... | ... |
@@ -21,7 +21,7 @@ License: Artistic-2.0 |
21 | 21 |
Encoding: UTF-8 |
22 | 22 |
LazyData: true |
23 | 23 |
RoxygenNote: 6.0.1 |
24 |
-Imports: rscala(>= 2.4.0), httr, GenomicRanges, rtracklayer, data.table, utils, plyr, xml2, methods, S4Vectors, dplyr |
|
24 |
+Imports: rscala(>= 2.4.0), httr, GenomicRanges, rtracklayer, data.table, utils, plyr, xml2, methods, S4Vectors, dplyr, stats |
|
25 | 25 |
Depends: R(>= 3.3.2) |
26 | 26 |
VignetteBuilder: knitr |
27 | 27 |
Suggests: BiocStyle, knitr, rmarkdown |
... | ... |
@@ -59,26 +59,26 @@ |
59 | 59 |
#' |
60 | 60 |
#' @examples |
61 | 61 |
#' |
62 |
-#' ### This GMQL statement produces an output dataset with a single output sample. |
|
63 |
-#' The COVER operation considers all areas defined by a minimum of two overlapping regions |
|
64 |
-#' in the input samples, up to any amount of overlapping regions. |
|
62 |
+#' ## This GMQL statement produces an output dataset with a single output sample. |
|
63 |
+#' ## The COVER operation considers all areas defined by a minimum of two overlapping regions |
|
64 |
+#' ## in the input samples, up to any amount of overlapping regions. |
|
65 | 65 |
#' |
66 | 66 |
#' initGMQL("gtf") |
67 | 67 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
68 |
-#' exp = read(test_path) |
|
68 |
+#' exp = readDataset(test_path) |
|
69 | 69 |
#' res = cover(input_data = exp,2,"ANY") |
70 | 70 |
#' |
71 | 71 |
#' \dontrun{ |
72 |
-#' ### This GMQL statement computes the result grouping the input exp samples by the values of |
|
73 |
-#' their cell metadata attribute, |
|
74 |
-#' thus one output res sample is generated for each cell type; |
|
75 |
-#' output regions are produced where at least 2 and at most 3 regions of grouped exp samples |
|
76 |
-#' overlap, setting as attributes of the resulting regions the minimum pValue of the overlapping regions |
|
77 |
-#' (min_pvalue) and their Jaccard indexes (JaccardIntersect and JaccardResult). |
|
72 |
+#' ## This GMQL statement computes the result grouping the input exp samples by the values of |
|
73 |
+#' ## their cell metadata attribute, |
|
74 |
+#' ## thus one output res sample is generated for each cell type; |
|
75 |
+#' ## output regions are produced where at least 2 and at most 3 regions of grouped exp samples |
|
76 |
+#' ## overlap, setting as attributes of the resulting regions the minimum pvalue of the overlapping regions |
|
77 |
+#' ## (min_pvalue) and their Jaccard indexes (JaccardIntersect and JaccardResult). |
|
78 | 78 |
#' |
79 | 79 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
80 | 80 |
#' exp = read(test_path) |
81 |
-#' res = cover(input_data = exp,2,3, c("cell"), list(min_pValue = MIN(pValue))) |
|
81 |
+#' res = cover(input_data = exp,2,3, c("cell"), list(min_pValue = MIN("pvalue"))) |
|
82 | 82 |
#' } |
83 | 83 |
#' @export |
84 | 84 |
#' |
... | ... |
@@ -136,17 +136,17 @@ cover <- function(input_data, minAcc, maxAcc, groupBy = NULL, aggregates = NULL) |
136 | 136 |
#' |
137 | 137 |
#' @examples |
138 | 138 |
#' |
139 |
-#' ### This GMQL statement computes the result grouping the input \emph{exp} samples |
|
140 |
-#' by the values of their \emph{cell} metadata attribute, |
|
141 |
-#' thus one output \emph{res} sample is generated for each cell type. |
|
142 |
-#' Output regions are produced by dividing results from COVER in contiguous subregions |
|
143 |
-#' according to the varying accumulation values (from 2 to 4 in this case): |
|
144 |
-#' one region for each accumulation value; |
|
139 |
+#' ## This GMQL statement computes the result grouping the input \emph{exp} samples |
|
140 |
+#' ## by the values of their \emph{cell} metadata attribute, |
|
141 |
+#' ## thus one output \emph{res} sample is generated for each cell type. |
|
142 |
+#' ## Output regions are produced by dividing results from COVER in contiguous subregions |
|
143 |
+#' ## according to the varying accumulation values (from 2 to 4 in this case): |
|
144 |
+#' ## one region for each accumulation value; |
|
145 | 145 |
#' |
146 | 146 |
#' initGMQL("gtf") |
147 | 147 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
148 |
-#' exp = read(test_path) |
|
149 |
-#' res = histogram(exp, 2,4,groupBy = c("cell")) exp |
|
148 |
+#' exp = readDataset(test_path) |
|
149 |
+#' res = histogram(exp, 2,4,groupBy = c("cell")) |
|
150 | 150 |
#' |
151 | 151 |
#' @export |
152 | 152 |
#' |
... | ... |
@@ -206,16 +206,16 @@ histogram <- function(input_data, minAcc, maxAcc, groupBy = NULL, aggregates = N |
206 | 206 |
#' |
207 | 207 |
#' @examples |
208 | 208 |
#' |
209 |
-#' ### This GMQL statement computes the result grouping the input \emph{exp} samples by the values |
|
210 |
-#' of their \emph{cell} metadata attribute, thus one output \emph{res} sample is generated |
|
211 |
-#' for each cell type. |
|
212 |
-#' Output regions are produced by extracting the highest accumulation overlapping |
|
213 |
-#' (sub)regions according to the methodologies described above; |
|
209 |
+#' ## This GMQL statement computes the result grouping the input \emph{exp} samples by the values |
|
210 |
+#' ## of their \emph{cell} metadata attribute, thus one output \emph{res} sample is generated |
|
211 |
+#' ## for each cell type. |
|
212 |
+#' ## Output regions are produced by extracting the highest accumulation overlapping |
|
213 |
+#' ## (sub)regions according to the methodologies described above; |
|
214 | 214 |
#' |
215 | 215 |
#' |
216 | 216 |
#' initGMQL("gtf") |
217 | 217 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
218 |
-#' exp = read(test_path) |
|
218 |
+#' exp = readDataset(test_path) |
|
219 | 219 |
#' res = summit(input_data = exp,2,4, c("cell")) |
220 | 220 |
#' |
221 | 221 |
#' @export |
... | ... |
@@ -274,15 +274,15 @@ summit <- function(input_data, minAcc, maxAcc, groupBy = NULL, aggregates = NULL |
274 | 274 |
#' |
275 | 275 |
#' @examples |
276 | 276 |
#' |
277 |
-#' ### This GMQL statement computes the result grouping the input \emph{exp} samples by |
|
278 |
-#' the values of their \emph{cell} metadata attribute, thus one output \emph{res} sample |
|
279 |
-#' is generated for each cell type. |
|
280 |
-#' Output regions are produced by concatenating all regions which would have been used |
|
281 |
-#' to construct a COVER(2,4) statement on the same dataset; |
|
277 |
+#' ## This GMQL statement computes the result grouping the input \emph{exp} samples by |
|
278 |
+#' ## the values of their \emph{cell} metadata attribute, thus one output \emph{res} sample |
|
279 |
+#' ## is generated for each cell type. |
|
280 |
+#' ## Output regions are produced by concatenating all regions which would have been used |
|
281 |
+#' ## to construct a COVER(2,4) statement on the same dataset; |
|
282 | 282 |
#' |
283 | 283 |
#' initGMQL("gtf") |
284 | 284 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
285 |
-#' exp = read(test_path) |
|
285 |
+#' exp = readDataset(test_path) |
|
286 | 286 |
#' res = flat(input_data = exp,2,4, c("cell")) |
287 | 287 |
#' |
288 | 288 |
#' @export |
... | ... |
@@ -34,8 +34,8 @@ |
34 | 34 |
#' |
35 | 35 |
#' @examples |
36 | 36 |
#' |
37 |
-#' #### This GMQL statement returns all the regions in the first dataset that do not |
|
38 |
-#' overlap any region in the second dataset. |
|
37 |
+#' ## This GMQL statement returns all the regions in the first dataset that do not |
|
38 |
+#' ## overlap any region in the second dataset. |
|
39 | 39 |
#' |
40 | 40 |
#' initGMQL("gtf") |
41 | 41 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
... | ... |
@@ -45,10 +45,10 @@ |
45 | 45 |
#' out = difference(r_left,r_right) |
46 | 46 |
#' |
47 | 47 |
#' \dontrun{ |
48 |
-#' ### This GMQL statement extracts for every pair of samples s1 in EXP1 and s2 in EXP2 |
|
49 |
-#' having the same value of the metadata attribute 'antibody_target' |
|
50 |
-#' the regions that appear in s1 but do not overlap any region in s2; |
|
51 |
-#' metadata of the result are the same as the metadata of s1. |
|
48 |
+#' ## This GMQL statement extracts for every pair of samples s1 in EXP1 and s2 in EXP2 |
|
49 |
+#' ## having the same value of the metadata attribute 'antibody_target' |
|
50 |
+#' ## the regions that appear in s1 but do not overlap any region in s2; |
|
51 |
+#' ## metadata of the result are the same as the metadata of s1. |
