Name Mode Size
R 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
NAMESPACE 100644 1 kb
NEWS.md 100644 1 kb
README.md 100644 3 kb
README.md
--- output: github_document --- <!-- README.md is generated from README.Rmd. Please edit that file --> ```{r, echo = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "README-" ) ``` # Site2Target The goal of Site2Target is to to associate sets of sites/peaks to target genes. It provides peakwise-associations to associate target genes for a given set of peaks. It also provides genewise-associations which start from genes (ex. differential expressed genes) and associate peaks/sites to these genes. ## Installation To install this package, start R (version "4.4") and enter: ``` if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("Site2Target") ``` ## Example Here is an example of a peak-wise and a gene-wise association of differential genes WT vs KO of a transcription factor and binding sites of this transcription factor: ``` library(Site2Target) ## peak-wise association example # Read gene expression coordinates geneFile=system.file("extdata", "gene_expression.tsv", package="Site2Target") geneCoords <- Table2Granges(geneFile) # Read gene expression table geneTable <- read.table(geneFile, header=TRUE) # Read peak coordinates of MEIS binding sites tfFile =system.file("extdata", "MEIS_binding.tsv", package="Site2Target") TFCoords <- Table2Granges(tfFile) tfTable <- read.table(tfFile, header=TRUE) # Predict targets of MEIS using peakwise-association pvals <- getTargetGenesPvals( geneCoordinates=geneCoords, sites=TFCoords, distance = 50000) topTargetNum <- 5 topTargetIndex <- order(pvals)[1:topTargetNum] # Make a data frame of peak targets pvalues and expression logFCs dfTopTarget <- data.frame(name=geneTable$name[topTargetIndex], pvalue=pvals[topTargetIndex], exprLogC=geneTable$logFC[topTargetIndex] ) dfTopTarget ## gene-wise association example # Take differential genes iformation geneDEIndices <- which((abs(geneTable$logFC)>1)==TRUE) indicesLen <- length(geneDEIndices) if(indicesLen >0) { geneTable <- geneTable[geneDEIndices,] geneCoords <- geneCoords[geneDEIndices] } geneDENames <- geneTable$name geneDElogFC <- geneTable$logFC geneCoordsDE <- geneCoords # Associate peaks located up to 50k bp to differential genes stats <- genewiseAssociation(associationBy="distance", geneCoordinates=geneCoordsDE, geneNames=geneDENames, peakCoordinates=TFCoords, distance=50000, outFile="Gene_TF_50K") stats ``` # Site2Target