git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/Rtreemix@28790 bc3139a8-67e5-0310-9ffc-ced21a209358
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,61 @@ |
1 |
+\name{distances} |
|
2 |
+ |
|
3 |
+\alias{L1.dist} |
|
4 |
+\alias{euclidian.dist} |
|
5 |
+\alias{cosin.dist} |
|
6 |
+\alias{rank.cor.dist} |
|
7 |
+ |
|
8 |
+\title{Different distances between two given vectors} |
|
9 |
+\description{ |
|
10 |
+ These functions are used for calculating different distances between |
|
11 |
+ two given vectors. Thus, \code{L1.dist} calculates the L1 distance, |
|
12 |
+ \code{cosin.dist} calculates the cosine distance, \code{euclidian.dist} |
|
13 |
+ computes the Euclidian distance, and \code{rank.cor.dist} computes |
|
14 |
+ the rank correlation distance. The vectors have to have same length. |
|
15 |
+ When using \code{rank.cor.dist} the vectors have to have length larger |
|
16 |
+ than 4. |
|
17 |
+} |
|
18 |
+\usage{ |
|
19 |
+L1.dist(p, q) |
|
20 |
+cosin.dist(p, q) |
|
21 |
+euclidian.dist(x, y) |
|
22 |
+rank.cor.dist(x, y) |
|
23 |
+} |
|
24 |
+ |
|
25 |
+\arguments{ |
|
26 |
+ \item{p}{ A \code{numeric} vector specifying the first component for |
|
27 |
+ the distance calculation. It has to have the same length as \code{q}.} |
|
28 |
+ \item{q}{ A \code{numeric} vector specifying the second component for |
|
29 |
+ the distance calculation. } |
|
30 |
+ \item{x}{ Same as \code{p}. } |
|
31 |
+ \item{y}{ Same as \code{q}.} |
|
32 |
+ |
|
33 |
+} |
|
34 |
+ |
|
35 |
+\value{ |
|
36 |
+ The functions return the distance between the two given vectors. |
|
37 |
+} |
|
38 |
+ |
|
39 |
+\author{Jasmina Bogojeska} |
|
40 |
+ |
|
41 |
+\seealso{\code{\link{kullback.leibler}}, \code{\link{L2.norm}}, \code{\link{stability.sim}}} |
|
42 |
+\examples{ |
|
43 |
+## Define two numeric vectors with equal lengths (> 4). |
|
44 |
+x <- c(1, 2, 3, 4, 5) |
|
45 |
+y <- c(5, 6, 7, 8, 9) |
|
46 |
+ |
|
47 |
+## Calculate the L1 distance between the vectors x and y |
|
48 |
+L1.dist(x, y) |
|
49 |
+ |
|
50 |
+## Calculate the Euclidian distance between the vectors x and y |
|
51 |
+euclidian.dist(x, y) |
|
52 |
+ |
|
53 |
+## Calculate the cosine distance between the vectors x and y |
|
54 |
+cosin.dist(x, y) |
|
55 |
+ |
|
56 |
+## Calculate the rank-correlation distance between the vectors x and y |
|
57 |
+rank.cor.dist(x, y) |
|
58 |
+ |
|
59 |
+} |
|
60 |
+ |
|
61 |
+\keyword{misc} |