git-svn-id: https://hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/Rgraphviz@88840 bc3139a8-67e5-0310-9ffc-ced21a209358
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,999 @@ |
1 |
+/* $Id: post_process.c,v 1.9 2011/02/28 16:19:43 erg Exp $ $Revision: 1.9 $ */ |
|
2 |
+/* vim:set shiftwidth=4 ts=8: */ |
|
3 |
+ |
|
4 |
+/************************************************************************* |
|
5 |
+ * Copyright (c) 2011 AT&T Intellectual Property |
|
6 |
+ * All rights reserved. This program and the accompanying materials |
|
7 |
+ * are made available under the terms of the Eclipse Public License v1.0 |
|
8 |
+ * which accompanies this distribution, and is available at |
|
9 |
+ * http://www.eclipse.org/legal/epl-v10.html |
|
10 |
+ * |
|
11 |
+ * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
|
12 |
+ *************************************************************************/ |
|
13 |
+ |
|
14 |
+#ifdef HAVE_CONFIG_H |
|
15 |
+#include "config.h" |
|
16 |
+#endif |
|
17 |
+ |
|
18 |
+#include <time.h> |
|
19 |
+#include <string.h> |
|
20 |
+#include <math.h> |
|
21 |
+ |
|
22 |
+#include "types.h" |
|
23 |
+#include "memory.h" |
|
24 |
+#include "globals.h" |
|
25 |
+ |
|
26 |
+#include "sparse_solve.h" |
|
27 |
+#include "post_process.h" |
|
28 |
+#include "overlap.h" |
|
29 |
+#include "spring_electrical.h" |
|
30 |
+#include "call_tri.h" |
|
31 |
+#include "sfdpinternal.h" |
|
32 |
+ |
|
33 |
+#define node_degree(i) (ia[(i)+1] - ia[(i)]) |
|
34 |
+ |
|
35 |
+SparseMatrix ideal_distance_matrix(SparseMatrix A, int dim, real *x){ |
|
36 |
+ /* find the ideal distance between edges, either 1, or |N[i] \Union N[j]| - |N[i] \Intersection N[j]| |
|
37 |
+ */ |
|
38 |
+ SparseMatrix D; |
|
39 |
+ int *ia, *ja, i, j, k, l, nz; |
|
40 |
+ real *d; |
|
41 |
+ int *mask = NULL; |
|
42 |
+ real len, di, sum, sumd; |
|
43 |
+ |
|
44 |
+ assert(SparseMatrix_is_symmetric(A, FALSE)); |
|
45 |
+ |
|
46 |
+ D = SparseMatrix_copy(A); |
|
47 |
+ ia = D->ia; |
|
48 |
+ ja = D->ja; |
|
49 |
+ if (D->type != MATRIX_TYPE_REAL){ |
|
50 |
+ FREE(D->a); |
|
51 |
+ D->type = MATRIX_TYPE_REAL; |
|
52 |
+ D->a = N_GNEW(D->nz,real); |
|
53 |
+ } |
|
54 |
+ d = (real*) D->a; |
|
55 |
+ |
|
56 |
+ mask = N_GNEW(D->m,int); |
|
57 |
+ for (i = 0; i < D->m; i++) mask[i] = -1; |
|
58 |
+ |
|
59 |
+ for (i = 0; i < D->m; i++){ |
|
60 |
+ di = node_degree(i); |
|
61 |
+ mask[i] = i; |
|
62 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
63 |
+ if (i == ja[j]) continue; |
|
64 |
+ mask[ja[j]] = i; |
|
65 |
+ } |
|
66 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
67 |
+ k = ja[j]; |
|
68 |
+ if (i == k) continue; |
|
69 |
+ len = di + node_degree(k); |
|
70 |
+ for (l = ia[k]; l < ia[k+1]; l++){ |
|
71 |
+ if (mask[ja[l]] == i) len--; |
|
72 |
+ } |
|
73 |
+ d[j] = len; |
|
74 |
+ assert(len > 0); |
|
75 |
+ } |
|
76 |
+ |
|
77 |
+ } |
|
78 |
+ |
|
79 |
+ sum = 0; sumd = 0; |
|
80 |
+ nz = 0; |
|
81 |
+ for (i = 0; i < D->m; i++){ |
|
82 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
83 |
+ if (i == ja[j]) continue; |
|
84 |
+ nz++; |
|
85 |
+ sum += distance(x, dim, i, ja[j]); |
|
86 |
+ sumd += d[j]; |
|
87 |
+ } |
|
88 |
+ } |
|
89 |
+ sum /= nz; sumd /= nz; |
|
90 |
+ sum = sum/sumd; |
|
91 |
+ |
|
92 |
+ for (i = 0; i < D->m; i++){ |
|
93 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
94 |
+ if (i == ja[j]) continue; |
|
95 |
+ d[j] = sum*d[j]; |
|
96 |
+ } |
|
97 |
+ } |
|
98 |
+ |
|
99 |
+ |
|
100 |
+ return D; |
|
101 |
+} |
|
102 |
+ |
|
103 |
+StressMajorizationSmoother StressMajorizationSmoother2_new(SparseMatrix A, int dim, real lambda0, real *x, |
|
104 |
+ int ideal_dist_scheme){ |
|
105 |
+ /* use up to dist 2 neighbor */ |
|
106 |
+ StressMajorizationSmoother sm; |
|
107 |
+ int i, j, k, l, m = A->m, *ia = A->ia, *ja = A->ja, *iw, *jw, *id, *jd; |
|
108 |
+ int *mask, nz; |
|
109 |
+ real *d, *w, *lambda; |
|
110 |
+ real *avg_dist, diag_d, diag_w, *dd, dist, s = 0, stop = 0, sbot = 0; |
|
111 |
+ SparseMatrix ID; |
|
112 |
+ |
|
113 |
+ assert(SparseMatrix_is_symmetric(A, FALSE)); |
|
114 |
+ |
|
115 |
+ ID = ideal_distance_matrix(A, dim, x); |
|
116 |
+ dd = (real*) ID->a; |
|
117 |
+ |
|
118 |
+ sm = N_GNEW(1,struct StressMajorizationSmoother_struct); |
|
119 |
+ sm->scaling = 1.; |
|
120 |
+ sm->data = NULL; |
|
121 |
+ sm->scheme = SM_SCHEME_NORMAL; |
