Name Mode Size
R 040000
data 040000
doc 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.gitignore 100644 1 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 34 kb
NAMESPACE 100644 0 kb
NEWS.md 100644 0 kb
README.Rmd 100644 3 kb
README.md 100644 4 kb
README.md
<!-- README.md is generated from README.Rmd. Please edit that file --> # ROSeq Modeling expression ranks for noise-tolerant differential expression analysis of scRNA-Seq data ## Introduction ROSeq - A rank based approach to modeling gene expression with filtered and normalized read count matrix. ROSeq takes filtered and normalized read matrix and cell-annotation/condition as input and determines the differentially expressed genes between the contrasting groups of single cells. One of the input parameters is the number of cores to be used. ## Installation The developer’s version of the R package can be installed with the following R commands: ``` r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") # The following initializes usage of Bioc devel BiocManager::install(version='devel') BiocManager::install("ROSeq") ``` The github’s version of the R package can be installed with the following R commands: ``` r library(devtools) install_github('krishan57gupta/ROSeq') ``` ## Vignette tutorial This vignette uses the Tung dataset, which is already inbuilt in the package, to demonstrate a standard pipeline. ## Example Libraries need to be loaded before running. ``` r library(ROSeq) library(edgeR) #> Loading required package: limma library(limma) ``` ### Loading tung dataset ``` r samples<-list() samples$count<-ROSeq::L_Tung_single$NA19098_NA19101_count samples$group<-ROSeq::L_Tung_single$NA19098_NA19101_group samples$count[1:5,1:5] #> NA19098.r1.A01 NA19098.r1.A02 NA19098.r1.A03 NA19098.r1.A04 #> ENSG00000237683 0 0 0 1 #> ENSG00000187634 0 0 0 0 #> ENSG00000188976 3 6 1 3 #> ENSG00000187961 0 0 0 0 #> ENSG00000187583 0 0 0 0 #> NA19098.r1.A05 #> ENSG00000237683 0 #> ENSG00000187634 0 #> ENSG00000188976 4 #> ENSG00000187961 0 #> ENSG00000187583 0 ``` ### Data Preprocessing: #### Cells and genes filtering then voom transformation after TMM normalization Below commands can be used for Cell/gene filtering, TMM normalization and voom transformation. The user is free to use an alternative preprocessing strategy while using different filtering/normalization methods. ``` r gene_names<-rownames(samples$count) samples$count<-apply(samples$count,2,function(x) as.numeric(x)) rownames(samples$count)<-gene_names samples$count<-samples$count[,colSums(samples$count> 0) > 2000] gkeep<-apply(samples$count,1,function(x) sum(x>2)>=3) samples$count<-samples$count[gkeep,] samples$count<-limma::voom(ROSeq::TMMnormalization(samples$count)) ``` ### ROSeq analysis. Input: gene expression matrix with genes in rows and cells in columns. Condition/group annotation of cells also need to be supplied. User can set numCores based the hardware specifications in her computer. ``` r output<-ROSeq(countData=samples$count$E, condition = samples$group, numCores=1) ``` ### Showing results are in the form of pVals and pAdj ##### p\_Vals : p\_value (unadjusted) ##### p\_Adj : Adjusted p-value, based on FDR method ``` r output[1:5,] #> pVals pAdj #> ENSG00000237683 0.6741425 0.9321651 #> ENSG00000188976 0.7484244 0.9426495 #> ENSG00000187608 0.2282451 0.8481636 #> ENSG00000188157 0.5138812 0.9082800 #> ENSG00000131591 0.1235577 0.7438811 ```