|
52 | 52 |
#' |
53 | 53 |
#' initGMQL("gtf") |
54 | 54 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
... | ... |
@@ -30,22 +30,22 @@ |
30 | 30 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
31 | 31 |
#' r = readDataset(test_path) |
32 | 32 |
#' |
33 |
-#' ### it counts the regions in each sample and stores their number as value of the new metadata |
|
34 |
-#' RegionCount attribute of the sample. |
|
35 |
-#' e = extend(input_data = r, list(RegionCount = COUNT()) |
|
33 |
+#' ## it counts the regions in each sample and stores their number as value of the new metadata |
|
34 |
+#' ## RegionCount attribute of the sample. |
|
35 |
+#' e = extend(input_data = r, list(RegionCount = COUNT())) |
|
36 | 36 |
#' \dontrun{ |
37 | 37 |
#' |
38 | 38 |
#' initGMQL("gtf") |
39 | 39 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
40 | 40 |
#' exp = readDataset(test_path) |
41 | 41 |
#' |
42 |
-#' ### it copies all samples of exp dataset into res dataset, and then calculates |
|
43 |
-#' for each of them two new metadata attributes: |
|
44 |
-#' 1. RegionCount is the number of sample regions; |
|
45 |
-#' 2. MinP is the minimum Pvalue of the sample regions. |
|
46 |
-#' res sample regions are the same as the ones in exp. |
|
42 |
+#' ## it copies all samples of exp dataset into res dataset, and then calculates |
|
43 |
+#' ## for each of them two new metadata attributes: |
|
44 |
+#' ## 1. RegionCount is the number of sample regions; |
|
45 |
+#' ## 2. MinP is the minimum pvalue of the sample regions. |
|
46 |
+#' ## res sample regions are the same as the ones in exp. |
|
47 | 47 |
#' |
48 |
-#' res = extend(input_data = exp, list(RegionCount = COUNT(),MinP = MIN(pValue)) |
|
48 |
+#' res = extend(input_data = exp, list(RegionCount = COUNT(),MinP = MIN(pvalue))) |
|
49 | 49 |
#' |
50 | 50 |
#' } |
51 | 51 |
#' |
... | ... |
@@ -45,18 +45,18 @@ |
45 | 45 |
#' |
46 | 46 |
#' @examples |
47 | 47 |
#' |
48 |
-#' ### Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
|
49 |
-#' it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
50 |
-#' and takes the first/closest one for each TSS, |
|
51 |
-#' provided that such distance is lesser than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
52 |
-#' from the same provider (joinby clause). |
|
48 |
+#' ## Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
|
49 |
+#' ## it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
50 |
+#' ## and takes the first/closest one for each TSS, |
|
51 |
+#' ## provided that such distance is lesser than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
52 |
+#' ## from the same provider (joinby clause). |
|
53 | 53 |
#' |
54 |
-#' #' initGMQL("gtf") |
|
54 |
+#' initGMQL("gtf") |
|
55 | 55 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
56 | 56 |
#' test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
57 | 57 |
#' TSS = readDataset(test_path) |
58 | 58 |
#' HM = readDataset(test_path2) |
59 |
-#' join_data = join(tss,hm,genometric_predicate=list(list(MD("1"),DLE("120000"))),c("provider"),region_output="RIGHT") |
|
59 |
+#' join_data = join(TSS,HM,genometric_predicate=list(list(MD(1),DLE(120000))),c("provider"),region_output="RIGHT") |
|
60 | 60 |
#' |
61 | 61 |
#' @export |
62 | 62 |
#' |
... | ... |
@@ -47,19 +47,19 @@ |
47 | 47 |
#' |
48 | 48 |
#' @examples |
49 | 49 |
#' |
50 |
-#' ### it counts the number of regions in each sample from exp that overlap with a ref region, |
|
51 |
-#' and for each ref region it computes the minimum score of all the regions in each exp sample |
|
52 |
-#' that overlap with it. |
|
53 |
-#' The MAP joinby option ensures that only the exp samples referring to the same 'cell_tissue' |
|
54 |
-#' of a ref sample are mapped on such ref sample; |
|
55 |
-#' exp samples with no cell_tissue metadata attribute, or with such metadata |
|
56 |
-#' but with a different value from the one(s) of ref sample(s), are disregarded. |
|
50 |
+#' ## it counts the number of regions in each sample from exp that overlap with a ref region, |
|
51 |
+#' ## and for each ref region it computes the minimum score of all the regions in each exp sample |
|
52 |
+#' ## that overlap with it. |
|
53 |
+#' ## The MAP joinby option ensures that only the exp samples referring to the same 'cell_tissue' |
|
54 |
+#' ## of a ref sample are mapped on such ref sample; |
|
55 |
+#' ## exp samples with no cell_tissue metadata attribute, or with such metadata |
|
56 |
+#' ## but with a different value from the one(s) of ref sample(s), are disregarded. |
|
57 | 57 |
#' |
58 | 58 |
#' initGMQL("gtf") |
59 | 59 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
60 | 60 |
#' test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
61 |
-#' exp = read(test_path) |
|
62 |
-#' ref = read(test_path2) |
|
61 |
+#' exp = readDataset(test_path) |
|
62 |
+#' ref = readDataset(test_path2) |
|
63 | 63 |
#' out = map(ref,exp, list(minScore = MIN("score")), joinBy = c("cell_tissue") ) |
64 | 64 |
#' |
65 | 65 |
#' |
... | ... |
@@ -68,7 +68,7 @@ |
68 | 68 |
map <- function(left_input_data, right_input_data, aggregates = NULL, joinBy = NULL) |
69 | 69 |
{ |
70 | 70 |
if(!is.null(aggregates)) |
71 |
- metadata_matrix <- .aggregates(metadata,"OPERATOR") |
|
71 |
+ metadata_matrix <- .aggregates(aggregates,"OPERATOR") |
|
72 | 72 |
else |
73 | 73 |
metadata_matrix = scalaNull("Array[Array[String]]") |
74 | 74 |
|
... | ... |
@@ -77,7 +77,7 @@ map <- function(left_input_data, right_input_data, aggregates = NULL, joinBy = N |
77 | 77 |
else |
78 | 78 |
join_condition_matrix <- scalaNull("Array[Array[String]]") |
79 | 79 |
|
80 |
- out<-WrappeR$map(join_condition_matrix,aggregates,left_input_data$value,right_input_data$value) |
|
80 |
+ out<-WrappeR$map(join_condition_matrix,metadata_matrix,left_input_data$value,right_input_data$value) |
|
81 | 81 |
|
82 | 82 |
if(grepl("No",out,ignore.case = TRUE)) |
83 | 83 |
stop(out) |
... | ... |
@@ -18,8 +18,10 @@ |
18 | 18 |
#' s = select(input_data = r) |
19 | 19 |
#' m = merge(groupBy = c("antibody_targer","cell_karyotype"),input_data = s) |
20 | 20 |
#' materialize(input_data = m, dir_out = test_path) |
21 |
-#' execute() |
|
22 | 21 |
#' |
22 |
+#' \dontrun{ |
|
23 |
+#' execute() |
|
24 |
+#' } |
|
23 | 25 |
#' @export |
24 | 26 |
#' |
25 | 27 |
execute <- function() |
... | ... |
@@ -51,7 +53,7 @@ execute <- function() |
51 | 53 |
#' |
52 | 54 |
#' initGMQL("gtf") |
53 | 55 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
54 |
-#' r = read(test_path) |
|
56 |
+#' r = readDataset(test_path) |
|
55 | 57 |
#' s = select(input_data = r) |
56 | 58 |
#' m = merge(groupBy = c("antibody_targer","cell_karyotype"),input_data = s) |
57 | 59 |
#' materialize(input_data = m, dir_out = test_path) |
... | ... |
@@ -76,7 +78,8 @@ materialize <- function(input_data, dir_out = getwd()) |
76 | 78 |
#' as folder (like if execution was invoked) |
77 | 79 |
#' |
78 | 80 |
#' @import GenomicRanges |
79 |
-#' |
|
81 |
+#' @importFrom stats setNames |
|
82 |
+#' |
|
80 | 83 |
#' @param input_data returned object from any GMQL function |
81 | 84 |
#' @param rows number of rows for each sample regions that you want to retrieve and stored in memory |
82 | 85 |
#' by default is 0 that means take all rows for each sample |
... | ... |
@@ -87,10 +90,10 @@ materialize <- function(input_data, dir_out = getwd()) |
87 | 90 |
#' |
88 | 91 |
#' initGMQL("gtf") |
89 | 92 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
90 |
-#' r = read(test_path) |
|
93 |
+#' r = readDataset(test_path) |
|
91 | 94 |
#' s = select(input_data = r) |
92 | 95 |
#' m = merge(groupBy = c("antibody_targer","cell_karyotype"),input_data = s) |
93 |
-#' take(input_data = m, rows = 45) |
|
96 |
+#' g <- take(input_data = m, rows = 45) |
|
94 | 97 |
#' |
95 | 98 |
#' @export |
96 | 99 |
#' |
... | ... |
@@ -134,7 +137,7 @@ take <- function(input_data, rows=0L) |
134 | 137 |
x <- x[-1] |
135 | 138 |
}) |
136 | 139 |
meta_list <- lapply(name_value_list, function(x){ |
137 |
- setNames(as.list(as.character(x[[2]])), x[[1]]) |
|
140 |
+ stats::setNames(as.list(as.character(x[[2]])), x[[1]]) |
|
138 | 141 |
}) |
139 | 142 |
} |
140 | 143 |
|
... | ... |
@@ -26,15 +26,15 @@ |
26 | 26 |
#' |
27 | 27 |
#' @examples |
28 | 28 |
#' |
29 |
-#' ### it creates a dataset called merged which contains one sample for each antibody_target value |