|
122 |
+ |
|
123 |
+ lambda = sm->lambda = N_GNEW(m,real); |
|
124 |
+ for (i = 0; i < m; i++) sm->lambda[i] = lambda0; |
|
125 |
+ mask = N_GNEW(m,int); |
|
126 |
+ |
|
127 |
+ avg_dist = N_GNEW(m,real); |
|
128 |
+ |
|
129 |
+ for (i = 0; i < m ;i++){ |
|
130 |
+ avg_dist[i] = 0; |
|
131 |
+ nz = 0; |
|
132 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
133 |
+ if (i == ja[j]) continue; |
|
134 |
+ avg_dist[i] += distance(x, dim, i, ja[j]); |
|
135 |
+ nz++; |
|
136 |
+ } |
|
137 |
+ assert(nz > 0); |
|
138 |
+ avg_dist[i] /= nz; |
|
139 |
+ } |
|
140 |
+ |
|
141 |
+ |
|
142 |
+ for (i = 0; i < m; i++) mask[i] = -1; |
|
143 |
+ |
|
144 |
+ nz = 0; |
|
145 |
+ for (i = 0; i < m; i++){ |
|
146 |
+ mask[i] = i; |
|
147 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
148 |
+ k = ja[j]; |
|
149 |
+ if (mask[k] != i){ |
|
150 |
+ mask[k] = i; |
|
151 |
+ nz++; |
|
152 |
+ } |
|
153 |
+ } |
|
154 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
155 |
+ k = ja[j]; |
|
156 |
+ for (l = ia[k]; l < ia[k+1]; l++){ |
|
157 |
+ if (mask[ja[l]] != i){ |
|
158 |
+ mask[ja[l]] = i; |
|
159 |
+ nz++; |
|
160 |
+ } |
|
161 |
+ } |
|
162 |
+ } |
|
163 |
+ } |
|
164 |
+ |
|
165 |
+ sm->Lw = SparseMatrix_new(m, m, nz + m, MATRIX_TYPE_REAL, FORMAT_CSR); |
|
166 |
+ sm->Lwd = SparseMatrix_new(m, m, nz + m, MATRIX_TYPE_REAL, FORMAT_CSR); |
|
167 |
+ if (!(sm->Lw) || !(sm->Lwd)) { |
|
168 |
+ StressMajorizationSmoother_delete(sm); |
|
169 |
+ return NULL; |
|
170 |
+ } |
|
171 |
+ |
|
172 |
+ iw = sm->Lw->ia; jw = sm->Lw->ja; |
|
173 |
+ id = sm->Lwd->ia; jd = sm->Lwd->ja; |
|
174 |
+ w = (real*) sm->Lw->a; d = (real*) sm->Lwd->a; |
|
175 |
+ iw[0] = id[0] = 0; |
|
176 |
+ |
|
177 |
+ nz = 0; |
|
178 |
+ for (i = 0; i < m; i++){ |
|
179 |
+ mask[i] = i+m; |
|
180 |
+ diag_d = diag_w = 0; |
|
181 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
182 |
+ k = ja[j]; |
|
183 |
+ if (mask[k] != i+m){ |
|
184 |
+ mask[k] = i+m; |
|
185 |
+ |
|
186 |
+ jw[nz] = k; |
|
187 |
+ if (ideal_dist_scheme == IDEAL_GRAPH_DIST){ |
|
188 |
+ dist = 1; |
|
189 |
+ } else if (ideal_dist_scheme == IDEAL_AVG_DIST){ |
|
190 |
+ dist = (avg_dist[i] + avg_dist[k])*0.5; |
|
191 |
+ } else if (ideal_dist_scheme == IDEAL_POWER_DIST){ |
|
192 |
+ dist = pow(distance_cropped(x,dim,i,k),.4); |
|
193 |
+ } else { |
|
194 |
+ fprintf(stderr,"ideal_dist_scheme value wrong"); |
|
195 |
+ assert(0); |
|
196 |
+ exit(1); |
|
197 |
+ } |
|
198 |
+ |
|
199 |
+ /* |
|
200 |
+ w[nz] = -1./(ia[i+1]-ia[i]+ia[ja[j]+1]-ia[ja[j]]); |
|
201 |
+ w[nz] = -2./(avg_dist[i]+avg_dist[k]);*/ |
|
202 |
+ /* w[nz] = -1.;*//* use unit weight for now, later can try 1/(deg(i)+deg(k)) */ |
|
203 |
+ w[nz] = -1/(dist*dist); |
|
204 |
+ |
|
205 |
+ diag_w += w[nz]; |
|
206 |
+ |
|
207 |
+ jd[nz] = k; |
|
208 |
+ /* |
|
209 |
+ d[nz] = w[nz]*distance(x,dim,i,k); |
|
210 |
+ d[nz] = w[nz]*dd[j]; |
|
211 |
+ d[nz] = w[nz]*(avg_dist[i] + avg_dist[k])*0.5; |
|
212 |
+ */ |
|
213 |
+ d[nz] = w[nz]*dist; |
|
214 |
+ stop += d[nz]*distance(x,dim,i,k); |
|
215 |
+ sbot += d[nz]*dist; |
|
216 |
+ diag_d += d[nz]; |
|
217 |
+ |
|
218 |
+ nz++; |
|
219 |
+ } |
|
220 |
+ } |
|
221 |
+ |
|
222 |
+ /* distance 2 neighbors */ |
|
223 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
224 |
+ k = ja[j]; |
|
225 |
+ for (l = ia[k]; l < ia[k+1]; l++){ |
|
226 |
+ if (mask[ja[l]] != i+m){ |
|
227 |
+ mask[ja[l]] = i+m; |
|
228 |
+ |
|
229 |
+ if (ideal_dist_scheme == IDEAL_GRAPH_DIST){ |
|
230 |
+ dist = 2; |
|
231 |
+ } else if (ideal_dist_scheme == IDEAL_AVG_DIST){ |
|
232 |
+ dist = (avg_dist[i] + 2*avg_dist[k] + avg_dist[ja[l]])*0.5; |
|
233 |
+ } else if (ideal_dist_scheme == IDEAL_POWER_DIST){ |
|
234 |
+ dist = pow(distance_cropped(x,dim,i,ja[l]),.4); |
|
235 |
+ } else { |
|
236 |
+ fprintf(stderr,"ideal_dist_scheme value wrong"); |
|
237 |
+ assert(0); |
|
238 |
+ exit(1); |
|
239 |
+ } |
|
240 |
+ |
|
241 |
+ jw[nz] = ja[l]; |
|
242 |
+ /* |
|
243 |
+ w[nz] = -1/(ia[i+1]-ia[i]+ia[ja[l]+1]-ia[ja[l]]); |
|
244 |
+ w[nz] = -2/(avg_dist[i] + 2*avg_dist[k] + avg_dist[ja[l]]);*/ |
|
245 |
+ /* w[nz] = -1.;*//* use unit weight for now, later can try 1/(deg(i)+deg(k)) */ |
|
246 |
+ |
|
247 |
+ w[nz] = -1/(dist*dist); |
|
248 |
+ |
|
249 |
+ diag_w += w[nz]; |
|
250 |
+ |
|
251 |
+ jd[nz] = ja[l]; |
|
252 |
+ /* |
|
253 |
+ d[nz] = w[nz]*(distance(x,dim,i,k)+distance(x,dim,k,ja[l])); |
