git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/Rtreemix@41371 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -13,9 +13,7 @@ analyzes its variance with the bootstrap method. The \code{data} and |
13 | 13 |
the number of trees \code{K} have to be specified. |
14 | 14 |
} |
15 | 15 |
\usage{ |
16 |
-bootstrap(data, K, no.start.sol = 100, eps = 0, weighing = FALSE, |
|
17 |
- equal.edgeweights = TRUE, seed = (-1), B = 1000, |
|
18 |
- conf.interval = 0.05) |
|
16 |
+bootstrap(data, K, \dots) |
|
19 | 17 |
} |
20 | 18 |
|
21 | 19 |
\arguments{ |
... | ... |
@@ -23,24 +21,26 @@ bootstrap(data, K, no.start.sol = 100, eps = 0, weighing = FALSE, |
23 | 21 |
learning the trees mixture model. } |
24 | 22 |
\item{K}{An \code{integer} larger than 0 specifying the number of |
25 | 23 |
branchings in the mixture model.} |
26 |
- \item{no.start.sol}{An \code{integer} larger than 0 specifying the number of starting solutions for the k-means |
|
27 |
- algorithm. The default value is 100.} |
|
28 |
- \item{eps}{A \code{numeric} giving the minimum conditional probability to include edge. The |
|
29 |
- default value is 0.} |
|
30 |
- \item{weighing}{A \code{logical} specifying whether to use special |
|
31 |
- weights log(Pr(v)) for the edges (root, v). The default value is \code{FALSE}.} |
|
32 |
- \item{equal.edgeweights}{A \code{logical} specifying whether to use |
|
24 |
+ \item{\dots}{ |
|
25 |
+ \code{no.start.sol} is an \code{integer} larger than 0 specifying the number of starting solutions for the k-means |
|
26 |
+ algorithm. The default value is 100. |
|
27 |
+ \code{eps} is a \code{numeric} giving the minimum conditional probability to include edge. The |
|
28 |
+ default value is 0. |
|
29 |
+ \code{weighing} is a \code{logical} specifying whether to use special |
|
30 |
+ weights log(Pr(v)) for the edges (root, v). The default value is \code{FALSE}. |
|
31 |
+ \code{equal.edgeweights} is a \code{logical} specifying whether to use |
|
33 | 32 |
equal edge weights in the noise component. The default value is |
34 | 33 |
\code{TRUE}. When you have few data samples always use its default value |
35 | 34 |
(\code{TRUE}) to ensure nonzero probabilities for all possible |
36 |
- patterns (sets of events).} |
|
37 |
- \item{seed}{A positive \code{integer} specifying the random generator |
|
35 |
+ patterns (sets of events). |
|
36 |
+ \code{seed} is a positive \code{integer} specifying the random generator |
|
38 | 37 |
seed. The default value is (-1) and then the time is used as a |
39 |
- random generator.} |
|
40 |
- \item{B}{An \code{integer} larger than 0 specifying the number of |
|
41 |
- bootstrap samples. Its default value is 1000.} |
|
42 |
- \item{conf.interval}{A \code{numeric} specifying the Confidence level |
|
43 |
- for the intervals. Its default value is 0.05.} |
|
38 |
+ random generator. |
|
39 |
+ \code{B} is an \code{integer} larger than 0 specifying the number of |
|
40 |
+ bootstrap samples. Its default value is 1000. |
|
41 |
+ \code{conf.interval} is a \code{numeric} specifying the Confidence level |
|
42 |
+ for the intervals. Its default value is 0.05. |
|
43 |
+ } |
|
44 | 44 |
} |
45 | 45 |
|
46 | 46 |
\value{ |
... | ... |
@@ -18,8 +18,7 @@ |
18 | 18 |
} |
19 | 19 |
|
20 | 20 |
\usage{ |
21 |
-confIntGPS(data, K, sampling.mode = "exponential", sampling.param = 1, |
|
22 |
- no.sim = 10000, B = 1000, equal.star = TRUE) |
|
21 |
+confIntGPS(data, K, \dots) |
|
23 | 22 |
} |
24 | 23 |
|
25 | 24 |
\arguments{ |
... | ... |
@@ -29,23 +28,25 @@ confIntGPS(data, K, sampling.mode = "exponential", sampling.param = 1, |