|
30 |
-#' found within the metadata of the exp dataset sample; |
|
31 |
-#' each created sample contains all regions from all 'exp' samples with a specific value for their |
|
32 |
-#' antibody_target metadata attribute. |
|
29 |
+#' ## it creates a dataset called merged which contains one sample for each antibody_target value |
|
30 |
+#' ## found within the metadata of the exp dataset sample; |
|
31 |
+#' ## each created sample contains all regions from all 'exp' samples with a specific value for their |
|
32 |
+#' ## antibody_target metadata attribute. |
|
33 | 33 |
#' |
34 | 34 |
#' initGMQL("gtf") |
35 | 35 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
36 | 36 |
#' exp = readDataset(test_path) |
37 |
-#' merged = merge(input_data = exp, groupBy = c("antibody_targer")) |
|
37 |
+#' merged = merge(input_data = exp, groupBy = c("antibody_target")) |
|
38 | 38 |
#' |
39 | 39 |
#' @export |
40 | 40 |
#' |
... | ... |
@@ -36,7 +36,7 @@ |
36 | 36 |
#' |
37 | 37 |
#' @return DAGgraph class object. It contains the value associated to the graph used |
38 | 38 |
#' as input for the subsequent GMQL function |
39 |
-#' #' |
|
39 |
+#' |
|
40 | 40 |
#' @details |
41 | 41 |
#' mtop, mtopg,mtopp, rtop, rtopg and rtopp are normally numbers: if you specify a vector, |
42 | 42 |
#' only the first element will be used |
... | ... |
@@ -47,26 +47,13 @@ |
47 | 47 |
#' |
48 | 48 |
#' @examples |
49 | 49 |
#' |
50 |
-#' ### it orders the samples according to the Region_count metadata attribute and takes the two samples |
|
51 |
-#' that have the highest count. |
|
52 |
-#' |
|
53 |
-#' initGMQL("gtf") |
|
54 |
-#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
|
55 |
-#' r = readDataset(test_path) |
|
56 |
-#' o = order(r,list(DESC(Region_Count)), mtop = 2) |
|
57 |
-#' |
|
58 |
-#' \dontrun{ |
|
59 |
-#' |
|
60 |
-#' ### it extracts the first 5 samples on the basis of their region counter |
|
61 |
-#' (those with the smaller RegionCount) and then, for each of them, |
|
62 |
-#' 7 regions on the basis of their mutation counter (those with the higher MutationCount). |
|
50 |
+#' ## it orders the samples according to the Region_count metadata attribute and takes the two samples |
|
51 |
+#' ## that have the highest count. |
|
63 | 52 |
#' |
64 | 53 |
#' initGMQL("gtf") |
65 | 54 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
66 | 55 |
#' r = readDataset(test_path) |
67 |
-#' o = order(r,list(ASC(Region_Count)), mtop = 5,regions_ordering = list(DESC(MutationCount)),rtop=7) |
|
68 |
-#' |
|
69 |
-#' } |
|
56 |
+#' o = order(r,list(DESC("Region_Count")), mtop = 2) |
|
70 | 57 |
#' |
71 | 58 |
#' @export |
72 | 59 |
#' |
... | ... |
@@ -79,13 +66,13 @@ order <- function(input_data, metadata_ordering = NULL, mtop = 0, mtopg = 0,mtop |
79 | 66 |
|
80 | 67 |
if(length(mtop)>0 || length(mtopg)>0 || length(rtop)>0 || length(rtopg)>0 |
81 | 68 |
|| length(mtopp)>0 || length(rtopp)>0) |
82 |
- warning("only the first element is taken by rtop, mtop, mtopg, rtopg") |
|
69 |
+ warning("only the first element is taken by rtop, mtop, mtopg, rtopg, rtopp, mtopp") |
|
83 | 70 |
|
84 | 71 |
# we consider only the first element even if input is a vector of Int |
85 | 72 |
# we cut the other arguments |
86 | 73 |
|
87 | 74 |
mtop = as.integer(mtop[1]) |
88 |
- mtog = as.integer(mtopg[1]) |
|
75 |
+ mtopg = as.integer(mtopg[1]) |
|
89 | 76 |
mtopp = as.integer(mtopp[1]) |
90 | 77 |
|
91 | 78 |
rtop = as.integer(rtop[1]) |
... | ... |
@@ -95,37 +82,37 @@ order <- function(input_data, metadata_ordering = NULL, mtop = 0, mtopg = 0,mtop |
95 | 82 |
if(mtop > 0 && mtopg >0) |
96 | 83 |
{ |
97 | 84 |
warning("cannot be used together.\nWe set mtopg = 0") |
98 |
- mtopg = 0 |
|
85 |
+ mtopg = 0L |
|
99 | 86 |
} |
100 | 87 |
|
101 | 88 |
if(mtop >0 && mtopp>0) |
102 | 89 |
{ |
103 | 90 |
warning("cannot be used together.\nWe set mtopp = 0") |
104 |
- mtopp = 0 |
|
91 |
+ mtopp = 0L |
|
105 | 92 |
} |
106 | 93 |
|
107 | 94 |
if(mtopg >0 && mtopp>0) |
108 | 95 |
{ |
109 | 96 |
warning("cannot be used together.\nWe set mtopp = 0") |
110 |
- mtopp = 0 |
|
97 |
+ mtopp = 0L |
|
111 | 98 |
} |
112 | 99 |
|
113 | 100 |
if(rtop > 0 && rtopg >0) |
114 | 101 |
{ |
115 | 102 |
warning("cannot be used together.\nWe set rtopg = 0") |
116 |
- rtopg = 0 |
|
103 |
+ rtopg = 0L |
|
117 | 104 |
} |
118 | 105 |
|
119 | 106 |
if(rtop >0 && rtopp>0) |
120 | 107 |
{ |
121 | 108 |
warning("cannot be used together.\nWe set rtopp = 0") |
122 |
- rtopp = 0 |
|
109 |
+ rtopp = 0L |
|
123 | 110 |
} |
124 | 111 |
|
125 | 112 |
if(rtopg >0 && rtopp>0) |
126 | 113 |
{ |
127 | 114 |
warning("cannot be used together.\nWe set rtopp = 0") |
128 |
- rtopp = 0 |
|
115 |
+ rtopp = 0L |
|
129 | 116 |
} |
130 | 117 |
|
131 | 118 |
if(!is.null(metadata_ordering)) |
... | ... |
@@ -12,7 +12,7 @@ |
12 | 12 |
#' |
13 | 13 |
#' @param input_data string pointer taken from GMQL function |
14 | 14 |
#' @param metadata vector of string made up by metadata attribute |
15 |
-#' @param region vector of string made up by schema field attribute |
|
15 |
+#' @param regions vector of string made up by schema field attribute |
|
16 | 16 |
#' @param all_but_reg logical value indicating which schema filed attribute you want to exclude. |
17 | 17 |
#' If FALSE only the regions you choose is kept in the output of the project operation, |
18 | 18 |
#' if TRUE the schema region are all except ones include in region parameter. |
... | ... |
@@ -33,24 +33,24 @@ |
33 | 33 |
#' @examples |
34 | 34 |
#' |
35 | 35 |
#' ## it creates a new dataset called CTCF_NORM_SCORE by preserving all region attributes apart from score, |
36 |
-#' and creating a new region attribute called new_score by dividing the existing score value |
|
37 |
-#' of each region by 1000.0 and incrementing it by 100. |
|
38 |
-#' It also generates, for each sample of the new dataset, |
|
39 |
-#' a new metadata attribute called normalized with value 1, which can be used in future selections. |
|
36 |
+#' ## and creating a new region attribute called new_score by dividing the existing score value |
|
37 |
+#' ## of each region by 1000.0 and incrementing it by 100. |
|
38 |
+#' ## It also generates, for each sample of the new dataset, |
|
39 |
+#' ## a new metadata attribute called normalized with value 1, which can be used in future selections. |
|
40 | 40 |
#' |
41 | 41 |
#' initGMQL("gtf") |
42 | 42 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
43 | 43 |
#' input = readDataset(test_path) |
44 |
-#' CTCF_NORM_SCORE = project(input,metadata_update="normalized AS 1", |
|
45 |
-#' regions_update="new_score AS (score / 1000.0) + 100" , regions=c("score"),all_but_reg=T,) |
|
44 |
+#' CTCF_NORM_SCORE = project(input,metadata_update="normalized AS 1", regions_update="new_score AS (score / 1000.0) + 100" , regions=c("score"), all_but_reg=TRUE) |
|
46 | 45 |
#' |
47 | 46 |
#' |
48 | 47 |
#' \dontrun{ |
49 |
-#' ### it produces an output dataset that contains the same samples as the input dataset. |
|
50 |
-#' Each output sample only contains, as region attributes, |
|
51 |
-#' the four basic coordinates (chr, left, right, strand) and the specified region attributes |
|
52 |
-#' 'variant_classification' and 'variant_type', and as metadata attributes only the specified ones, |
|
53 |
-#' i.e. manually_curated__tissue_status and manually_curated__tumor_tag. |
|
48 |
+#' |
|
49 |
+#' ## it produces an output dataset that contains the same samples as the input dataset. |
|
50 |
+#' ## Each output sample only contains, as region attributes, |
|
51 |
+#' ## the four basic coordinates (chr, left, right, strand) and the specified region attributes |
|
52 |
+#' ## 'variant_classification' and 'variant_type', and as metadata attributes only the specified ones, |
|
53 |
+#' ## i.e. manually_curated__tissue_status and manually_curated__tumor_tag. |
|
54 | 54 |
#' |
55 | 55 |
#' initGMQL("gtf") |
56 | 56 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
... | ... |
@@ -76,6 +76,8 @@ project <-function(input_data, metadata = NULL,metadata_update=NULL,all_but_meta |
76 | 76 |
|
77 | 77 |
if(length(metadata)==0) |
78 | 78 |
metadata <- scalaNull("Array[String]") |
79 |
+ |
|
80 |
+ metadata <- (I(as.character(metadata))) |
|
79 | 81 |
} |
80 | 82 |
else |