|
254 |
+ d[nz] = w[nz]*(dd[j]+dd[l]); |
|
255 |
+ d[nz] = w[nz]*(avg_dist[i] + 2*avg_dist[k] + avg_dist[ja[l]])*0.5; |
|
256 |
+ */ |
|
257 |
+ d[nz] = w[nz]*dist; |
|
258 |
+ stop += d[nz]*distance(x,dim,ja[l],k); |
|
259 |
+ sbot += d[nz]*dist; |
|
260 |
+ diag_d += d[nz]; |
|
261 |
+ |
|
262 |
+ nz++; |
|
263 |
+ } |
|
264 |
+ } |
|
265 |
+ } |
|
266 |
+ jw[nz] = i; |
|
267 |
+ lambda[i] *= (-diag_w);/* alternatively don't do that then we have a constant penalty term scaled by lambda0 */ |
|
268 |
+ |
|
269 |
+ w[nz] = -diag_w + lambda[i]; |
|
270 |
+ jd[nz] = i; |
|
271 |
+ d[nz] = -diag_d; |
|
272 |
+ nz++; |
|
273 |
+ |
|
274 |
+ iw[i+1] = nz; |
|
275 |
+ id[i+1] = nz; |
|
276 |
+ } |
|
277 |
+ s = stop/sbot; |
|
278 |
+ for (i = 0; i < nz; i++) d[i] *= s; |
|
279 |
+ |
|
280 |
+ sm->scaling = s; |
|
281 |
+ sm->Lw->nz = nz; |
|
282 |
+ sm->Lwd->nz = nz; |
|
283 |
+ |
|
284 |
+ FREE(mask); |
|
285 |
+ FREE(avg_dist); |
|
286 |
+ SparseMatrix_delete(ID); |
|
287 |
+ return sm; |
|
288 |
+} |
|
289 |
+ |
|
290 |
+StressMajorizationSmoother SparseStressMajorizationSmoother_new(SparseMatrix A, int dim, real lambda0, real *x, int weighting_scheme){ |
|
291 |
+ /* solve a stress model to achieve the ideal distance among a sparse set of edges recorded in A. |
|
292 |
+ A must be a real matrix. |
|
293 |
+ */ |
|
294 |
+ StressMajorizationSmoother sm; |
|
295 |
+ int i, j, k, m = A->m, *ia, *ja, *iw, *jw, *id, *jd; |
|
296 |
+ int nz; |
|
297 |
+ real *d, *w, *lambda; |
|
298 |
+ real diag_d, diag_w, *a, dist, s = 0, stop = 0, sbot = 0; |
|
299 |
+ real xdot = 0; |
|
300 |
+ |
|
301 |
+ assert(SparseMatrix_is_symmetric(A, FALSE) && A->type == MATRIX_TYPE_REAL); |
|
302 |
+ |
|
303 |
+ /* if x is all zero, make it random */ |
|
304 |
+ for (i = 0; i < m*dim; i++) xdot += x[i]*x[i]; |
|
305 |
+ if (xdot == 0){ |
|
306 |
+ for (i = 0; i < m*dim; i++) x[i] = 72*drand(); |
|
307 |
+ } |
|
308 |
+ |
|
309 |
+ ia = A->ia; |
|
310 |
+ ja = A->ja; |
|
311 |
+ a = (real*) A->a; |
|
312 |
+ |
|
313 |
+ |
|
314 |
+ sm = MALLOC(sizeof(struct StressMajorizationSmoother_struct)); |
|
315 |
+ sm->scaling = 1.; |
|
316 |
+ sm->data = NULL; |
|
317 |
+ sm->scheme = SM_SCHEME_NORMAL; |
|
318 |
+ |
|
319 |
+ lambda = sm->lambda = MALLOC(sizeof(real)*m); |
|
320 |
+ for (i = 0; i < m; i++) sm->lambda[i] = lambda0; |
|
321 |
+ |
|
322 |
+ nz = A->nz; |
|
323 |
+ |
|
324 |
+ sm->Lw = SparseMatrix_new(m, m, nz + m, MATRIX_TYPE_REAL, FORMAT_CSR); |
|
325 |
+ sm->Lwd = SparseMatrix_new(m, m, nz + m, MATRIX_TYPE_REAL, FORMAT_CSR); |
|
326 |
+ if (!(sm->Lw) || !(sm->Lwd)) { |
|
327 |
+ StressMajorizationSmoother_delete(sm); |
|
328 |
+ return NULL; |
|
329 |
+ } |
|
330 |
+ |
|
331 |
+ iw = sm->Lw->ia; jw = sm->Lw->ja; |
|
332 |
+ id = sm->Lwd->ia; jd = sm->Lwd->ja; |
|
333 |
+ w = (real*) sm->Lw->a; d = (real*) sm->Lwd->a; |
|
334 |
+ iw[0] = id[0] = 0; |
|
335 |
+ |
|
336 |
+ nz = 0; |
|
337 |
+ for (i = 0; i < m; i++){ |
|
338 |
+ diag_d = diag_w = 0; |
|
339 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
340 |
+ k = ja[j]; |
|
341 |
+ if (k != i){ |
|
342 |
+ |
|
343 |
+ jw[nz] = k; |
|
344 |
+ dist = a[j]; |
|
345 |
+ switch (weighting_scheme){ |
|
346 |
+ case WEIGHTING_SCHEME_SQR_DIST: |
|
347 |
+ if (dist*dist == 0){ |
|
348 |
+ w[nz] = -100000; |
|
349 |
+ } else { |
|
350 |
+ w[nz] = -1/(dist*dist); |
|
351 |
+ } |
|
352 |
+ break; |
|
353 |
+ case WEIGHTING_SCHEME_NONE: |
|
354 |
+ w[nz] = -1; |
|
355 |
+ break; |
|
356 |
+ default: |
|
357 |
+ assert(0); |
|
358 |
+ return NULL; |
|
359 |
+ } |
|
360 |
+ diag_w += w[nz]; |
|
361 |
+ jd[nz] = k; |
|
362 |
+ d[nz] = w[nz]*dist; |
|
363 |
+ |
|
364 |
+ stop += d[nz]*distance(x,dim,i,k); |
|
365 |
+ sbot += d[nz]*dist; |
|
366 |
+ diag_d += d[nz]; |
|
367 |
+ |
|
368 |
+ nz++; |
|
369 |
+ } |
|
370 |
+ } |
|
371 |
+ |
|
372 |
+ jw[nz] = i; |
|
373 |
+ lambda[i] *= (-diag_w);/* alternatively don't do that then we have a constant penalty term scaled by lambda0 */ |
|
374 |
+ w[nz] = -diag_w + lambda[i]; |
|
375 |
+ |
|
376 |
+ jd[nz] = i; |
|
377 |
+ d[nz] = -diag_d; |
|
378 |
+ nz++; |
|
379 |
+ |
|
380 |
+ iw[i+1] = nz; |
|
381 |
+ id[i+1] = nz; |
|
382 |
+ } |
|
383 |
+ s = stop/sbot; |
|
384 |
+ if (s == 0) { |
|
385 |
+ return NULL; |
|
386 |
+ } |
|
387 |
+ for (i = 0; i < nz; i++) d[i] *= s; |
|
388 |
+ |
|
389 |
+ |
|
390 |