29 | 28 |
of genetic events should NOT be greater than 20.} |
30 | 29 |
\item{K}{An \code{integer} larger than 0 specifying the number of |
31 | 30 |
branchings in the mixture model.} |
32 |
- \item{sampling.mode}{A \code{character} that specifies the |
|
31 |
+ \item{...}{ |
|
32 |
+ \code{sampling.mode} is a \code{character} that specifies the |
|
33 | 33 |
sampling mode ("constant" or "exponential") used in the waiting time |
34 |
- simulations. Its default value is "exponential".} |
|
35 |
- \item{sampling.param}{A \code{numeric} that specifies the |
|
34 |
+ simulations. Its default value is "exponential". |
|
35 |
+ \code{sampling.param} is a \code{numeric} that specifies the |
|
36 | 36 |
sampling parameter corresponding to the sampling mode given by |
37 |
- \code{sampling.mode}. Its default value is 1.} |
|
38 |
- \item{no.sim}{An \code{integer} larger than 0 giving the number of |
|
37 |
+ \code{sampling.mode}. Its default value is 1. |
|
38 |
+ \code{no.sim} is an \code{integer} larger than 0 giving the number of |
|
39 | 39 |
iterations for the waiting time simulation. Its default values is |
40 |
- 10000.} |
|
41 |
- \item{B}{An \code{integer} larger than 0 specifying the number of |
|
40 |
+ 10000. |
|
41 |
+ \code{B} is an \code{integer} larger than 0 specifying the number of |
|
42 | 42 |
bootstrap samples used in the bootstrap analysis. Its default value |
43 |
- is 1000.} |
|
44 |
- \item{equal.star}{A \code{logical} specifying whether to use |
|
43 |
+ is 1000. |
|
44 |
+ \code{equal.star} is a \code{logical} specifying whether to use |
|
45 | 45 |
equal edge weights in the noise component. The default value is |
46 | 46 |
\code{TRUE}. When you have few data samples always use its default value |
47 | 47 |
(\code{TRUE}) to ensure nonzero probabilities for all possible |
48 |
- patterns (sets of events).} |
|
48 |
+ patterns (sets of events). |
|
49 |
+ } |
|
49 | 50 |
} |
50 | 51 |
|
51 | 52 |
\value{ |
... | ... |
@@ -63,7 +64,7 @@ confIntGPS(data, K, sampling.mode = "exponential", sampling.param = 1, |
63 | 64 |
confidence intervals are to be calculated should not have more |
64 | 65 |
than 20 genetic events. The reason for this is that the number of all possible patterns |
65 | 66 |
for which the GPS values are calculated during a computationally intensive simulations |
66 |
- is in this case $2^{20}$. This demands too much memory. |
|
67 |
+ is in this case $2^20$. This demands too much memory. |
|
67 | 68 |
The GPS examples are time consuming. They are commented out because of the time restrictions of the check of the package. |
68 | 69 |
For trying out the code please copy it and uncomment it. |
69 | 70 |
} |
... | ... |
@@ -19,12 +19,7 @@ |
19 | 19 |
events in the \code{model} cannot exceed 30. |
20 | 20 |
} |
21 | 21 |
\usage{ |
22 |
-distribution(model, ...) |
|
23 |
- |
|
24 |
-\method{distribution}{model}(model) |
|
25 |
- |
|
26 |
-\method{distribution}{model, sampling.mode, sampling.param, output.param}(model, |
|
27 |
- sampling.mode, sampling.param, output.param) |
|
22 |
+distribution(model, sampling.mode, sampling.param, output.param) |
|
28 | 23 |
} |
29 | 24 |
\arguments{ |
30 | 25 |
\item{model}{An \code{RtreemixModel} object that encodes a |
... | ... |
@@ -37,7 +32,7 @@ distribution(model, ...) |
37 | 32 |
corresponding to the sampling mode given by \code{sampling.mode}.} |
38 | 33 |
\item{output.param}{A \code{numeric} that specifies the |
39 | 34 |
sampling parameter for the observed output probabilities |
40 |
- corresponding to the sampling mode given by \code{sampling.mode}.} |
|