81 | 83 |
metadata <- scalaNull("Array[String]") |
... | ... |
@@ -90,6 +92,9 @@ project <-function(input_data, metadata = NULL,metadata_update=NULL,all_but_meta |
90 | 92 |
|
91 | 93 |
if(length(regions)==0) |
92 | 94 |
regions <- scalaNull("Array[String]") |
95 |
+ |
|
96 |
+ regions <- (I(as.character(regions))) |
|
97 |
+ |
|
93 | 98 |
} |
94 | 99 |
else |
95 | 100 |
regions <- scalaNull("Array[String]") |
... | ... |
@@ -68,6 +68,8 @@ initGMQL <- function(output_format="gtf", remote_processing = FALSE) |
68 | 68 |
#' and override value is FALSE an error occures. |
69 | 69 |
#' useful only in remote processing |
70 | 70 |
#' |
71 |
+#' @importFrom methods is |
|
72 |
+#' |
|
71 | 73 |
#' @return DAGgraph class object. It contains the value associated to the graph used |
72 | 74 |
#' as input for the subsequent GMQL function |
73 | 75 |
#' |
... | ... |
@@ -158,17 +160,16 @@ readDataset <- function(dataset, parser = "CustomParser",is_local=TRUE,url=NULL, |
158 | 160 |
#' |
159 | 161 |
#' Read a GrangesList saving in scala memory that can be referenced in R |
160 | 162 |
#' |
163 |
+#' |
|
164 |
+#' @importFrom S4Vectors metadata |
|
161 | 165 |
#' @param samples GrangesList |
166 |
+#' |
|
162 | 167 |
#' |
163 | 168 |
#' @return DAGgraph class object. It contains the value associated to the graph used |
164 | 169 |
#' as input for the subsequent GMQL function |
165 | 170 |
#' |
166 | 171 |
#' @examples |
167 |
-#' |
|
168 |
-#' \dontrun{ |
|
169 |
-#' |
|
170 |
-#' } |
|
171 |
-#' "" |
|
172 |
+#' "prova prova" |
|
172 | 173 |
#' |
173 | 174 |
#' @export |
174 | 175 |
#' |
... | ... |
@@ -177,7 +178,7 @@ read <- function(samples) |
177 | 178 |
if(!is(samples,"GRangesList")) |
178 | 179 |
stop("only GrangesList") |
179 | 180 |
|
180 |
- meta <- metadata(samples) |
|
181 |
+ meta <- S4Vectors::metadata(samples) |
|
181 | 182 |
if(is.null(meta)) { |
182 | 183 |
warning("GrangesList has no metadata. we provide two metadata for you") |
183 | 184 |
meta_matrix <- matrix(c("Provider","Polimi", "Application", "R-GMQL"),ncol = 2,byrow = TRUE) |
... | ... |
@@ -36,7 +36,7 @@ |
36 | 36 |
#' @examples |
37 | 37 |
#' |
38 | 38 |
#' ## it selects from input data samples of patients younger than 70 years old, |
39 |
-#' based on filtering on sample metadata attribute Patient_age |
|
39 |
+#' ## based on filtering on sample metadata attribute Patient_age |
|
40 | 40 |
#' |
41 | 41 |
#' initGMQL("gtf") |
42 | 42 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
... | ... |
@@ -108,6 +108,7 @@ select <- function(input_data, predicate = NULL, region_predicate = NULL, semi_j |
108 | 108 |
|
109 | 109 |
join_condition_matrix <- .join_condition(semi_join) |
110 | 110 |
} |
111 |
+ |
|
111 | 112 |
out <- WrappeR$select(predicate,region_predicate,join_condition_matrix,semi_join_dataset, |
112 | 113 |
semi_join_negation,input_data$value) |
113 | 114 |
if(grepl("No",out,ignore.case = TRUE) || grepl("expected",out,ignore.case = TRUE)) |
... | ... |
@@ -23,16 +23,16 @@ |
23 | 23 |
#' @references \url{http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/doc/GMQLUserTutorial.pdf} |
24 | 24 |
#' |
25 | 25 |
#' @examples |
26 |
-#' ### it creates a dataset called full which contains all samples from the datasets |
|
27 |
-#' data1 and data2 whose schema is defined by merging data1 and data2 dataset schemas |
|
28 |
-#' (union of all the attributes present in the two input datasets). |
|
26 |
+#' ## it creates a dataset called full which contains all samples from the datasets |
|
27 |
+#' ## data1 and data2 whose schema is defined by merging data1 and data2 dataset schemas |
|
28 |
+#' ## (union of all the attributes present in the two input datasets). |
|
29 | 29 |
#' |
30 | 30 |
#' initGMQL("gtf") |
31 | 31 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
32 | 32 |
#' test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
33 | 33 |
#' data1 = readDataset(test_path) |
34 | 34 |
#' data2 = readDataset(test_path2) |
35 |
-#' full = union(r2,r) |
|
35 |
+#' full = union(data1,data2) |
|
36 | 36 |
#' |
37 | 37 |
#' |
38 | 38 |
#' @export |
... | ... |
@@ -31,26 +31,26 @@ |
31 | 31 |
} |
32 | 32 |
|
33 | 33 |
# aggregates factory |
34 |
-.aggregates <- function(metadata,class) |
|
34 |
+.aggregates <- function(meta_data,class) |
|
35 | 35 |
{ |
36 |
- if(!is.list(metadata)) |
|
37 |
- stop("metadata: invalid input") |
|
36 |
+ if(!is.list(meta_data)) |
|
37 |
+ stop("meta_data: invalid input") |
|
38 | 38 |
|
39 |
- if(!all(sapply(metadata, function(x) is(x,class)))) |
|
39 |
+ if(!all(sapply(meta_data, function(x) is(x,class)))) |
|
40 | 40 |
stop("All elements must be META_OPERATOR object") |
41 | 41 |
|
42 |
- names <- names(metadata) |
|
42 |
+ names <- names(meta_data) |
|
43 | 43 |
if(is.null(names)) |
44 | 44 |
{ |
45 | 45 |
warning("You did not assign a names to a list.\nWe build names for you") |
46 |
- names <- sapply(metadata, take_value.META_OPERATOR) |
|
46 |
+ names <- sapply(meta_data, take_value.META_OPERATOR) |
|
47 | 47 |
} |
48 | 48 |
else |
49 | 49 |
{ |
50 | 50 |
if("" %in% names) |
51 | 51 |
stop("No partial names assignment is allowed") |
52 | 52 |
} |
53 |
- aggregate_matrix <- t(sapply(metadata, function(x) { |
|
53 |
+ aggregate_matrix <- t(sapply(meta_data, function(x) { |
|
54 | 54 |
|
55 | 55 |
new_value = as.character(x) |
56 | 56 |
matrix <- matrix(new_value) |
... | ... |
@@ -34,13 +34,6 @@ if(getRversion() >= "3.1.0") |
34 | 34 |
#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
35 | 35 |
#' login.GMQL(PolimiUrl) |
36 | 36 |
#' |
37 |
-#' \dontrun{ |
|
38 |
-#' |
|
39 |
-#' ### login with username and password |
|
40 |
-#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
41 |
-#' login.GMQL(PolimiUrl,"test101","test") |
|
42 |
-#' |
|
43 |
-#' } |
|
44 | 37 |
#' @export |
45 | 38 |
#' |
46 | 39 |
login.GMQL <- function(url,username = NULL, password = NULL) |
... | ... |
@@ -100,13 +93,6 @@ login.GMQL <- function(url,username = NULL, password = NULL) |
100 | 93 |
#' login.GMQL(PolimiUrl) |
101 | 94 |
#' logout.GMQL(PolimiUrl) |
102 | 95 |
#' |
103 |
-#' \dontrun{ |
|
104 |
-#' ##### login with username and password, then logout |
|
105 |
-#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
106 |
-#' login.GMQL(PolimiUrl,"test101","test") |
|
107 |
-#' logout.GMQL(PolimiUrl) |
|
108 |
-#' } |
|
109 |
-#' |
|
110 | 96 |
#' @return None |
111 | 97 |
#' |
112 | 98 |
#' @export |
... | ... |
@@ -156,8 +142,8 @@ logout.GMQL <- function(url) |
156 | 142 |
#' |
157 | 143 |
#' @examples |
158 | 144 |
#' |
159 |
-#' ##### this user already exist, it's a test account |
|
160 |
-#' ##### don't use it |
|
145 |
+#' ### this user already exist, it's a test account, don't use it!!! |
|
146 |
+#' |
|
161 | 147 |
#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
162 | 148 |
#' register.GMQL(url = PolimiUrl,"jonh","Doe","jonh@doe.com","JD","JD46") |
163 | 149 |
#' |
... | ... |
@@ -104,7 +104,7 @@ DEF <- function(value) |
104 | 104 |
#' |
105 | 105 |
#' #### select with condition |
106 | 106 |
#' #### the first and the third attribute are DEF the second one is EXACT |
107 |
-#' s = select(input_data = r, semi_join = list("cell_type",EXACT("cell"),attribute_tag), semi_join_dataset = r) |
|
107 |
+#' s = select(input_data = r, semi_join = list("cell_type",EXACT("cell"),"attribute_tag"), semi_join_dataset = r) |
|
108 | 108 |
#' |
109 | 109 |
#' \dontrun{ |
110 | 110 |
#' |
... | ... |
@@ -152,7 +152,7 @@ EXACT <- function(value) |
152 | 152 |
#' |
153 | 153 |
#' #### select with condition |
154 | 154 |
#' #### the first and the third attribute are DEF the second one is FULL |
155 |
-#' s = select(input_data = r, semi_join = list("cell_type",FULL("cell"),attribute_tag), semi_join_dataset = c) |
|
155 |
+#' s = select(input_data = r, semi_join = list("cell_type",FULL("cell"),"attribute_tag"), semi_join_dataset = c) |
|
156 | 156 |
#' |
157 | 157 |
#' \dontrun{ |
158 | 158 |
#' |
... | ... |
@@ -23,7 +23,8 @@ |
23 | 23 |
#' @examples |
24 | 24 |
#' |
25 | 25 |
#' #### show dataset when logged as guest |
26 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
26 |
+#' |
|
27 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
27 | 28 |
#' login.GMQL(url = PolimiUrl) |
28 | 29 |
#' list <- showDatasets(PolimiUrl) |
29 | 30 |
#' |
... | ... |