+ sm->scaling = s; |
|
391 |
+ sm->Lw->nz = nz; |
|
392 |
+ sm->Lwd->nz = nz; |
|
393 |
+ |
|
394 |
+ return sm; |
|
395 |
+} |
|
396 |
+ |
|
397 |
+static real total_distance(int m, int dim, real* x, real* y){ |
|
398 |
+ real total = 0, dist = 0; |
|
399 |
+ int i, j; |
|
400 |
+ |
|
401 |
+ for (i = 0; i < m; i++){ |
|
402 |
+ dist = 0.; |
|
403 |
+ for (j = 0; j < dim; j++){ |
|
404 |
+ dist += (y[i*dim+j] - x[i*dim+j])*(y[i*dim+j] - x[i*dim+j]); |
|
405 |
+ } |
|
406 |
+ total += sqrt(dist); |
|
407 |
+ } |
|
408 |
+ return total; |
|
409 |
+ |
|
410 |
+} |
|
411 |
+ |
|
412 |
+ |
|
413 |
+ |
|
414 |
+void SparseStressMajorizationSmoother_delete(SparseStressMajorizationSmoother sm){ |
|
415 |
+ return StressMajorizationSmoother_delete(sm); |
|
416 |
+} |
|
417 |
+ |
|
418 |
+ |
|
419 |
+real SparseStressMajorizationSmoother_smooth(SparseStressMajorizationSmoother sm, int dim, real *x, int maxit_sm, real tol){ |
|
420 |
+ |
|
421 |
+ return StressMajorizationSmoother_smooth(sm, dim, x, maxit_sm, tol); |
|
422 |
+ |
|
423 |
+ |
|
424 |
+} |
|
425 |
+static void get_edge_label_matrix(relative_position_constraints data, int m, int dim, real *x, SparseMatrix *LL, real **rhs){ |
|
426 |
+ int edge_labeling_scheme = data->edge_labeling_scheme; |
|
427 |
+ int n_constr_nodes = data->n_constr_nodes; |
|
428 |
+ int *constr_nodes = data->constr_nodes; |
|
429 |
+ SparseMatrix A_constr = data->A_constr; |
|
430 |
+ int *ia = A_constr->ia, *ja = A_constr->ja, ii, jj, nz, l, ll, i, j; |
|
431 |
+ int *irn = data->irn, *jcn = data->jcn; |
|
432 |
+ real *val = data->val, dist, kk, k; |
|
433 |
+ real *x00 = NULL; |
|
434 |
+ SparseMatrix Lc = NULL; |
|
435 |
+ real constr_penalty = data->constr_penalty; |
|
436 |
+ |
|
437 |
+ if (edge_labeling_scheme == ELSCHEME_PENALTY || edge_labeling_scheme == ELSCHEME_STRAIGHTLINE_PENALTY){ |
|
438 |
+ /* for an node with two neighbors j--i--k, and assume i needs to be between j and k, then the contribution to P is |
|
439 |
+ . i j k |
|
440 |
+ i 1 -0.5 -0.5 |
|
441 |
+ j -0.5 0.25 0.25 |
|
442 |
+ k -0.5 0.25 0.25 |
|
443 |
+ in general, if i has m neighbors j, k, ..., then |
|
444 |
+ p_ii = 1 |
|
445 |
+ p_jj = 1/m^2 |
|
446 |
+ p_ij = -1/m |
|
447 |
+ p jk = 1/m^2 |
|
448 |
+ . i j k |
|
449 |
+ i 1 -1/m -1/m ... |
|
450 |
+ j -1/m 1/m^2 1/m^2 ... |
|
451 |
+ k -1/m 1/m^2 1/m^2 ... |
|
452 |
+ */ |
|
453 |
+ if (!irn){ |
|
454 |
+ assert((!jcn) && (!val)); |
|
455 |
+ nz = 0; |
|
456 |
+ for (i = 0; i < n_constr_nodes; i++){ |
|
457 |
+ ii = constr_nodes[i]; |
|
458 |
+ k = ia[ii+1] - ia[ii];/*usually k = 2 */ |
|
459 |
+ nz += (k+1)*(k+1); |
|
460 |
+ |
|
461 |
+ } |
|
462 |
+ irn = data->irn = MALLOC(sizeof(int)*nz); |
|
463 |
+ jcn = data->jcn = MALLOC(sizeof(int)*nz); |
|
464 |
+ val = data->val = MALLOC(sizeof(double)*nz); |
|
465 |
+ } |
|
466 |
+ nz = 0; |
|
467 |
+ for (i = 0; i < n_constr_nodes; i++){ |
|
468 |
+ ii = constr_nodes[i]; |
|
469 |
+ jj = ja[ia[ii]]; ll = ja[ia[ii] + 1]; |
|
470 |
+ if (jj == ll) continue; /* do not do loops */ |
|
471 |
+ dist = distance_cropped(x, dim, jj, ll); |
|
472 |
+ dist *= dist; |
|
473 |
+ |
|
474 |
+ k = ia[ii+1] - ia[ii];/* usually k = 2 */ |
|
475 |
+ kk = k*k; |
|
476 |
+ irn[nz] = ii; jcn[nz] = ii; val[nz++] = constr_penalty/(dist); |
|
477 |
+ k = constr_penalty/(k*dist); kk = constr_penalty/(kk*dist); |
|
478 |
+ for (j = ia[ii]; j < ia[ii+1]; j++){ |
|
479 |
+ irn[nz] = ii; jcn[nz] = ja[j]; val[nz++] = -k; |
|
480 |
+ } |
|
481 |
+ for (j = ia[ii]; j < ia[ii+1]; j++){ |
|
482 |
+ jj = ja[j]; |
|
483 |
+ irn[nz] = jj; jcn[nz] = ii; val[nz++] = -k; |
|
484 |
+ for (l = ia[ii]; l < ia[ii+1]; l++){ |
|
485 |
+ ll = ja[l]; |
|
486 |
+ irn[nz] = jj; jcn[nz] = ll; val[nz++] = kk; |
|
487 |
+ } |
|
488 |
+ } |
|
489 |
+ } |
|
490 |
+ Lc = SparseMatrix_from_coordinate_arrays(nz, m, m, irn, jcn, val, MATRIX_TYPE_REAL); |
|
491 |
+ } else if (edge_labeling_scheme == ELSCHEME_PENALTY2 || edge_labeling_scheme == ELSCHEME_STRAIGHTLINE_PENALTY2){ |
|
492 |
+ /* for an node with two neighbors j--i--k, and assume i needs to be between the old position of j and k, then the contribution to P is |
|
493 |
+ 1/d_jk, and to the right hand side: {0,...,average_position_of_i's neighbor if i is an edge node,...} |
|
494 |
+ */ |
|
495 |
+ if (!irn){ |
|
496 |
+ assert((!jcn) && (!val)); |
|
497 |
+ nz = n_constr_nodes; |
