################################################################################## ### CLASSES DEFINITIONS ### ################################################################################## ## Class RtreemixData. setClass("RtreemixData", representation = representation( ## Binary patterns (matrix with rows=patients,cols=genetic events), without the null event Sample = "matrix", ## Patient IDs Patients = "character", ## Names of genetic events (length L) Events = "character", ## Description of the object Description = "character"), prototype = prototype( Sample = matrix(integer(0), 0, 0), Patients = character(), Events = character(), Description = character(0))) ################################################################################ ## Class RtreemixModel. Extends the class RtreemixData. setClass("RtreemixModel", representation = representation( ## The weight vector of the model Weights = "numeric", ## Confidence intervals for the weights (from bootstrap analysis) WeightsCI = "list", ## The responsibilities Resp = "matrix", ## The complete sample matrix (if there were some missing data otherwise empty) CompleteMat = "matrix", ## Indicator of the presence of a star component (mostly relevant for models with a single tree component) Star = "logical", ## The list of the graphs each for every tree component of the mixture model Trees = "list" ), prototype = prototype( Weights = numeric(0), WeightsCI = list(), Resp = matrix(numeric(0), 0, 0), CompleteMat = matrix(integer(0), 0, 0), Star = logical(0), Trees = list()), contains = "RtreemixData") ################################################################################ ## Class RtreemixSim. Extends the class RtreemixModel. setClass("RtreemixSim", representation = representation( ## Data drawn (or simulated in a waiting time simulation) from an oncogenetic trees mixture model SimPatterns = "RtreemixData", ## Sampling mode for the simulations: exponential or constant SamplingMode = "character", ## Sampling parameter that corresponds to the sampling mode SamplingParam = "numeric", ## Waiting times of the simulated patterns WaitingTimes = "numeric", ## Sampling times of the simulated patterns SamplingTimes = "numeric" ), prototype = prototype( SimPatterns = new("RtreemixData", Sample = matrix(integer(0), 0, 0)), SamplingMode = character(0), SamplingParam = numeric(0), WaitingTimes = numeric(0), SamplingTimes = numeric(0) ), contains = "RtreemixModel") ################################################################################ ## Class RtreemixStats. Extends the class RtreemixData. setClass("RtreemixStats", representation = representation( ## The underlying model for calculating the (log, weighted) likelihoods. Model = "RtreemixModel", ## The log-likelihoods of the set of patterns LogLikelihoods = "numeric", ## The weighted likelihoods for the set of patterns WLikelihoods = "matrix"), prototype = prototype( Model = new("RtreemixModel", Weights = numeric(0), Trees = list()), LogLikelihoods = numeric(0), WLikelihoods = matrix(numeric(0), 0, 0) ), contains = "RtreemixData") ################################################################################ ## Class RtreemixGPS. Extends the class RtreemixModel. setClass("RtreemixGPS", representation = representation( ## Underlying model for the GPS is calculation. Model = "RtreemixModel", ## Sampling mode for the simulations of the waiting time process: exponential or constant SamplingMode = "character", ## Sampling parameter that corresponds to the sampling mode SamplingParam = "numeric", ## GPS vector associated to the corresponding dataset of patterns GPS = "numeric", ## Confidence intervals for the GPS values (from bootstrap analysis) gpsCI = "matrix" ), prototype = prototype( Model = new("RtreemixModel", Weights = numeric(0), Trees = list()), SamplingMode = character(0), SamplingParam = numeric(0), GPS = numeric(0), gpsCI = matrix(numeric(0), 0, 0) ), contains = "RtreemixData") ################################################################################