@@ -72,7 +73,7 @@ showDatasets <- function(url) |
72 | 73 |
#' |
73 | 74 |
#' @examples |
74 | 75 |
#' |
75 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
76 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
76 | 77 |
#' login.GMQL(url = PolimiUrl) |
77 | 78 |
#' list <- showSamplesFromDataset(PolimiUrl,"public.GRCh38_ENCODE_BROAD_MAY_2017") |
78 | 79 |
#' |
... | ... |
@@ -120,7 +121,7 @@ showSamplesFromDataset <- function(url,datasetName) |
120 | 121 |
#' @examples |
121 | 122 |
#' |
122 | 123 |
#' ### show schema of public dataset |
123 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
124 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
124 | 125 |
#' login.GMQL(url = PolimiUrl) |
125 | 126 |
#' list <- showSchemaFromDataset(PolimiUrl,"public.GRCh38_ENCODE_BROAD_MAY_2017") |
126 | 127 |
#' |
... | ... |
@@ -174,7 +175,7 @@ showSchemaFromDataset <- function(url,datasetName) |
174 | 175 |
#' |
175 | 176 |
#' ### upload of GMQL dataset with no schema selection |
176 | 177 |
#' test_path <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
177 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
178 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
178 | 179 |
#' login.GMQL(url = PolimiUrl) |
179 | 180 |
#' uploadSamples(PolimiUrl,"dataset1",folderPath = test_path) |
180 | 181 |
#' } |
... | ... |
@@ -253,10 +254,13 @@ uploadSamples <- function(url,datasetName,folderPath,schemaName=NULL,isGMQL=TRUE |
253 | 254 |
#' @examples |
254 | 255 |
#' |
255 | 256 |
#' \dontrun{ |
256 |
-#' |
|
257 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
258 |
-#' login.GMQL(url = PolimiUrl,"test101","test") |
|
257 |
+#' |
|
258 |
+#' ### this dataset does not exist |
|
259 |
+#' |
|
260 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
261 |
+#' login.GMQL(url = PolimiUrl) |
|
259 | 262 |
#' deleteDataset(PolimiUrl,"job_test1_test101_20170604_180908_RESULT_DS") |
263 |
+#' |
|
260 | 264 |
#' } |
261 | 265 |
#' |
262 | 266 |
#' @export |
... | ... |
@@ -297,9 +301,11 @@ deleteDataset <- function(url,datasetName) |
297 | 301 |
#' @examples |
298 | 302 |
#' |
299 | 303 |
#' #### download dataset in r working directory |
300 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
301 |
-#' login.GMQL(url = PolimiUrl,"test101","test") |
|
302 |
-#' downloadDataset(PolimiUrl,"dataset_test",path = getwd()) |
|
304 |
+#' #### in this case we try to download public dataset |
|
305 |
+#' |
|
306 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
307 |
+#' login.GMQL(url = PolimiUrl) |
|
308 |
+#' downloadDataset(PolimiUrl,"public.HG19_BED_ANNOTATION",path = getwd()) |
|
303 | 309 |
#' |
304 | 310 |
#' @export |
305 | 311 |
#' |
... | ... |
@@ -313,11 +319,13 @@ downloadDataset <- function(url,datasetName,path = getwd()) |
313 | 319 |
#print(content$result) |
314 | 320 |
content <- httr::content(req) |
315 | 321 |
if(req$status_code !=200) |
316 |
- stop(content) |
|
317 |
- |
|
318 |
- zip_path = paste0(path,"/",datasetName,".zip") |
|
319 |
- writeBin(content,zip_path) |
|
320 |
- print("Download Complete") |
|
322 |
+ print(content) |
|
323 |
+ else |
|
324 |
+ { |
|
325 |
+ zip_path = paste0(path,"/",datasetName,".zip") |
|
326 |
+ writeBin(content,zip_path) |
|
327 |
+ print("Download Complete") |
|
328 |
+ } |
|
321 | 329 |
} |
322 | 330 |
|
323 | 331 |
#' Download Dataset in GrangesList |
... | ... |
@@ -340,11 +348,13 @@ downloadDataset <- function(url,datasetName,path = getwd()) |
340 | 348 |
#' |
341 | 349 |
#' @examples |
342 | 350 |
#' |
343 |
-#' #### create grangeslist from dataset in repository |
|
344 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
345 |
-#' login.GMQL(url = PolimiUrl,"test101","test") |
|
346 |
-#' downloadDatasetToGrangesList(PolimiUrl,"dataset_test") |
|
347 |
-#' |
|
351 |
+#' \dontrun{ |
|
352 |
+#' #### create grangeslist from public dataset HG19_BED_ANNOTATION got from repository |
|
353 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
354 |
+#' login.GMQL(url = PolimiUrl) |
|
355 |
+#' downloadDatasetToGrangesList(PolimiUrl,"public.HG19_BED_ANNOTATION") |
|
356 |
+#' } |
|
357 |
+#' |
|
348 | 358 |
#' @export |
349 | 359 |
#' |
350 | 360 |
downloadDatasetToGrangesList <- function(url,datasetName) |
... | ... |
@@ -396,9 +406,9 @@ downloadDatasetToGrangesList <- function(url,datasetName) |
396 | 406 |
#' @examples |
397 | 407 |
#' |
398 | 408 |
#' ## download metadata with real test login |
399 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
400 |
-#' login.GMQL(url = PolimiUrl,"test101","test") |
|
401 |
-#' metadataFromSample(PolimiUrl,"job_test1_test101_20170604_180908_RESULT_DS","S_00000") |
|
409 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
410 |
+#' login.GMQL(url = PolimiUrl) |
|
411 |
+#' metadataFromSample(PolimiUrl,"public.HG19_BED_ANNOTATION","genes") |
|
402 | 412 |
#' |
403 | 413 |
#' @export |
404 | 414 |
#' |
... | ... |
@@ -448,10 +458,12 @@ metadataFromSample <- function(url, datasetName,sampleName) |
448 | 458 |
#' |
449 | 459 |
#' @examples |
450 | 460 |
#' |
451 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
452 |
-#' login.GMQL(url = PolimiUrl,"test101","test") |
|
453 |
-#' regionFromSample(PolimiUrl,"job_test1_test101_20170604_180908_RESULT_DS","S_00000") |
|
454 |
-#' |
|
461 |
+#' |
|
462 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
463 |
+#' login.GMQL(url = PolimiUrl) |
|
464 |
+#' regionFromSample(PolimiUrl,"public.HG19_BED_ANNOTATION","genes") |
|
465 |
+#' |
|
466 |
+#' |
|
455 | 467 |
#' @export |
456 | 468 |
#' |
457 | 469 |
regionFromSample <- function(url, datasetName,sampleName) |
... | ... |
@@ -466,7 +478,7 @@ regionFromSample <- function(url, datasetName,sampleName) |
466 | 478 |
else |
467 | 479 |
{ |
468 | 480 |
list <- showSchemaFromDataset(url,datasetName) |
469 |
- schema_type <- list$schemaType |
|
481 |
+ schema_type <- list$type |
|
470 | 482 |
|
471 | 483 |
temp <- tempfile("temp") #use temporary files |
472 | 484 |
write.table(content,temp,quote = FALSE,sep = '\t',col.names = FALSE,row.names = FALSE) |
... | ... |
@@ -478,9 +490,15 @@ regionFromSample <- function(url, datasetName,sampleName) |
478 | 490 |
name <- x$name |
479 | 491 |
}) |
480 | 492 |
df <- data.table::fread(temp,header = FALSE,sep = "\t") |
493 |
+ a <- df[1,2] |
|
494 |
+ if(is.na(as.numeric(a))) |
|
495 |
+ df <- df[-1] |
|
481 | 496 |
data.table::setnames(df,vector_field) |
482 |
- samples <- GenomicRanges::makeGRangesFromDataFrame(df,keep.extra.columns = TRUE,start.field = "left",end.field = "right") |
|
483 |
- } |
|
497 |
+ samples <- GenomicRanges::makeGRangesFromDataFrame(df,keep.extra.columns = TRUE, |
|
498 |
+ start.field = "left", |
|
499 |
+ end.field = "right", |
|
500 |
+ strand.field="strand") |
|
501 |
+ } |
|
484 | 502 |
unlink(temp) |
485 | 503 |
return(samples) |
486 | 504 |
} |
... | ... |
@@ -53,17 +53,17 @@ check.DISTAL <- function(value) |
53 | 53 |
#' @examples |
54 | 54 |
#' |
55 | 55 |
#' ### Given a dataset HM and one called TSS with a sample including Transcription Start Site annotations, |
56 |
-#' it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
57 |
-#' and takes the first/closest one for each TSS, |
|
58 |
-#' provided that such distance is lesser than 120K bases and joined TSS and HM samples are obtained |
|
59 |
-#' from the same provider (joinby clause). |
|
56 |
+#' ## it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
57 |
+#' ## and takes the first/closest one for each TSS, |
|
58 |
+#' ## provided that such distance is lesser than 120K bases and joined TSS and HM samples are obtained |
|
59 |
+#' ## from the same provider (joinby clause). |
|
60 | 60 |
#' |
61 | 61 |
#' initGMQL("gtf") |
62 | 62 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
63 | 63 |
#' test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
64 | 64 |
#' TSS = readDataset(test_path) |
65 | 65 |
#' HM = readDataset(test_path2) |
66 |
-#' join_data = join(TSS,HM,genometric_predicate=list(list(MD("1"),DLE("120000"))),c("provider"),region_output="RIGHT") |
|
66 |
+#' join_data = join(TSS,HM,genometric_predicate=list(list(MD(1),DLE(120000))),c("provider"),region_output="RIGHT") |
|
67 | 67 |
#' |
68 | 68 |
#' |
69 | 69 |
#' @export |
... | ... |
@@ -95,18 +95,18 @@ DLE <- function(value) |
95 | 95 |
#' |
96 | 96 |
#' @examples |
97 | 97 |