|
498 |
+ irn = data->irn = MALLOC(sizeof(int)*nz); |
|
499 |
+ jcn = data->jcn = MALLOC(sizeof(int)*nz); |
|
500 |
+ val = data->val = MALLOC(sizeof(double)*nz); |
|
501 |
+ } |
|
502 |
+ x00 = MALLOC(sizeof(real)*m*dim); |
|
503 |
+ for (i = 0; i < m*dim; i++) x00[i] = 0; |
|
504 |
+ nz = 0; |
|
505 |
+ for (i = 0; i < n_constr_nodes; i++){ |
|
506 |
+ ii = constr_nodes[i]; |
|
507 |
+ jj = ja[ia[ii]]; ll = ja[ia[ii] + 1]; |
|
508 |
+ dist = distance_cropped(x, dim, jj, ll); |
|
509 |
+ irn[nz] = ii; jcn[nz] = ii; val[nz++] = constr_penalty/(dist); |
|
510 |
+ for (j = ia[ii]; j < ia[ii+1]; j++){ |
|
511 |
+ jj = ja[j]; |
|
512 |
+ for (l = 0; l < dim; l++){ |
|
513 |
+ x00[ii*dim+l] += x[jj*dim+l]; |
|
514 |
+ } |
|
515 |
+ } |
|
516 |
+ for (l = 0; l < dim; l++) { |
|
517 |
+ x00[ii*dim+l] *= constr_penalty/(dist)/(ia[ii+1] - ia[ii]); |
|
518 |
+ } |
|
519 |
+ } |
|
520 |
+ Lc = SparseMatrix_from_coordinate_arrays(nz, m, m, irn, jcn, val, MATRIX_TYPE_REAL); |
|
521 |
+ |
|
522 |
+ } |
|
523 |
+ *LL = Lc; |
|
524 |
+ *rhs = x00; |
|
525 |
+} |
|
526 |
+ |
|
527 |
+real get_stress(int m, int dim, int *iw, int *jw, real *w, real *d, real *x, real scaling, void *data, int weighted){ |
|
528 |
+ int i, j; |
|
529 |
+ real res = 0., dist; |
|
530 |
+ /* we use the fact that d_ij = w_ij*dist(i,j). Also, d_ij and x are scalinged by *scaling, so divide by it to get actual unscaled streee. */ |
|
531 |
+ for (i = 0; i < m; i++){ |
|
532 |
+ for (j = iw[i]; j < iw[i+1]; j++){ |
|
533 |
+ if (i == jw[j]) { |
|
534 |
+ continue; |
|
535 |
+ } |
|
536 |
+ dist = d[j]/w[j];/* both negative*/ |
|
537 |
+ if (weighted){ |
|
538 |
+ res += -w[j]*(dist - distance(x, dim, i, jw[j]))*(dist - distance(x, dim, i, jw[j])); |
|
539 |
+ } else { |
|
540 |
+ res += (dist - distance(x, dim, i, jw[j]))*(dist - distance(x, dim, i, jw[j])); |
|
541 |
+ } |
|
542 |
+ } |
|
543 |
+ } |
|
544 |
+ return res/scaling/scaling; |
|
545 |
+ |
|
546 |
+} |
|
547 |
+ |
|
548 |
+static void uniform_stress_augment_rhs(int m, int dim, real *x, real *y, real alpha, real M){ |
|
549 |
+ int i, j, k; |
|
550 |
+ real dist, distij; |
|
551 |
+ for (i = 0; i < m; i++){ |
|
552 |
+ for (j = i+1; j < m; j++){ |
|
553 |
+ dist = distance_cropped(x, dim, i, j); |
|
554 |
+ for (k = 0; k < dim; k++){ |
|
555 |
+ distij = (x[i*dim+k] - x[j*dim+k])/dist; |
|
556 |
+ y[i*dim+k] += alpha*M*distij; |
|
557 |
+ y[j*dim+k] += alpha*M*(-distij); |
|
558 |
+ } |
|
559 |
+ } |
|
560 |
+ } |
|
561 |
+} |
|
562 |
+ |
|
563 |
+static real uniform_stress_solve(SparseMatrix Lw, real alpha, int dim, real *x0, real *rhs, real tol, int maxit, int *flag){ |
|
564 |
+ Operator Ax; |
|
565 |
+ Operator Precon; |
|
566 |
+ |
|
567 |
+ Ax = Operator_uniform_stress_matmul(Lw, alpha); |
|
568 |
+ Precon = Operator_uniform_stress_diag_precon_new(Lw, alpha); |
|
569 |
+ |
|
570 |
+ return cg(Ax, Precon, Lw->m, dim, x0, rhs, tol, maxit, flag); |
|
571 |
+ |
|
572 |
+} |
|
573 |
+ |
|
574 |
+ |
|
575 |
+real StressMajorizationSmoother_smooth(StressMajorizationSmoother sm, int dim, real *x, int maxit_sm, real tol) { |
|
576 |
+ SparseMatrix Lw = sm->Lw, Lwd = sm->Lwd, Lwdd = NULL; |
|
577 |
+ int i, j, m, *id, *jd, *iw, *jw, idiag, flag = 0, iter = 0; |
|
578 |
+ real *w, *dd, *d, *y = NULL, *x0 = NULL, *x00 = NULL, diag, diff = 1, *lambda = sm->lambda, maxit, res, alpha = 0., M = 0.; |
|
579 |
+ SparseMatrix Lc = NULL; |
|
580 |
+ |
|
581 |
+ Lwdd = SparseMatrix_copy(Lwd); |
|
582 |
+ m = Lw->m; |
|
583 |
+ x0 = N_GNEW(dim*m,real); |
|
584 |
+ if (!x0) goto RETURN; |
|
585 |
+ |
|
586 |
+ x0 = MEMCPY(x0, x, sizeof(real)*dim*m); |
|
587 |
+ y = N_GNEW(dim*m,real); |
|
588 |
+ if (!y) goto RETURN; |
|
589 |
+ |
|
590 |
+ id = Lwd->ia; jd = Lwd->ja; |
|
591 |
+ d = (real*) Lwd->a; |
|
592 |
+ dd = (real*) Lwdd->a; |
|
593 |
+ w = (real*) Lw->a; |
|
594 |
+ iw = Lw->ia; jw = Lw->ja; |
|
595 |
+ |
|
596 |
+ /* for the additional matrix L due to the position constraints */ |
|
597 |
+ if (sm->scheme == SM_SCHEME_NORMAL_ELABEL){ |
|
598 |
+ get_edge_label_matrix(sm->data, m, dim, x, &Lc, &x00); |
|
599 |
+ if (Lc) Lw = SparseMatrix_add(Lw, Lc); |
|
600 |
+ } else if (sm->scheme == SM_SCHEME_UNIFORM_STRESS){ |
|
601 |
+ alpha = ((real*) (sm->data))[0]; |
|
602 |
+ M = ((real*) (sm->data))[1]; |
|
603 |
+ } |
|
604 |
+ |
|
605 |
+ while (iter++ < maxit_sm && diff > tol){ |
