/* max_weight_branch.c Version : 1.1 Author : Niko Beerenwinkel (c) Max-Planck-Institut fuer Informatik, 2004 */ #include "include/max_weight_branch.h" // global variables: static map<node,string> Mut; // node labels static map<edge,double> c; // edge weights static array< array<node> > cycle_contr; // cycle_contr[i][k] == v_C <==> the k-th cycle C in B[i] has been contracted to v_C in G[i+1] static array< array<edge> > cheapest_edge; // cheapest_edge[i][k] is some cheapest edge on the k-th cycle in B[i] static map<edge,edge> Phi; // Phi[e'] == e <==> e in G[i] has been contracted to e' in G[i+1] static array< array< map<edge,edge> > > alpha; // e = (z, y), z not in C, y in C <==> alpha[e] == pred of y in C // functions: int compare_weights(const edge& e1, const edge& e2) { if (c[e1] < c[e2]) return -1; if (c[e1] > c[e2]) return 1; return 0; } double BRANCHING_WEIGHT(list<edge>& B, edge_array<double>& weight) { // total weight of a branching double total_weight = 0; edge e; forall(e, B) total_weight += weight[e]; return total_weight; } void UNCOVER_BRANCHING(graph& G, list<edge>& B) { // turn G into the branching defined by B (B \subset E(G)) edge e; edge_set E_B(G); // edge set of B forall(e, B) E_B.insert(e); edge_set T_D(G); //edges to delete forall_edges(e, G) if (! E_B.member(e)) T_D.insert(e); //G.del_edge(e); for(edge_set::iterator it = T_D.begin(); it != T_D.end(); ++it) G.del_edge(*it); } void DOT(graph& G, map<node,string>& mut, map<edge,double>& cond_prob, char *filestem) { // produces output in dot format (graphviz package) // see http://www.research.att.com/sw/tools/graphviz/ node v; edge e; char filename[128]; sprintf(filename, "%s.dot", filestem); std::ofstream dotout(filename); dotout << "digraph MWB {" << std::endl << std::endl; forall_nodes(v, G) { dotout << "\t \"" << v << "\""; dotout << " [ label=\"" << mut[v] << "\", shape=\"plaintext\", height=\"0.3\", fontsize=\"12\", style=\"filled\", fillcolor=\"white\" ];" << std::endl; } dotout << std::endl; forall_edges(e, G) { node s = G.source(e); node t = G.target(e); dotout.precision(2); dotout << std::showpoint; dotout << "\t \"" << s << "\" -> \"" << t << "\""; dotout << " [ fontsize=\"10\", label=\"" << cond_prob[e] << "\" ];" << std::endl; } dotout << "}" << std::endl; dotout.close(); } double branching_weight_intern(list<edge>& B) { // total weight of a branching double w = 0; edge e; forall(e, B) w += c[e]; return w; } list<edge> max_weight_subgraph_indeg_le_1(graph& G) { // find maximum weight subgraph of G with indeg <= 1 for all v in V(G) // a list of edges in G of this subgraph is returned node v; list<edge> B; forall_nodes(v, G) // choose heaviest inedge { list<edge> L = G.in_edges(v); if (! L.empty()) B.append(L.contents(L.max(*compare_weights))); } return B; } array< list<edge> > all_cycles(graph& G, list<edge>& B) { // find all cycles in B edge e; array< list<edge> > CA; // array of cycles int k = -1; // cycle index // construct subgraph: GRAPH<node,edge> G_B; // the subgraph of G induced by B map<node,node> proj; // proj : V(G) -->> V(G_B) forall(e, B) { node s = G.source(e); if (! proj.defined(s)) { node s_G = G_B.new_node(); G_B[s_G] = s; // needed? proj[s] = s_G; } node t = G.target(e); if (! proj.defined(t)) { node t_G = G_B.new_node(); G_B[t_G] = t; // needed? proj[t] = t_G; } G_B[G_B.new_edge(proj[s], proj[t])] = e; } // identify cycles in G_B: list<edge> CEL; // cycle edge list, // will contain one edge (in G_B) from each cycle after Is_Acyclic call if (! Is_Acyclic(G_B, CEL)) { edge first_e; forall(first_e, CEL) { list<edge> C; // a cycle is stored as the list of its edges in G // iterate over cycle following inedges: node s = G_B.target(first_e); node first_v = s; // starting node; edge e = NULL; //edge e = nil; while (s != first_v || e == NULL)//nil) { e = G_B.in_edges(s).head(); s = G_B.source(e); // move on C.push(G_B[e]); // store corresponding edge in G (!) // the order in C follows the edge directions } k++; CA.resize(k+1); CA[k] = C; } } return CA; } edge predecessor_in_cycle(node y, list<edge>& C) { // predecessor edge of y in C edge e; forall(e, C) { if (target(e) == y) return e; } return NULL; //nil; } void contract_cycle_edge(edge& e, double alpha_cost, double cheapest_cost, GRAPH<node,edge>& H, node& v_C, map<edge,edge>& edge_contr, node_set& VC) { // note: e \in E(H) node s = H.source(e); // \in G(H) node t = H.target(e); // \in G(H) if (VC.member(s) && (! VC.member(t))) // e leaves C { edge e_tilde = H.new_edge(v_C, t); // new edge c[e_tilde] = c[e]; edge_contr[H[e]] = e_tilde; H[e_tilde] = H[e]; // update Phi[e_tilde] = H[e]; H.del_edge(e); } if ((! VC.member(s)) && VC.member(t)) // e enters C { edge e_prime = H.new_edge(s, v_C); // new edge c[e_prime] = c[e] - alpha_cost + cheapest_cost; edge_contr[H[e]] = e_prime; H[e_prime] = H[e]; // update Phi[e_prime] = H[e]; H.del_edge(e); } if (VC.member(s) && VC.member(t)) // e is in C H.del_edge(e); } string contract_cycle_node(node& v, GRAPH<node,edge>& H, node& v_C, map<node,node>& node_contr, node_set& VC) { string label; if (VC.member(v)) // v is on C { label += Mut[v]; H.del_node(v); node_contr[H[v]] = v_C; } return label; } void contract_cycle(int i, array< list<edge> >& CA, int k, GRAPH<node,edge>& H, map<node,node>& node_contr, map<edge,edge>& edge_contr) { node v; edge e; list<edge> C = CA[k]; // cycle to be contracted (indexed by k) // node set in H indiced by cycle (in G): node_set VC(H); // V(C) \subset H forall(e, C) { VC.insert(H.source(edge_contr[e])); VC.insert(H.target(edge_contr[e])); } // some cheapest edge on C cheapest_edge.resize(i+1); cheapest_edge[i].resize(k+1); cheapest_edge[i][k] = C.contents(C.min(*compare_weights)); // new node v_C for contracted cycle C node v_C = H.new_node(); cycle_contr.resize(i+1); cycle_contr[i].resize(k+1); cycle_contr[i][k] = v_C; // in G[i+1] // contract edges in H list<edge> EL = H.all_edges(); forall(e, EL) { alpha.resize(i+1); alpha[i].resize(k+1); alpha[i][k][H[e]] = predecessor_in_cycle(target(H[e]), C); // predecessor edge of target(e) in C contract_cycle_edge(e, c[alpha[i][k][H[e]]], c[cheapest_edge[i][k]], H, v_C, edge_contr, VC); } // contract nodes in H string new_label("("); list<node> NL = H.all_nodes(); forall(v, NL) new_label += contract_cycle_node(v, H, v_C, node_contr, VC); Mut[v_C] = new_label + ")"; } void contract_all_cycles(graph& G, int i, array< list<edge> > CL, GRAPH<node,edge>& H) { // construct