...
|
...
|
@@ -395,7 +395,7 @@ We highly recommend users to perform `SGCP` on the three potential metod
|
395
|
395
|
|
396
|
396
|
`SGCP` allows user to visualize the result. `SGCP_ezPLOT` takes `sgcp` result from
|
397
|
397
|
`ezSGCP` function along with `expData` and `geneID`. It returns two files; excel
|
398
|
|
-and pdf depending on the initial call. It also let users keep the plotting object
|
|
398
|
+and pdf depending on the initial call. User also can keep the plotting object
|
399
|
399
|
by setting keep = TRUE. Here, we set `silhouette_in` to TRUE to see the silhouette index plot. We need to have `magic` package installed.
|
400
|
400
|
|
401
|
401
|
```{r, message=FALSE, warning=FALSE}
|
...
|
...
|
@@ -404,8 +404,7 @@ library(magick)
|
404
|
404
|
|
405
|
405
|
```{r, message=FALSE, warning=FALSE}
|
406
|
406
|
message("PCA of expression data without label")
|
407
|
|
-sgcp_plts <- SGCP_ezPLOT(sgcp = sgcp, expreData = expData,
|
408
|
|
- silhouette_index = TRUE, keep = TRUE)
|
|
407
|
+SGCP_ezPLOT(sgcp = sgcp, expreData = expData, silhouette_index = TRUE, keep = FALSE)
|
409
|
408
|
```
|
410
|
409
|
Note that in order to store files in xlsx format, excel must be installed on your system.
|
411
|
410
|
|
...
|
...
|
@@ -448,13 +447,13 @@ resAdja[0:10, 0:5]
|
448
|
447
|
```
|
449
|
448
|
|
450
|
449
|
|
451
|
|
-`resAdja` is the adjacency matrix of the gene co-expression network. We can visualize the heatmap of the adjacency matrix using$~$` SGCP_plot_heatMap` function as follow.
|
|
450
|
+`resAdja` is the adjacency matrix of the gene co-expression network. We can visualize the heatmap of the adjacency matrix using$~$` SGCP_plot_heatMap` function as follow.To see the heatmap, uncomment the following line of codes.
|
452
|
451
|
|
453
|
452
|
```{r, message=TRUE, warning=FALSE}
|
454
|
|
-message("Plotting adjacency heatmap")
|
455
|
|
-pl <- SGCP_plot_heatMap(m = resAdja, tit = "Adjacency Heatmap",
|
456
|
|
- xname = "genes", yname = "genes")
|
457
|
|
-print(pl)
|
|
453
|
+#message("Plotting adjacency heatmap")
|
|
454
|
+#pl <- SGCP_plot_heatMap(m = resAdja, tit = "Adjacency Heatmap",
|
|
455
|
+# xname = "genes", yname = "genes")
|
|
456
|
+#print(pl)
|
458
|
457
|
```
|
459
|
458
|
|
460
|
459
|
|
...
|
...
|
@@ -561,25 +560,25 @@ If you run the code, you will see the following will be printout for you.
|
561
|
560
|
|
562
|
561
|
We saw that three methods ("relativeGap", "secondOrderGap", "additiveGap") resulted in three distinct potential number of clusters. `SGCP` picked "secondOrderGap" after gene ontology validation which is 2. `cv` field is "cvGO", which indicates that k is found based on gene ontology validation. In `original` field, you can have the n_egvec first columns ( eigenvectors) and eigenvalues of the transformation matrix. This might be useful for further investigation.
|
563
|
562
|
|
564
|
|
-Now we can see the plot of PCA on the expression and transformed data with and without the labels as follow.
|
|
563
|
+Now we can see the plot of PCA on the expression and transformed data with and without the labels using `SGCP_plot_pca`. For practice, uncomment the following and see the resulting PCAs.
