2                        
410
+## [117] data.table_1.9.6                       
411
+## [118] bitops_1.0-6                           
412
+## [119] dnet_1.0.9                             
413
+## [120] rtracklayer_1.32.2                     
414
+## [121] GenomicRanges_1.24.3                   
415
+## [122] R6_2.2.0                               
416
+## [123] latticeExtra_0.6-28                    
417
+## [124] affy_1.50.0                            
418
+## [125] hwriter_1.3.2                          
419
+## [126] ShortRead_1.30.0                       
420
+## [127] gridExtra_2.2.1                        
421
+## [128] KernSmooth_2.23-15                     
422
+## [129] codetools_0.2-15                       
423
+## [130] MASS_7.3-45                            
424
+## [131] gtools_3.5.0                           
425
+## [132] assertthat_0.1                         
426
+## [133] chron_2.3-47                           
427
+## [134] SummarizedExperiment_1.2.3             
428
+## [135] proto_1.0.0                            
429
+## [136] rjson_0.2.15                           
430
+## [137] withr_1.0.2                            
431
+## [138] SpidermiR_1.4.2                        
432
+## [139] GenomicAlignments_1.8.4                
433
+## [140] Rsamtools_1.24.0                       
434
+## [141] multcomp_1.4-6                         
435
+## [142] diptest_0.75-7                         
436
+## [143] class_7.3-14                           
437
+## [144] rmarkdown_1.1</code></pre>
440 438
 </div>
441 439
 </div>
442 440
 <div id="references" class="section level1 unnumbered">