the contraction (G, c) --> (H, c) node v; edge e; // {node, edge}_contr : (G, c) -->> (H, c') map<node,node> node_contr; // node contraction map map<edge,edge> edge_contr; // edge contraction map // initialize as identity map forall_nodes(v, G) { node_contr[v] = H.new_node(); H[node_contr[v]] = v; Mut[node_contr[v]] = Mut[v]; // labels } forall_edges(e, G) { edge_contr[e] = H.new_edge(node_contr[G.source(e)], node_contr[G.target(e)]); H[edge_contr[e]] = e; c[edge_contr[e]] = c[e]; // weights } // contract cycles in H for (int k=CL.low(); k<=CL.high(); k++) { contract_cycle(i, CL, k, H, node_contr, edge_contr); list<edge> empty_list; } } void reconstruct_branching(int i, GRAPH<node,edge>& H, list<edge>& B_H, list<edge>& B_G, array< list<edge> >& CA) { // reconstruct branching B_G from the contraction // (G, B_G==B[i-1]) --> (H==G[i], B_H==B[i]) // CA is the array of cycles in G edge e; B_G.clear(); node_set CCS(H); // contracted cycles in H for (int k=CA.low(); k<=CA.high(); k++) CCS.insert(cycle_contr[i-1][k]); // E(B_G) := E(B_H) \ {e_prime=(z, v_C) | z \in V(B_H), C cycle in B_G} forall(e, B_H) if (! CCS.member(H.target(e))) B_G.append(H[e]); // check all cycles in B_G for (int k=CA.high(); k>=CA.low(); k--) { list<edge> C = CA[k]; // cycle edges // look for e'==(z, v_C) in B_H edge e_prime = NULL; //nil; forall(e, B_H) if (H.target(e) == cycle_contr[i-1][k]) e_prime = e; if (e_prime != NULL) //nil) // e' == (z, v_C) in B_H { B_G.append(Phi[e_prime]); forall(e, C) if (e != alpha[i-1][k][Phi[e_prime]]) B_G.append(e); } else // no edge (z, v_C) in B_H { forall(e, C) if (e != cheapest_edge[i-1][k]) B_G.append(e); } } } list<edge> MAX_WEIGHT_BRANCHING(graph& G0, map<node,string>& node_label, edge_array<double>& weight) { // Compute a maximum weight branching of the weighted digraph (G, weight) // The list of edges of the branching is returned. // The algorithm with all notation is taken from the book // Korte, Vygen: Combinatorial Optimization, Springer 2000, pp. 121-125 node v; edge e; // step 0: data structures: array< GRAPH<node,edge> > G(1); // G[i+1] is subgraph of G[i] array< list<edge> > B(1); // B[i] \subset E(G[i]) array< array< list<edge> > > CAA(1); // array of cycle arrays, each cycle is a subset of B[i] // step 1: initialization. CopyGraph(G[0], G0); forall_edges(e, G[0]) // edge weights c[e] = weight[G[0][e]]; forall_nodes(v, G[0]) // node labels Mut[v] = node_label[G[0][v]]; // step 2: construct greedy subgraph B[i]. B[0] = max_weight_subgraph_indeg_le_1(G[0]); // step 3: for all cycles in B[i]. CAA[0] = all_cycles(G[0], B[0]); int i = 0; while (CAA[i].size() > 0) { // step 4: construct (G[i+1], c[i+1]) from (G[i], c[i]). G.resize(i+2); B.resize(i+2); CAA.resize(i+2); contract_all_cycles(G[i], i, CAA[i], G[i+1]); i++; B[i] = max_weight_subgraph_indeg_le_1(G[i]); // (step 2) CAA[i] = all_cycles(G[i], B[i]); // (step 3) } // step 5+6: reconstruct the maximum branching B while (i > 0) { reconstruct_branching(i, G[i], B[i], B[i-1], CAA[i-1]); i--; } list<edge> B0; forall(e, B[i]){ B0.append(G[i][e]); } //clear the global static variables Mut.clear(); c.clear(); cycle_contr.clear(); cheapest_edge.clear(); Phi.clear(); alpha.clear(); return B0; }