35 |
+ corresponding to the sampling mode given by \code{sampling.mode}.} |
|
41 | 36 |
} |
42 | 37 |
|
43 | 38 |
\value{ |
... | ... |
@@ -24,8 +24,7 @@ |
24 | 24 |
} |
25 | 25 |
|
26 | 26 |
\usage{ |
27 |
-fit(data, K, no.start.sol = 100, eps = 0.01, weighing = FALSE, |
|
28 |
- equal.edgeweights = TRUE, seed = (-1), noise = TRUE) |
|
27 |
+fit(data, K, \dots) |
|
29 | 28 |
} |
30 | 29 |
|
31 | 30 |
\arguments{ |
... | ... |
@@ -33,23 +32,25 @@ fit(data, K, no.start.sol = 100, eps = 0.01, weighing = FALSE, |
33 | 32 |
learning the trees mixture model.} |
34 | 33 |
\item{K}{An \code{integer} larger than 0 specifying the number of |
35 | 34 |
branchings in the mixture model.} |
36 |
- \item{no.start.sol}{An \code{integer} larger than 0 specifying the number of starting solutions for the k-means |
|
37 |
- algorithm. The default value is 100.} |
|
38 |
- \item{eps}{A \code{numeric} giving the minimum conditional probability to include edge. The |
|
39 |
- default value is 0.01.} |
|
40 |
- \item{weighing}{A \code{logical} specifying whether to use special |
|
41 |
- weights log(Pr(v)) for the edges (root, v). The default value is \code{FALSE}.} |
|
42 |
- \item{equal.edgeweights}{A \code{logical} specifying whether to use |
|
35 |
+ \item{\dots}{ |
|
36 |
+ \code{no.start.sol} is an \code{integer} larger than 0 specifying the number of starting solutions for the k-means |
|
37 |
+ algorithm. The default value is 100. |
|
38 |
+ \code{eps} is a \code{numeric} giving the minimum conditional probability to include edge. The |
|
39 |
+ default value is 0.01. |
|
40 |
+ \code{weighing} is a \code{logical} specifying whether to use special |
|
41 |
+ weights log(Pr(v)) for the edges (root, v). The default value is \code{FALSE}. |
|
42 |
+ \code{equal.edgeweights} is a \code{logical} specifying whether to use |
|
43 | 43 |
equal edge weights in the noise component. The default value is |
44 | 44 |
\code{TRUE}. When you have few data samples always use its default value (\code{TRUE}) |
45 |
- to ensure nonzero probabilities for all possible patterns (sets of events).} |
|
46 |
- \item{seed}{A positive \code{integer} specifying the random generator |
|
45 |
+ to ensure nonzero probabilities for all possible patterns (sets of events). |
|
46 |
+ \code{seed} is a positive \code{integer} specifying the random generator |
|
47 | 47 |
seed. The default value is (-1) and then the time is used as a |
48 |
- random generator.} |
|
49 |
- \item{noise}{A \code{logical} indicating the presence of a noise |
|
48 |
+ random generator. |
|
49 |
+ \code{noise} is a \code{logical} indicating the presence of a noise |
|
50 | 50 |
(star) component in the fitted mixture model. It is mostly relevant |
51 | 51 |
for models with a single tree component, since it is assumed that mixture models with |
52 |
- at least two components always have the noise as a first component.} |
|
52 |
+ at least two components always have the noise as a first component. |
|
53 |
+ } |
|
53 | 54 |
} |
54 | 55 |
|
55 | 56 |
\value{ |
... | ... |
@@ -14,28 +14,29 @@ |
14 | 14 |
have to be specified. |
15 | 15 |
} |
16 | 16 |
\usage{ |
17 |
-generate(K, no.events, noise.tree = TRUE, equal.edgeweights = TRUE, |
|
18 |
- prob = c(0, 1), seed = (-1)) |
|
17 |
+generate(K, no.events, \dots) |
|
19 | 18 |
} |
20 | 19 |
\arguments{ |
21 | 20 |
\item{K}{An \code{integer} larger than 0 specifying the number of |
22 | 21 |
branchings in the mixture model.} |
23 | 22 |
\item{no.events}{An \code{integer} larger than 0 specifying the number of |
24 | 23 |
genetic events in the mixture model.} |
25 |