|
606 |
+ |
|
607 |
+ for (i = 0; i < m; i++){ |
|
608 |
+ idiag = -1; |
|
609 |
+ diag = 0.; |
|
610 |
+ for (j = id[i]; j < id[i+1]; j++){ |
|
611 |
+ if (i == jd[j]) { |
|
612 |
+ idiag = j; |
|
613 |
+ continue; |
|
614 |
+ } |
|
615 |
+ dd[j] = d[j]/distance_cropped(x, dim, i, jd[j]); |
|
616 |
+ diag += dd[j]; |
|
617 |
+ } |
|
618 |
+ assert(idiag >= 0); |
|
619 |
+ dd[idiag] = -diag; |
|
620 |
+ } |
|
621 |
+ |
|
622 |
+ /* solve (Lw+lambda*I) x = Lwdd y + lambda x0 */ |
|
623 |
+ |
|
624 |
+ SparseMatrix_multiply_dense(Lwdd, FALSE, x, FALSE, &y, FALSE, dim); |
|
625 |
+ |
|
626 |
+ if (lambda){/* is there a penalty term? */ |
|
627 |
+ for (i = 0; i < m; i++){ |
|
628 |
+ for (j = 0; j < dim; j++){ |
|
629 |
+ y[i*dim+j] += lambda[i]*x0[i*dim+j]; |
|
630 |
+ } |
|
631 |
+ } |
|
632 |
+ } |
|
633 |
+ |
|
634 |
+ if (sm->scheme == SM_SCHEME_NORMAL_ELABEL){ |
|
635 |
+ for (i = 0; i < m; i++){ |
|
636 |
+ for (j = 0; j < dim; j++){ |
|
637 |
+ y[i*dim+j] += x00[i*dim+j]; |
|
638 |
+ } |
|
639 |
+ } |
|
640 |
+ } else if (sm->scheme == SM_SCHEME_UNIFORM_STRESS){/* this part can be done more efficiently using octree approximation */ |
|
641 |
+ uniform_stress_augment_rhs(m, dim, x, y, alpha, M); |
|
642 |
+ } |
|
643 |
+ |
|
644 |
+#ifdef DEBUG_PRINT |
|
645 |
+ if (Verbose) fprintf(stderr, "stress1 = %f\n",get_stress(m, dim, iw, jw, w, d, x, sm->scaling, sm->data, 0)); |
|
646 |
+#endif |
|
647 |
+ |
|
648 |
+ maxit = sqrt((double) m); |
|
649 |
+ if (sm->scheme == SM_SCHEME_UNIFORM_STRESS){ |
|
650 |
+ res = uniform_stress_solve(Lw, alpha, dim, x, y, 0.01, maxit, &flag); |
|
651 |
+ } else { |
|
652 |
+ res = SparseMatrix_solve(Lw, dim, x, y, 0.01, maxit, SOLVE_METHOD_CG, &flag); |
|
653 |
+ } |
|
654 |
+ if (flag) goto RETURN; |
|
655 |
+#ifdef DEBUG_PRINT |
|
656 |
+ if (Verbose) fprintf(stderr, "stress2 = %f\n",get_stress(m, dim, iw, jw, w, d, y, sm->scaling, sm->data, 0)); |
|
657 |
+#endif |
|
658 |
+ |
|
659 |
+ diff = total_distance(m, dim, x, y)/sqrt(vector_product(m*dim, x, x)); |
|
660 |
+#ifdef DEBUG_PRINT |
|
661 |
+ if (Verbose){ |
|
662 |
+ fprintf(stderr, "Outer iter = %d, res = %g Stress Majorization diff = %g\n",iter, res, diff); |
|
663 |
+ } |
|
664 |
+#endif |
|
665 |
+ MEMCPY(x, y, sizeof(real)*m*dim); |
|
666 |
+ } |
|
667 |
+ |
|
668 |
+#ifdef DEBUG |
|
669 |
+ _statistics[1] += iter-1; |
|
670 |
+#endif |
|
671 |
+ |
|
672 |
+ RETURN: |
|
673 |
+ SparseMatrix_delete(Lwdd); |
|
674 |
+ if (Lc) { |
|
675 |
+ SparseMatrix_delete(Lc); |
|
676 |
+ SparseMatrix_delete(Lw); |
|
677 |
+ } |
|
678 |
+ |
|
679 |
+ if (x0) FREE(x0); |
|
680 |
+ if (y) FREE(y); |
|
681 |
+ if (x00) FREE(x00); |
|
682 |
+ return diff; |
|
683 |
+ |
|
684 |
+} |
|
685 |
+ |
|
686 |
+void StressMajorizationSmoother_delete(StressMajorizationSmoother sm){ |
|
687 |
+ if (!sm) return; |
|
688 |
+ if (sm->Lw) SparseMatrix_delete(sm->Lw); |
|
689 |
+ if (sm->Lwd) SparseMatrix_delete(sm->Lwd); |
|
690 |
+ if (sm->lambda) FREE(sm->lambda); |
|
691 |
+ if (sm->data) sm->data_deallocator(sm->data); |
|
692 |
+ FREE(sm); |
|
693 |
+} |
|
694 |
+ |
|
695 |
+ |
|
696 |
+TriangleSmoother TriangleSmoother_new(SparseMatrix A, int dim, real lambda0, real *x, int use_triangularization){ |
|
697 |
+ TriangleSmoother sm; |
|
698 |
+ int i, j, k, m = A->m, *ia = A->ia, *ja = A->ja, *iw, *jw, *id, *jd, jdiag, nz; |
|
699 |
+ SparseMatrix B; |
|
700 |
+ real *avg_dist, *lambda, *d, *w, diag_d, diag_w, dist; |
|
701 |
+ real s = 0, stop = 0, sbot = 0; |
|
702 |
+ |
|
703 |
+ assert(SparseMatrix_is_symmetric(A, FALSE)); |
|
704 |
+ |
|
705 |
+ avg_dist = N_GNEW(m,real); |
|
706 |
+ |
|
707 |
+ for (i = 0; i < m ;i++){ |
|
708 |
+ avg_dist[i] = 0; |
|
709 |
+ nz = 0; |
|
710 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
711 |
+ if (i == ja[j]) continue; |
|
712 |
+ avg_dist[i] += distance(x, dim, i, ja[j]); |
|
713 |
+ nz++; |
|
714 |
+ } |
|
715 |
+ assert(nz > 0); |
|
716 |
+ avg_dist[i] /= nz; |
|
717 |
+ } |
|
718 |
+ |
|
719 |
+ sm = N_GNEW(1,struct TriangleSmoother_struct); |
|
720 |
+ sm->scaling = 1; |
|
721 |
+ sm->data = NULL; |
|
722 |
+ sm->scheme = SM_SCHEME_NORMAL; |
|
723 |
+ |
|
724 |
+ lambda = sm->lambda = N_GNEW(m,real); |
|
725 |
+ for (i = 0; i < m; i++) sm->lambda[i] = lambda0; |
|
726 |
+ |
|
727 |
+ if (m > 2){ |
|
728 |
+ if (use_triangularization){ |
|
729 |
+ B= call_tri(m, dim, x); |