|
565
|
564
|
|
566
|
565
|
```{r, message=TRUE, warning=FALSE}
|
567
|
566
|
message("Plotting PCA of expression data with label")
|
568
|
567
|
|
569
|
|
-pl <- SGCP_plot_pca(m = expData, clusLabs = NULL, tit = "PCA plot without label", ps = .5)
|
570
|
|
-print(pl)
|
|
568
|
+# pl <- SGCP_plot_pca(m = expData, clusLabs = NULL, tit = "PCA plot without label", ps = .5)
|
|
569
|
+# print(pl)
|
571
|
570
|
```
|
572
|
571
|
|
573
|
572
|
```{r, message=TRUE, warning=FALSE}
|
574
|
573
|
message("Plptting PCA of transformed data without label")
|
575
|
|
-pl <- SGCP_plot_pca(m = resClus$Y, clusLabs = NULL, tit = "PCA plot without label", ps = .5)
|
576
|
|
-print(pl)
|
|
574
|
+# pl <- SGCP_plot_pca(m = resClus$Y, clusLabs = NULL, tit = "PCA plot without label", ps = .5)
|
|
575
|
+# print(pl)
|
577
|
576
|
```
|
578
|
577
|
|
579
|
578
|
```{r, message=TRUE, warning=FALSE}
|
580
|
579
|
message("Plotting PCA of transformed data with label")
|
581
|
|
-pl <- SGCP_plot_pca(m = resClus$Y, clusLabs = resClus$clusterLabels, tit = "PCA plot with label", ps = .5)
|
582
|
|
-print(pl)
|
|
580
|
+# pl <- SGCP_plot_pca(m = resClus$Y, clusLabs = resClus$clusterLabels, tit = "PCA plot with label", ps = .5)
|
|
581
|
+# print(pl)
|
583
|
582
|
```
|
584
|
583
|
|
585
|
584
|
|
...
|
...
|
@@ -750,24 +749,24 @@ print(table(resSemiSupervised$FinalLabeling$FinalLabel))
|
750
|
749
|
```
|
751
|
750
|
In this step, k-nearest neighbor model is selected. It hyper-parameter is selected based on cross validation on accuracy metric. Table above shows the gene semi label and final labeling.
|
752
|
751
|
|
753
|
|
-Now lets see the PCA plot with the final labeling.
|
|
752
|
+Now you can see the PCA plot with the final labeling using `SGCP_plot_pca` function. For practice uncomment the following to see the resulting PCAs.
|
754
|
753
|
|
755
|
754
|
```{r, message=TRUE, warning=FALSE}
|
756
|
|
-message("Plotting PCA of transformed data with label")
|
757
|
|
-pl <- SGCP_plot_pca(m = expData,
|
758
|
|
- clusLabs = resSemiSupervised$FinalLabeling$FinalLabel,
|
759
|
|
- tit = "PCA plot with label", ps = .5)
|
|
755
|
+# message("Plotting PCA of transformed data with label")
|
|
756
|
+# pl <- SGCP_plot_pca(m = expData,
|
|
757
|
+# clusLabs = resSemiSupervised$FinalLabeling$FinalLabel,
|
|
758
|
+# tit = "PCA plot with label", ps = .5)
|
760
|
759
|
print(pl)
|
761
|
760
|
```
|
762
|
761
|
|
763
|
762
|
|
764
|
763
|
|
765
|
764
|
```{r, message=TRUE, warning=FALSE}
|
766
|
|
-message("Plotting PCA of transformed data with label")
|
767
|
|
-pl <- SGCP_plot_pca(m = resClus$Y,
|
768
|
|
- clusLabs = resSemiSupervised$FinalLabeling$FinalLabel,
|
769
|
|
- tit = "PCA plot with label", ps = .5)
|
770
|
|
-print(pl)
|
|
765
|
+# message("Plotting PCA of transformed data with label")
|
|
766
|
+# pl <- SGCP_plot_pca(m = resClus$Y,
|
|
767
|
+# clusLabs = resSemiSupervised$FinalLabeling$FinalLabel,
|
|
768
|
+# tit = "PCA plot with label", ps = .5)
|
|
769
|
+#print(pl)
|
771
|
770
|
```
|
772
|
771
|
|
773
|
772
|
|