- \item{noise.tree}{A \code{logical} indicating the presence of a noise |
|
24 |
+ \item{\dots}{ |
|
25 |
+ \code{noise.tree} is a \code{logical} indicating the presence of a noise |
|
26 | 26 |
(star) component in the random mixture model. The default value is |
27 |
- \code{TRUE}.} |
|
28 |
- \item{equal.edgeweights}{A \code{logical} specifying whether to use |
|
27 |
+ \code{TRUE}. |
|
28 |
+ \code{equal.edgeweights} is a \code{logical} specifying whether to use |
|
29 | 29 |
equal edge weights in the noise component. The default value is |
30 |
- \code{TRUE}.} |
|
31 |
- \item{prob}{A \code{numeric} vector of length 2 specifying the |
|
30 |
+ \code{TRUE}. |
|
31 |
+ \code{prob} is a \code{numeric} vector of length 2 specifying the |
|
32 | 32 |
boundaries for the edge weights of the randomly generated trees. The |
33 | 33 |
first component of the vector (the lower boundary) must be smaller |
34 | 34 |
than the second component (the upper boundary). The default value |
35 |
- is (0.0, 1.0).} |
|
36 |
- \item{seed}{A positive \code{integer} specifying the random generator |
|
35 |
+ is (0.0, 1.0). |
|
36 |
+ \code{seed} is a positive \code{integer} specifying the random generator |
|
37 | 37 |
seed. The default value is (-1) and then the time is used as a |
38 |
- random generator.} |
|
38 |
+ random generator. |
|
39 |
+ } |
|
39 | 40 |
} |
40 | 41 |
\value{ |
41 | 42 |
The method returns an \code{RtreemixModel} object that represents the |
... | ... |
@@ -22,13 +22,7 @@ |
22 | 22 |
} |
23 | 23 |
|
24 | 24 |
\usage{ |
25 |
-gps(model, ...) |
|
26 |
- |
|
27 |
-\method{gps}{model, data}(model, data, sampling.mode = "exponential", |
|
28 |
- sampling.param = 1, no.sim = 10, seed = (-1)) |
|
29 |
- |
|
30 |
-\method{gps}{model}(model, sampling.mode = "exponential", |
|
31 |
- sampling.param = 1, no.sim = 10, seed = (-1)) |
|
25 |
+gps(model, data, \dots) |
|
32 | 26 |
} |
33 | 27 |
|
34 | 28 |
\section{Methods}{\describe{ |
... | ... |
@@ -48,17 +42,19 @@ gps(model, ...) |
48 | 42 |
containing the samples (patterns of genetic events) for which the GPS values |
49 | 43 |
are to be calculated. The length of each of them has to be equal |
50 | 44 |
to the number of genetic events in the \code{model}.} |
51 |
- \item{sampling.mode}{A \code{character} that specifies the |
|
45 |
+ \item{\dots}{ |
|
46 |
+ \code{sampling.mode} is a \code{character} that specifies the |
|
52 | 47 |
sampling mode ("constant" or "exponential") used in the waiting time |
53 |
- simulations. Its default value is "exponential".} |
|
54 |
- \item{sampling.param}{A \code{numeric} that specifies the |
|
48 |
+ simulations. Its default value is "exponential". |
|
49 |
+ \code{sampling.param} is a \code{numeric} that specifies the |
|
55 | 50 |
sampling parameter corresponding to the sampling mode given by |
56 |
- \code{sampling.mode}. Its default value is 1.} |
|
57 |
- \item{no.sim}{An \code{integer} larger than 0 giving the number of |
|
58 |
- iterations for the waiting time simulations. Its default value is 10.} |
|
59 |
- \item{seed}{A positive \code{integer} specifying the random generator |
|
51 |
+ \code{sampling.mode}. Its default value is 1. |
|
52 |
+ \code{no.sim} is an \code{integer} larger than 0 giving the number of |
|
53 |
+ iterations for the waiting time simulations. Its default value is 10. |
|
54 |
+ \code{seed} is a positive \code{integer} specifying the random generator |
|
60 | 55 |
seed. Its default value is (-1) and then the time is used as a |
61 |
- random generator.} |
|
56 |
+ random generator. |
|
57 |
+ } |
|
62 | 58 |
} |
63 | 59 |
|