|
730 |
+ } else { |
|
731 |
+ B= call_tri2(m, dim, x); |
|
732 |
+ } |
|
733 |
+ } else { |
|
734 |
+ B = SparseMatrix_copy(A); |
|
735 |
+ } |
|
736 |
+ |
|
737 |
+ |
|
738 |
+ |
|
739 |
+ sm->Lw = SparseMatrix_add(A, B); |
|
740 |
+ |
|
741 |
+ SparseMatrix_delete(B); |
|
742 |
+ sm->Lwd = SparseMatrix_copy(sm->Lw); |
|
743 |
+ if (!(sm->Lw) || !(sm->Lwd)) { |
|
744 |
+ TriangleSmoother_delete(sm); |
|
745 |
+ return NULL; |
|
746 |
+ } |
|
747 |
+ |
|
748 |
+ iw = sm->Lw->ia; jw = sm->Lw->ja; |
|
749 |
+ id = sm->Lwd->ia; jd = sm->Lwd->ja; |
|
750 |
+ w = (real*) sm->Lw->a; d = (real*) sm->Lwd->a; |
|
751 |
+ |
|
752 |
+ for (i = 0; i < m; i++){ |
|
753 |
+ diag_d = diag_w = 0; |
|
754 |
+ jdiag = -1; |
|
755 |
+ for (j = iw[i]; j < iw[i+1]; j++){ |
|
756 |
+ k = jw[j]; |
|
757 |
+ if (k == i){ |
|
758 |
+ jdiag = j; |
|
759 |
+ continue; |
|
760 |
+ } |
|
761 |
+ /* w[j] = -1./(ia[i+1]-ia[i]+ia[ja[j]+1]-ia[ja[j]]); |
|
762 |
+ w[j] = -2./(avg_dist[i]+avg_dist[k]); |
|
763 |
+ w[j] = -1.*/;/* use unit weight for now, later can try 1/(deg(i)+deg(k)) */ |
|
764 |
+ dist = pow(distance_cropped(x,dim,i,k),0.6); |
|
765 |
+ w[j] = 1/(dist*dist); |
|
766 |
+ diag_w += w[j]; |
|
767 |
+ |
|
768 |
+ /* d[j] = w[j]*distance(x,dim,i,k); |
|
769 |
+ d[j] = w[j]*(avg_dist[i] + avg_dist[k])*0.5;*/ |
|
770 |
+ d[j] = w[j]*dist; |
|
771 |
+ stop += d[j]*distance(x,dim,i,k); |
|
772 |
+ sbot += d[j]*dist; |
|
773 |
+ diag_d += d[j]; |
|
774 |
+ |
|
775 |
+ } |
|
776 |
+ |
|
777 |
+ lambda[i] *= (-diag_w);/* alternatively don't do that then we have a constant penalty term scaled by lambda0 */ |
|
778 |
+ |
|
779 |
+ assert(jdiag >= 0); |
|
780 |
+ w[jdiag] = -diag_w + lambda[i]; |
|
781 |
+ d[jdiag] = -diag_d; |
|
782 |
+ } |
|
783 |
+ |
|
784 |
+ s = stop/sbot; |
|
785 |
+ for (i = 0; i < iw[m]; i++) d[i] *= s; |
|
786 |
+ sm->scaling = s; |
|
787 |
+ |
|
788 |
+ FREE(avg_dist); |
|
789 |
+ |
|
790 |
+ return sm; |
|
791 |
+} |
|
792 |
+ |
|
793 |
+void TriangleSmoother_delete(TriangleSmoother sm){ |
|
794 |
+ |
|
795 |
+ StressMajorizationSmoother_delete(sm); |
|
796 |
+ |
|
797 |
+} |
|
798 |
+ |
|
799 |
+void TriangleSmoother_smooth(TriangleSmoother sm, int dim, real *x){ |
|
800 |
+ |
|
801 |
+ StressMajorizationSmoother_smooth(sm, dim, x, 50, 0.001); |
|
802 |
+} |
|
803 |
+ |
|
804 |
+ |
|
805 |
+ |
|
806 |
+ |
|
807 |
+/* ================================ spring and spring-electrical based smoother ================ */ |
|
808 |
+SpringSmoother SpringSmoother_new(SparseMatrix A, int dim, spring_electrical_control ctrl, real *x){ |
|
809 |
+ SpringSmoother sm; |
|
810 |
+ int i, j, k, l, m = A->m, *ia = A->ia, *ja = A->ja, *id, *jd; |
|
811 |
+ int *mask, nz; |
|
812 |
+ real *d, *dd; |
|
813 |
+ real *avg_dist; |
|
814 |
+ SparseMatrix ID = NULL; |
|
815 |
+ |
|
816 |
+ assert(SparseMatrix_is_symmetric(A, FALSE)); |
|
817 |
+ |
|
818 |
+ ID = ideal_distance_matrix(A, dim, x); |
|
819 |
+ dd = (real*) ID->a; |
|
820 |
+ |
|
821 |
+ sm = N_GNEW(1,struct SpringSmoother_struct); |
|
822 |
+ mask = N_GNEW(m,int); |
|
823 |
+ |
|
824 |
+ avg_dist = N_GNEW(m,real); |
|
825 |
+ |
|
826 |
+ for (i = 0; i < m ;i++){ |
|
827 |
+ avg_dist[i] = 0; |
|
828 |
+ nz = 0; |
|
829 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
830 |
+ if (i == ja[j]) continue; |
|
831 |
+ avg_dist[i] += distance(x, dim, i, ja[j]); |
|
832 |
+ nz++; |
|
833 |
+ } |
|
834 |
+ assert(nz > 0); |
|
835 |
+ avg_dist[i] /= nz; |
|
836 |
+ } |
|
837 |
+ |
|
838 |
+ |
|
839 |
+ for (i = 0; i < m; i++) mask[i] = -1; |
|
840 |
+ |
|
841 |
+ nz = 0; |
|
842 |
+ for (i = 0; i < m; i++){ |
|
843 |
+ mask[i] = i; |
|
844 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
845 |
+ k = ja[j]; |
|
846 |
+ if (mask[k] != i){ |
|
847 |
+ mask[k] = i; |
|
848 |
+ nz++; |
|
849 |
+ } |
|
850 |
+ } |
|
851 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
852 |
+ k = ja[j]; |
|
853 |
+ for (l = ia[k]; l < ia[k+1]; l++){ |
|
854 |
+ if (mask[ja[l]] != i){ |
|
855 |
+ mask[ja[l]] = i; |
|
856 |
+ nz++; |
|
857 |
+ } |
|
858 |
+ } |
|
859 |
+ } |
|
860 |
+ } |
|
861 |
+ |
|
862 |
+ sm->D = SparseMatrix_new(m, m, nz, MATRIX_TYPE_REAL, FORMAT_CSR); |
|
863 |
+ if (!(sm->D)){ |
|
864 |
+ SpringSmoother_delete(sm); |
|
865 |
+ return NULL; |
|
866 |
+ } |
|
867 |
+ |
|
868 |
+ id = sm->D->ia; jd = sm->D->ja; |
|
869 |
+ d = (real*) sm->D->a; |
