Browse code

added the Rtreemix package and removed the bim package

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/Rtreemix@28790 bc3139a8-67e5-0310-9ffc-ced21a209358

Herve Pages authored on 16/11/2007 21:25:16
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,61 @@
1
+\name{distances}
2
+
3
+\alias{L1.dist}
4
+\alias{euclidian.dist}
5
+\alias{cosin.dist}
6
+\alias{rank.cor.dist}
7
+
8
+\title{Different distances between two given vectors}
9
+\description{
10
+ These functions are used for calculating different distances between
11
+ two given vectors. Thus, \code{L1.dist} calculates the L1 distance,
12
+ \code{cosin.dist} calculates the cosine distance, \code{euclidian.dist}
13
+ computes the Euclidian distance, and \code{rank.cor.dist} computes
14
+ the rank correlation distance. The vectors have to have same length.
15
+ When using \code{rank.cor.dist} the vectors have to have length larger
16
+ than 4.
17
+}
18
+\usage{
19
+L1.dist(p, q)
20
+cosin.dist(p, q)
21
+euclidian.dist(x, y)
22
+rank.cor.dist(x, y)
23
+}
24
+
25
+\arguments{
26
+  \item{p}{ A \code{numeric} vector specifying the first component for
27
+    the distance calculation. It has to have the same length as \code{q}.}
28
+  \item{q}{ A \code{numeric} vector specifying the second component for
29
+    the distance calculation. }
30
+  \item{x}{ Same as \code{p}. }
31
+  \item{y}{ Same as \code{q}.}
32
+
33
+}
34
+
35
+\value{
36
+  The functions return the distance between the two given vectors. 
37
+}
38
+
39
+\author{Jasmina Bogojeska}
40
+
41
+\seealso{\code{\link{kullback.leibler}}, \code{\link{L2.norm}}, \code{\link{stability.sim}}}
42
+\examples{
43
+## Define two numeric vectors with equal lengths (> 4).
44
+x <- c(1, 2, 3, 4, 5)
45
+y <- c(5, 6, 7, 8, 9)
46
+
47
+## Calculate the L1 distance between the vectors x and y
48
+L1.dist(x, y)
49
+
50
+## Calculate the Euclidian distance between the vectors x and y
51
+euclidian.dist(x, y)
52
+
53
+## Calculate the cosine distance between the vectors x and y
54
+cosin.dist(x, y)
55
+
56
+## Calculate the rank-correlation distance between the vectors x and y
57
+rank.cor.dist(x, y)
58
+
59
+}
60
+
61
+\keyword{misc}