64 | 60 |
\value{ |
... | ... |
@@ -76,7 +72,7 @@ gps(model, ...) |
76 | 72 |
The mixture model used for deriving the GPS values should not have more than |
77 | 73 |
20 genetic events. The reason for this is that the number of all possible patterns |
78 | 74 |
for which the GPS values are calculated during a computationally intensive simulations |
79 |
- is in this case $2^{20}$. This demands too much memory. |
|
75 |
+ is in this case $2^20$. This demands too much memory. |
|
80 | 76 |
The GPS examples are time consuming. They are commented out because of the time restrictions of the check of the package. |
81 | 77 |
For trying out the code please copy it and uncomment it. |
82 | 78 |
} |
... | ... |
@@ -19,14 +19,17 @@ |
19 | 19 |
} |
20 | 20 |
|
21 | 21 |
\usage{ |
22 |
-plot(x, k, fontSize = 8) |
|
22 |
+plot(x, y, \dots) |
|
23 | 23 |
} |
24 | 24 |
|
25 | 25 |
\arguments{ |
26 | 26 |
\item{x}{An \code{RtreemixModel} object giving the mixture model that should be visualized.} |
27 |
- \item{fontSize}{The size of the text labels of the nodes and the edges of the tree components. The default value is 8.} |
|
28 |
- \item{k}{A \code{numeric} giving the specific tree component from the given mixture model that should be plotted. Its value |
|
29 |
- can be from one to the number of tree components in the given model.} |
|
27 |
+ \item{y}{Not specified.} |
|
28 |
+ \item{\dots}{ |
|
29 |
+ \code{fontSize} is the size of the text labels of the nodes and the edges of the tree components. The default value is 8. |
|
30 |
+ \code{k} is a \code{numeric} giving the specific tree component from the given mixture model that should be plotted. Its value |
|
31 |
+ can be from one to the number of tree components in the given model. |
|
32 |
+ } |
|
30 | 33 |
} |
31 | 34 |
\value{ |
32 | 35 |
The method returns a plot of the mixture model model. |
... | ... |
@@ -14,13 +14,7 @@ |
14 | 14 |
patterns together with their waiting and sampling times from the respective model. |
15 | 15 |
} |
16 | 16 |
\usage{ |
17 |
-sim(model, ...) |
|
18 |
- |
|
19 |
-\method{sim}{model}(model, no.draws = 10, seed = (-1)) |
|
20 |
- |
|
21 |
-\method{sim}{model, sampling.mode, sampling.param}(model, sampling.mode, |
|
22 |
- sampling.param, no.sim = 10, |
|
23 |
- seed = (-1)) |
|
17 |
+sim(model, sampling.mode, sampling.param, \dots) |
|
24 | 18 |
} |
25 | 19 |
|
26 | 20 |
\arguments{ |
... | ... |
@@ -32,14 +26,16 @@ sim(model, ...) |
32 | 26 |
\item{sampling.param}{A \code{numeric} that specifies the |
33 | 27 |
sampling parameter corresponding to the sampling mode given by |
34 | 28 |
\code{sampling.mode}.} |
35 |
- \item{no.draws}{An \code{integer} larger than zero specifying the |
|
36 |
- number of patterns that should be drawn from the given mixture model.} |
|
37 |
- \item{no.sim}{An \code{integer} larger than 0 giving the number of |
|
29 |
+ \item{\dots}{ |
|
30 |
+ \code{no.draws} is an \code{integer} larger than zero specifying the |
|
31 |
+ number of patterns that should be drawn from the given mixture model. |
|
32 |
+ \code{no.sim} is an \code{integer} larger than 0 giving the number of |
|
38 | 33 |
iterations for the waiting time simulations. Its default value is |
39 |
- 10.} |
|
40 |
- \item{seed}{A positive \code{integer} specifying the random generator |
|
34 |
+ 10. |
|
35 |
+ \code{seed} is a positive \code{integer} specifying the random generator |
|
41 | 36 |
seed. Its default value is (-1) and then the time is used as a |
42 |
- random generator.} |
|
37 |
+ random generator. |
|
38 |
+ } |
|
43 | 39 |
} |
44 | 40 |
|
45 | 41 |
\value{ |