#' |
98 |
-#' ### Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
|
99 |
-#' it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
100 |
-#' and takes the first/closest one for each TSS, |
|
101 |
-#' provided that such distance is greater than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
102 |
-#' from the same provider (joinby clause). |
|
98 |
+#' ## Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
|
99 |
+#' ## it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
100 |
+#' ## and takes the first/closest one for each TSS, |
|
101 |
+#' ## provided that such distance is greater than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
102 |
+#' ## from the same provider (joinby clause). |
|
103 | 103 |
#' |
104 |
-#' #' initGMQL("gtf") |
|
104 |
+#' initGMQL("gtf") |
|
105 | 105 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
106 | 106 |
#' test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
107 | 107 |
#' TSS = readDataset(test_path) |
108 | 108 |
#' HM = readDataset(test_path2) |
109 |
-#' join_data = join(tss,hm,genometric_predicate=list(list(MD("1"),DGE("120000"))),c("provider"),region_output="RIGHT") |
|
109 |
+#' join_data = join(TSS,HM,genometric_predicate=list(list(MD(1),DGE(120000))),c("provider"),region_output="RIGHT") |
|
110 | 110 |
#' |
111 | 111 |
#' @export |
112 | 112 |
#' |
... | ... |
@@ -141,19 +141,19 @@ DGE <- function(value) |
141 | 141 |
#' |
142 | 142 |
#' @examples |
143 | 143 |
#' |
144 |
-#' HM_TSS = JOIN(MD(1), DLE(120000); output: RIGHT; joinby: provider) TSS HM; |
|
144 |
+#' |
|
145 | 145 |
#' ### Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
146 |
-#' it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
147 |
-#' and takes the first/closest one for each TSS, |
|
148 |
-#' provided that such distance is greater than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
149 |
-#' from the same provider (joinby clause). |
|
146 |
+#' ## it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
147 |
+#' ## and takes the first/closest one for each TSS, |
|
148 |
+#' ## provided that such distance is greater than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
149 |
+#' ## from the same provider (joinby clause). |
|
150 | 150 |
#' |
151 |
-#' #' initGMQL("gtf") |
|
151 |
+#' initGMQL("gtf") |
|
152 | 152 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
153 | 153 |
#' test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
154 | 154 |
#' TSS = readDataset(test_path) |
155 | 155 |
#' HM = readDataset(test_path2) |
156 |
-#' join_data = join(tss,hm,genometric_predicate=list(list(MD("1"),DGE("120000"))),c("provider"),region_output="RIGHT") |
|
156 |
+#' join_data = join(TSS,HM,genometric_predicate=list(list(MD(1),DGE(120000))),c("provider"),region_output="RIGHT") |
|
157 | 157 |
#' |
158 | 158 |
#' @export |
159 | 159 |
#' |
... | ... |
@@ -187,19 +187,19 @@ MD <- function(value) |
187 | 187 |
#' |
188 | 188 |
#' @examples |
189 | 189 |
#' |
190 |
-#' HM_TSS = JOIN(MD(1), DLE(120000); output: RIGHT; joinby: provider) TSS HM; |
|
190 |
+#' |
|
191 | 191 |
#' ### Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
192 |
-#' it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
193 |
-#' and takes the first/closest one for each TSS, |
|
194 |
-#' provided that such distance is greater than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
195 |
-#' from the same provider (joinby clause). |
|
192 |
+#' ## it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
193 |
+#' ## and takes the first/closest one for each TSS, |
|
194 |
+#' ## provided that such distance is greater than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
195 |
+#' ## from the same provider (joinby clause). |
|
196 | 196 |
#' |
197 |
-#' #' initGMQL("gtf") |
|
197 |
+#' initGMQL("gtf") |
|
198 | 198 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
199 | 199 |
#' test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
200 | 200 |
#' TSS = readDataset(test_path) |
201 | 201 |
#' HM = readDataset(test_path2) |
202 |
-#' join_data = join(tss,hm,genometric_predicate=list(list(MD("1"),DGE("120000"),UP)),c("provider"),region_output="RIGHT") |
|
202 |
+#' join_data = join(TSS,HM,genometric_predicate=list(list(MD(1),DGE(120000),UP())),c("provider"),region_output="RIGHT") |
|
203 | 203 |
#' |
204 | 204 |
#' @export |
205 | 205 |
#' |
... | ... |
@@ -232,19 +232,19 @@ as.character.UP <- function(obj) { |
232 | 232 |
#' |
233 | 233 |
#' @examples |
234 | 234 |
#' |
235 |
-#' HM_TSS = JOIN(MD(1), DLE(120000); output: RIGHT; joinby: provider) TSS HM; |
|
235 |
+#' |
|
236 | 236 |
#' ### Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
237 |
-#' it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
238 |
-#' and takes the first/closest one for each TSS, |
|
239 |
-#' provided that such distance is greater than 12K bases and joined 'tss' and 'hm' samples are obtained |
|
240 |
-#' from the same provider (joinby clause). |
|
237 |
+#' ## it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
238 |
+#' ## and takes the first/closest one for each TSS, |
|
239 |
+#' ## provided that such distance is greater than 12K bases and joined 'tss' and 'hm' samples are obtained |
|
240 |
+#' ## from the same provider (joinby clause). |
|
241 | 241 |
#' |
242 |
-#' #' initGMQL("gtf") |
|
242 |
+#' initGMQL("gtf") |
|
243 | 243 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
244 | 244 |
#' test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
245 | 245 |
#' TSS = readDataset(test_path) |
246 | 246 |
#' HM = readDataset(test_path2) |
247 |
-#' join_data = join(tss,hm,genometric_predicate=list(list(MD("1"),DGE("12000"),DOWN)),c("provider"),region_output="RIGHT") |
|
247 |
+#' join_data = join(TSS,HM,genometric_predicate=list(list(MD(1),DGE(12000),DOWN())),c("provider"),region_output="RIGHT") |
|
248 | 248 |
#' |
249 | 249 |
#' |
250 | 250 |
#' @export |
... | ... |
@@ -83,9 +83,9 @@ take_value.META_OPERATOR <- function(obj){ |
83 | 83 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
84 | 84 |
#' exp = readDataset(test_path) |
85 | 85 |
#' |
86 |
-#' ### This statement copies all samples of exp into res dataset, and then calculates new |
|
87 |
-#' metadata attributes for each of them: sum_score is the sum of score of the sample regions. |
|
88 |
-#' res = extend(input_data = exp, list(sum_score = SUM(score)) |
|
86 |
+#' ## This statement copies all samples of exp into res dataset, and then calculates new |
|
87 |
+#' ## metadata attributes for each of them: sum_score is the sum of score of the sample regions. |
|
88 |
+#' res = extend(input_data = exp, list(sum_score = SUM("score"))) |
|
89 | 89 |
#' |
90 | 90 |
#' @export |
91 | 91 |
#' |
... | ... |
@@ -123,9 +123,9 @@ SUM <- function(value) |
123 | 123 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
124 | 124 |
#' exp = readDataset(test_path) |
125 | 125 |
#' |
126 |
-#' ### This statement copies all samples of exp into res dataset, and then calculates new |
|
127 |
-#' metadata attributes for each of them: MinP is the minimum pvalue of the sample regions. |
|
128 |
-#' res = extend(input_data = exp, list(minP = MIN(pvalue)) |
|
126 |
+#' ## This statement copies all samples of exp into res dataset, and then calculates new |
|
127 |
+#' ## metadata attributes for each of them: MinP is the minimum pvalue of the sample regions. |
|
128 |
+#' res = extend(input_data = exp, list(minP = MIN("pvalue"))) |
|
129 | 129 |
#' |
130 | 130 |
#' @export |
131 | 131 |
#' |
... | ... |
@@ -163,9 +163,9 @@ MIN <- function(value) |
163 | 163 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
164 | 164 |
#' exp = readDataset(test_path) |
165 | 165 |
#' |
166 |
-#' ### This statement copies all samples of exp into res dataset, and then calculates new |
|
167 |
-#' metadata attributes for each of them: max_score is the maximum score of the sample regions. |
|
168 |
-#' res = extend(input_data = exp, list(max_score = MAX(score)) |
|
166 |
+#' ## This statement copies all samples of exp into res dataset, and then calculates new |
|
167 |
+#' ## metadata attributes for each of them: max_score is the maximum score of the sample regions. |
|
168 |
+#' res = extend(input_data = exp, list(max_score = MAX("score"))) |
|
169 | 169 |
#' |
170 | 170 |
#' |
171 | 171 |