|
870 |
+ id[0] = 0; |
|
871 |
+ |
|
872 |
+ nz = 0; |
|
873 |
+ for (i = 0; i < m; i++){ |
|
874 |
+ mask[i] = i+m; |
|
875 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
876 |
+ k = ja[j]; |
|
877 |
+ if (mask[k] != i+m){ |
|
878 |
+ mask[k] = i+m; |
|
879 |
+ jd[nz] = k; |
|
880 |
+ d[nz] = (avg_dist[i] + avg_dist[k])*0.5; |
|
881 |
+ d[nz] = dd[j]; |
|
882 |
+ nz++; |
|
883 |
+ } |
|
884 |
+ } |
|
885 |
+ |
|
886 |
+ for (j = ia[i]; j < ia[i+1]; j++){ |
|
887 |
+ k = ja[j]; |
|
888 |
+ for (l = ia[k]; l < ia[k+1]; l++){ |
|
889 |
+ if (mask[ja[l]] != i+m){ |
|
890 |
+ mask[ja[l]] = i+m; |
|
891 |
+ jd[nz] = ja[l]; |
|
892 |
+ d[nz] = (avg_dist[i] + 2*avg_dist[k] + avg_dist[ja[l]])*0.5; |
|
893 |
+ d[nz] = dd[j]+dd[l]; |
|
894 |
+ nz++; |
|
895 |
+ } |
|
896 |
+ } |
|
897 |
+ } |
|
898 |
+ id[i+1] = nz; |
|
899 |
+ } |
|
900 |
+ sm->D->nz = nz; |
|
901 |
+ sm->ctrl = spring_electrical_control_new(); |
|
902 |
+ *(sm->ctrl) = *ctrl; |
|
903 |
+ sm->ctrl->random_start = FALSE; |
|
904 |
+ sm->ctrl->multilevels = 1; |
|
905 |
+ sm->ctrl->step /= 2; |
|
906 |
+ sm->ctrl->maxiter = 20; |
|
907 |
+ |
|
908 |
+ FREE(mask); |
|
909 |
+ FREE(avg_dist); |
|
910 |
+ SparseMatrix_delete(ID); |
|
911 |
+ |
|
912 |
+ return sm; |
|
913 |
+} |
|
914 |
+ |
|
915 |
+ |
|
916 |
+void SpringSmoother_delete(SpringSmoother sm){ |
|
917 |
+ if (!sm) return; |
|
918 |
+ if (sm->D) SparseMatrix_delete(sm->D); |
|
919 |
+ if (sm->ctrl) spring_electrical_control_delete(sm->ctrl); |
|
920 |
+} |
|
921 |
+ |
|
922 |
+ |
|
923 |
+ |
|
924 |
+ |
|
925 |
+void SpringSmoother_smooth(SpringSmoother sm, SparseMatrix A, real *node_weights, int dim, real *x){ |
|
926 |
+ int flag = 0; |
|
927 |
+ |
|
928 |
+ spring_electrical_spring_embedding(dim, A, sm->D, sm->ctrl, node_weights, x, &flag); |
|
929 |
+ assert(!flag); |
|
930 |
+ |
|
931 |
+} |
|
932 |
+ |
|
933 |
+/*=============================== end of spring and spring-electrical based smoother =========== */ |
|
934 |
+ |
|
935 |
+void post_process_smoothing(int dim, SparseMatrix A, spring_electrical_control ctrl, real *node_weights, real *x, int *flag){ |
|
936 |
+#ifdef TIME |
|
937 |
+ clock_t cpu; |
|
938 |
+#endif |
|
939 |
+ |
|
940 |
+#ifdef TIME |
|
941 |
+ cpu = clock(); |
|
942 |
+#endif |
|
943 |
+ *flag = 0; |
|
944 |
+ |
|
945 |
+ switch (ctrl->smoothing){ |
|
946 |
+ case SMOOTHING_RNG: |
|
947 |
+ case SMOOTHING_TRIANGLE:{ |
|
948 |
+ TriangleSmoother sm; |
|
949 |
+ |
|
950 |
+ if (ctrl->smoothing == SMOOTHING_RNG){ |
|
951 |
+ sm = TriangleSmoother_new(A, dim, 0, x, FALSE); |
|
952 |
+ } else { |
|
953 |
+ sm = TriangleSmoother_new(A, dim, 0, x, TRUE); |
|
954 |
+ } |
|
955 |
+ TriangleSmoother_smooth(sm, dim, x); |
|
956 |
+ TriangleSmoother_delete(sm); |
|
957 |
+ break; |
|
958 |
+ } |
|
959 |
+ case SMOOTHING_STRESS_MAJORIZATION_GRAPH_DIST: |
|
960 |
+ case SMOOTHING_STRESS_MAJORIZATION_POWER_DIST: |
|
961 |
+ case SMOOTHING_STRESS_MAJORIZATION_AVG_DIST: |
|
962 |
+ { |
|
963 |
+ StressMajorizationSmoother sm; |
|
964 |
+ int k, dist_scheme = IDEAL_AVG_DIST; |
|
965 |
+ |
|
966 |
+ if (ctrl->smoothing == SMOOTHING_STRESS_MAJORIZATION_GRAPH_DIST){ |
|
967 |
+ dist_scheme = IDEAL_GRAPH_DIST; |
|
968 |
+ } else if (ctrl->smoothing == SMOOTHING_STRESS_MAJORIZATION_AVG_DIST){ |
|
969 |
+ dist_scheme = IDEAL_AVG_DIST; |
|
970 |
+ } else if (ctrl->smoothing == SMOOTHING_STRESS_MAJORIZATION_POWER_DIST){ |
|
971 |
+ dist_scheme = IDEAL_POWER_DIST; |
|
972 |
+ } |
|
973 |
+ |
|
974 |
+ for (k = 0; k < 1; k++){ |
|
975 |
+ sm = StressMajorizationSmoother2_new(A, dim, 0.05, x, dist_scheme); |
|
976 |
+ StressMajorizationSmoother_smooth(sm, dim, x, 50, 0.001); |
|
977 |
+ StressMajorizationSmoother_delete(sm); |
|
978 |
+ } |
|
979 |
+ break; |
|
980 |
+ } |
|
981 |
+ case SMOOTHING_SPRING:{ |
|
982 |
+ SpringSmoother sm; |
|
983 |
+ int k; |
|
984 |
+ |
|
985 |
+ for (k = 0; k < 1; k++){ |
|
986 |
+ sm = SpringSmoother_new(A, dim, ctrl, x); |
|
987 |
+ SpringSmoother_smooth(sm, A, node_weights, dim, x); |
|
988 |
+ SpringSmoother_delete(sm); |
|
989 |
+ } |
|
990 |
+ |
|
991 |
+ break; |
|
992 |
+ } |
|
993 |
+ |
|
994 |
+ }/* end switch between smoothing methods */ |
|
995 |
+ |
|
996 |
+#ifdef TIME |
|
997 |
+ if (Verbose) fprintf(stderr, "post processing %f\n",((real) (clock() - cpu)) / CLOCKS_PER_SEC); |
|
998 |
+#endif |
|
999 |
+} |