#' @export |
... | ... |
@@ -204,10 +204,10 @@ MAX <- function(value) |
204 | 204 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
205 | 205 |
#' exp = readDataset(test_path) |
206 | 206 |
#' |
207 |
-#' ### The following cover operation produces output regions where at least 2 and at most 3 regions of |
|
208 |
-#' exp overlap, having as resulting region attributes the avg signal of the overlapping regions; |
|
209 |
-#' the result has one sample for each input cell. |
|
210 |
-#' res = cover(input_data = exp,2,3, c("cell"), list(avg_signal = AVG(signal))) |
|
207 |
+#' ## The following cover operation produces output regions where at least 2 and at most 3 regions of |
|
208 |
+#' ## exp overlap, having as resulting region attributes the avg signal of the overlapping regions; |
|
209 |
+#' ## the result has one sample for each input cell. |
|
210 |
+#' res = cover(input_data = exp,2,3, c("cell"), list(avg_signal = AVG("signal"))) |
|
211 | 211 |
#' |
212 | 212 |
#' @export |
213 | 213 |
#' |
... | ... |
@@ -246,10 +246,10 @@ AVG <- function(value) |
246 | 246 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
247 | 247 |
#' data = readDataset(test_path) |
248 | 248 |
#' |
249 |
-#' ### copies all samples of DATA into OUT dataset, and then for each of them adds another |
|
250 |
-#' metadata attribute, allScores, which is the aggregation comma-separated list of all the |
|
251 |
-#' distinct values that the attribute score takes in the sample. |
|
252 |
-#' out = extend(input_data = data, list(allScore = BAG("score")) |
|
249 |
+#' ## copies all samples of DATA into OUT dataset, and then for each of them adds another |
|
250 |
+#' ## metadata attribute, allScores, which is the aggregation comma-separated list of all the |
|
251 |
+#' ## distinct values that the attribute score takes in the sample. |
|
252 |
+#' out = extend(input_data = data, list(allScore = BAG("score"))) |
|
253 | 253 |
#' |
254 | 254 |
#' @export |
255 | 255 |
#' |
... | ... |
@@ -280,14 +280,14 @@ BAG <- function(value) |
280 | 280 |
#' |
281 | 281 |
#' @examples |
282 | 282 |
#' |
283 |
-#' ### local with CustomParser |
|
283 |
+#' ## local with CustomParser |
|
284 | 284 |
#' initGMQL("gtf") |
285 | 285 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
286 | 286 |
#' exp = readDataset(test_path) |
287 | 287 |
#' |
288 |
-#' ### counts the regions in each sample and stores their number as value of the new metadata |
|
289 |
-#' RegionCount attribute of the sample. |
|
290 |
-#' out = extend(input_data = exp, list(RegionCount = COUNT()) |
|
288 |
+#' ## counts the regions in each sample and stores their number as value of the new metadata |
|
289 |
+#' ## RegionCount attribute of the sample. |
|
290 |
+#' out = extend(input_data = exp, list(RegionCount = COUNT())) |
|
291 | 291 |
#' |
292 | 292 |
#' @export |
293 | 293 |
#' |
... | ... |
@@ -326,9 +326,9 @@ check.COUNT <- function(obj){} |
326 | 326 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
327 | 327 |
#' exp = readDataset(test_path) |
328 | 328 |
#' |
329 |
-#' ### This statement copies all samples of exp into res dataset, and then calculates new |
|
330 |
-#' metadata attributes for each of them: std_score is the standard deviation score of the sample regions. |
|
331 |
-#' res = extend(input_data = exp, list(std_score = STD(score)) |
|
329 |
+#' ## This statement copies all samples of exp into res dataset, and then calculates new |
|
330 |
+#' ## metadata attributes for each of them: std_score is the standard deviation score of the sample regions. |
|
331 |
+#' res = extend(input_data = exp, list(std_score = STD("score"))) |
|
332 | 332 |
#' |
333 | 333 |
#' @export |
334 | 334 |
#' |
... | ... |
@@ -366,9 +366,9 @@ STD <- function(value) |
366 | 366 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
367 | 367 |
#' exp = readDataset(test_path) |
368 | 368 |
#' |
369 |
-#' ### This statement copies all samples of exp into res dataset, and then calculates new |
|
370 |
-#' metadata attributes for each of them: m_score is the median score of the sample regions. |
|
371 |
-#' res = extend(input_data = exp, list(m_score = MEDIAN(score)) |
|
369 |
+#' ## This statement copies all samples of exp into res dataset, and then calculates new |
|
370 |
+#' ## metadata attributes for each of them: m_score is the median score of the sample regions. |
|
371 |
+#' res = extend(input_data = exp, list(m_score = MEDIAN("score"))) |
|
372 | 372 |
#' |
373 | 373 |
#' @export |
374 | 374 |
#' |
... | ... |
@@ -406,9 +406,9 @@ MEDIAN <- function(value) |
406 | 406 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
407 | 407 |
#' exp = readDataset(test_path) |
408 | 408 |
#' |
409 |
-#' ### This statement copies all samples of exp into res dataset, and then calculates new |
|
410 |
-#' metadata attributes for each of them: q1_score is the first quartile of score of the sample regions. |
|
411 |
-#' res = extend(input_data = exp, list(q1_score = Q1(score)) |
|
409 |
+#' ## This statement copies all samples of exp into res dataset, and then calculates new |
|
410 |
+#' ## metadata attributes for each of them: q1_score is the first quartile of score of the sample regions. |
|
411 |
+#' res = extend(input_data = exp, list(q1_score = Q1("score"))) |
|
412 | 412 |
#' |
413 | 413 |
#' |
414 | 414 |
#' @export |
... | ... |
@@ -447,9 +447,9 @@ Q1 <- function(value) |
447 | 447 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
448 | 448 |
#' exp = readDataset(test_path) |
449 | 449 |
#' |
450 |
-#' ### This statement copies all samples of exp into res dataset, and then calculates new |
|
451 |
-#' metadata attributes for each of them: q2_score is the second quartile of score of the sample regions. |
|
452 |
-#' res = extend(input_data = exp, list(q2_score = Q2(score)) |
|
450 |
+#' ## This statement copies all samples of exp into res dataset, and then calculates new |
|
451 |
+#' ## metadata attributes for each of them: q2_score is the second quartile of score of the sample regions. |
|
452 |
+#' res = extend(input_data = exp, list(q2_score = Q2("score"))) |
|
453 | 453 |
#' |
454 | 454 |
#' @export |
455 | 455 |
#' |
... | ... |
@@ -487,9 +487,9 @@ Q2 <- function(value) |
487 | 487 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
488 | 488 |
#' exp = readDataset(test_path) |
489 | 489 |
#' |
490 |
-#' ### This statement copies all samples of exp into res dataset, and then calculates new |
|
491 |
-#' metadata attributes for each of them: q3_score is the third quartile of score of the sample regions. |
|
492 |
-#' res = extend(input_data = exp, list(q3_score = Q3(score)) |
|
490 |
+#' ## This statement copies all samples of exp into res dataset, and then calculates new |
|
491 |
+#' ## metadata attributes for each of them: q3_score is the third quartile of score of the sample regions. |
|
492 |
+#' res = extend(input_data = exp, list(q3_score = Q3("score"))) |
|
493 | 493 |
#' |
494 | 494 |
#' @export |
495 | 495 |
#' |
... | ... |
@@ -50,13 +50,13 @@ as.character.ORDER <- function(obj) { |
50 | 50 |
#' |
51 | 51 |
#' @examples |
52 | 52 |
#' |
53 |
-#' ### it orders the samples according to the Region_count metadata attribute and takes the two samples |
|
54 |
-#' that have the highest count. |
|
53 |
+#' ## it orders the samples according to the Region_count metadata attribute and takes the two samples |
|
54 |
+#' ## that have the highest count. |
|
55 | 55 |
#' |
56 | 56 |
#' initGMQL("gtf") |
57 | 57 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
58 | 58 |
#' r = readDataset(test_path) |
59 |
-#' o = order(r,list(DESC(Region_Count)), mtop = 2) |
|
59 |
+#' o = order(r,list(DESC("Region_Count")), mtop = 2) |
|
60 | 60 |
#' |
61 | 61 |
#' @export |
62 | 62 |
#' |
... | ... |
@@ -84,14 +84,14 @@ DESC <- function(value) |
84 | 84 |
#' |
85 | 85 |
#' @examples |
86 | 86 |
#' |
87 |
-#' ### it extracts the first 5 samples on the basis of their region counter |
|
88 |
-#' (those with the smaller RegionCount) and then, for each of them, |
|
89 |
-#' 7 regions on the basis of their mutation counter (those with the higher MutationCount). |
|
90 |
-#' |
|
87 |
+#' ## it get the first 5 samples on the basis of their region counter, |
|
88 |
+#' ## those with the smaller RegionCount and then for each of them, 7 regions on the basis of |
|
89 |
+#' ## their score, those with the higher score |
|
90 |
+#' |
|
91 | 91 |
#' initGMQL("gtf") |
92 | 92 |
#' test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
93 | 93 |
#' r = readDataset(test_path) |
94 |
-#' o = order(r,list(ASC(Region_Count)), mtop = 5,regions_ordering = list(DESC(MutationCount)),rtop=7) |
|
94 |
+#' o = order(r,list(ASC("Region_Count")), mtop = 5,regions_ordering = list(DESC("score")),rtop=7) |
|
95 | 95 |
#' |
96 | 96 |
#' @export |
97 | 97 |
#' |
... | ... |
@@ -19,7 +19,7 @@ |
19 | 19 |
#' |
20 | 20 |
#' @examples |
21 | 21 |
#' |
22 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
22 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
23 | 23 |
#' login.GMQL(PolimiUrl) |
24 | 24 |
#' list_jobs <- showJobs(PolimiUrl) |
25 | 25 |
#' |
... | ... |
@@ -58,7 +58,7 @@ showJobs <- function(url) |
58 | 58 |
#' |
59 | 59 |
#' \dontrun{ |
60 | 60 |
#' ## login with test user |
61 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
61 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
62 | 62 |
#' login.GMQL(PolimiUrl,"test101","test") |
63 | 63 |
#' ## list all jobs |
64 | 64 |
#' list_jobs <- showJobs(PolimiUrl) |
... | ... |
@@ -100,7 +100,7 @@ showJobLog <- function(url,job_id) |
100 | 100 |
#' @examples |
101 | 101 |
#' |
102 | 102 |
#' \dontrun{ |
103 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
103 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
104 | 104 |
#' login.GMQL(PolimiUrl,"test101","test") |
105 | 105 |
#' list_jobs <- showJobs(PolimiUrl) |
106 | 106 |
#' jobs_1 <- list_jobs$jobs[[1]] |
... | ... |
@@ -138,7 +138,7 @@ stopJob <- function(url,job_id) |
138 | 138 |
#' |
139 | 139 |
#' @examples |
140 | 140 |
#' \dontrun{ |
141 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
141 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
142 | 142 |
#' login.GMQL(PolimiUrl,"test101","test") |
143 | 143 |
#' list_jobs <- showJobs(PolimiUrl) |
144 | 144 |
#' jobs_1 <- list_jobs$jobs[[1]] |
... | ... |
@@ -183,7 +183,7 @@ traceJob <- function(url, job_id) |
183 | 183 |
#' |
184 | 184 |
#' @examples |
185 | 185 |
#' |
186 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
186 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
187 | 187 |
#' login.GMQL(PolimiUrl) |
188 | 188 |
#' runQuery(PolimiUrl, "query_1", "DATA_SET_VAR = SELECT() HG19_TCGA_dnaseq; |
189 | 189 |
#' MATERIALIZE DATA_SET_VAR INTO RESULT_DS;", output_gtf = FALSE) |
... | ... |
@@ -231,7 +231,7 @@ runQuery <- function(url,fileName,query,output_gtf = TRUE) |
231 | 231 |
#' |
232 | 232 |
#' ## run query: output GTF |
233 | 233 |
#' |
234 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
234 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
235 | 235 |
#' login.GMQL(PolimiUrl) |
236 | 236 |
#' test_path <- system.file("example",package = "GMQL") |
237 | 237 |
#' test_query <- file.path(test_path, "query1.txt") |
... | ... |
@@ -239,7 +239,6 @@ runQuery <- function(url,fileName,query,output_gtf = TRUE) |
239 | 239 |
#' |
240 | 240 |
#' ## run query: output GDM (tabulated) |
241 | 241 |
#' |
242 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
243 | 242 |
#' login.GMQL(PolimiUrl) |
244 | 243 |
#' test_path <- system.file("example",package = "GMQL") |
245 | 244 |
#' test_query <- file.path(test_path, "query1.txt") |
... | ... |
@@ -271,7 +270,7 @@ runQuery.fromfile <- function(url,fileName,filePath,output_gtf = TRUE) |
271 | 270 |
#' |
272 | 271 |
#' @examples |
273 | 272 |
#' |
274 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
273 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
275 | 274 |
#' login.GMQL(PolimiUrl) |
276 | 275 |
#' compileQuery(PolimiUrl, "DATA_SET_VAR = SELECT() HG19_TCGA_dnaseq; |
277 | 276 |
#' MATERIALIZE DATA_SET_VAR INTO RESULT_DS;") |
... | ... |
@@ -305,10 +304,9 @@ compileQuery <- function(url ,query) |
305 | 304 |
#' @details |
306 | 305 |
#' If error occures a specific error is printed |
307 | 306 |
#' |
308 |
-#' |
|
309 | 307 |
#' @examples |
310 | 308 |
#' |
311 |
-#' PolimiUrl = "http://genomic.elet.polimi.it/gmql-rest" |
|
309 |
+#' PolimiUrl = "http://130.186.13.219/gmql-rest" |
|
312 | 310 |
#' login.GMQL(PolimiUrl) |
313 | 311 |
#' test_path <- system.file("example",package = "GMQL") |
314 | 312 |
#' test_query <- file.path(test_path, "query1.txt") |
... | ... |
@@ -19,13 +19,13 @@ It define an ascending order for input value |
19 | 19 |
} |
20 | 20 |
\examples{ |
21 | 21 |
|
22 |
-### it extracts the first 5 samples on the basis of their region counter |
|
23 |
-(those with the smaller RegionCount) and then, for each of them, |
|
24 |
-7 regions on the basis of their mutation counter (those with the higher MutationCount). |
|
22 |
+## it get the first 5 samples on the basis of their region counter, |
|
23 |
+## those with the smaller RegionCount and then for each of them, 7 regions on the basis of |
|
24 |
+## their score, those with the higher score |
|
25 | 25 |
|
26 | 26 |
initGMQL("gtf") |
27 | 27 |
test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
28 | 28 |
r = readDataset(test_path) |
29 |
-o = order(r,list(ASC(Region_Count)), mtop = 5,regions_ordering = list(DESC(MutationCount)),rtop=7) |
|
29 |
+o = order(r,list(ASC("Region_Count")), mtop = 5,regions_ordering = list(DESC("score")),rtop=7) |
|
30 | 30 |
|
31 | 31 |
} |
... | ... |
@@ -25,10 +25,10 @@ initGMQL("gtf") |
25 | 25 |
test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
26 | 26 |
exp = readDataset(test_path) |
27 | 27 |
|
28 |
-### The following cover operation produces output regions where at least 2 and at most 3 regions of |
|
29 |
-exp overlap, having as resulting region attributes the avg signal of the overlapping regions; |
|
30 |
-the result has one sample for each input cell. |
|
31 |
-res = cover(input_data = exp,2,3, c("cell"), list(avg_signal = AVG(signal))) |
|
28 |
+## The following cover operation produces output regions where at least 2 and at most 3 regions of |
|
29 |
+## exp overlap, having as resulting region attributes the avg signal of the overlapping regions; |
|
30 |
+## the result has one sample for each input cell. |
|
31 |
+res = cover(input_data = exp,2,3, c("cell"), list(avg_signal = AVG("signal"))) |
|
32 | 32 |
|
33 | 33 |
} |
34 | 34 |
\seealso{ |
... | ... |
@@ -26,10 +26,10 @@ initGMQL("gtf") |
26 | 26 |
test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
27 | 27 |
data = readDataset(test_path) |
28 | 28 |
|
29 |
-### copies all samples of DATA into OUT dataset, and then for each of them adds another |
|
30 |
-metadata attribute, allScores, which is the aggregation comma-separated list of all the |
|
31 |
-distinct values that the attribute score takes in the sample. |
|
32 |
-out = extend(input_data = data, list(allScore = BAG("score")) |
|
29 |
+## copies all samples of DATA into OUT dataset, and then for each of them adds another |
|
30 |
+## metadata attribute, allScores, which is the aggregation comma-separated list of all the |
|
31 |
+## distinct values that the attribute score takes in the sample. |
|
32 |
+out = extend(input_data = data, list(allScore = BAG("score"))) |
|
33 | 33 |
|
34 | 34 |
} |
35 | 35 |
\seealso{ |
... | ... |
@@ -17,14 +17,14 @@ performing all the type conversion needed |
17 | 17 |
} |
18 | 18 |
\examples{ |
19 | 19 |
|
20 |
-### local with CustomParser |
|
20 |
+## local with CustomParser |
|
21 | 21 |
initGMQL("gtf") |
22 | 22 |
test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
23 | 23 |
exp = readDataset(test_path) |
24 | 24 |
|
25 |
-### counts the regions in each sample and stores their number as value of the new metadata |
|
26 |
-RegionCount attribute of the sample. |
|
27 |
-out = extend(input_data = exp, list(RegionCount = COUNT()) |
|
25 |
+## counts the regions in each sample and stores their number as value of the new metadata |
|
26 |
+## RegionCount attribute of the sample. |
|
27 |
+out = extend(input_data = exp, list(RegionCount = COUNT())) |
|
28 | 28 |
|
29 | 29 |
} |
30 | 30 |
\seealso{ |
... | ... |
@@ -19,12 +19,12 @@ It define a descending order for input value |
19 | 19 |
} |
20 | 20 |
\examples{ |
21 | 21 |
|
22 |
-### it orders the samples according to the Region_count metadata attribute and takes the two samples |
|
23 |
-that have the highest count. |
|
22 |
+## it orders the samples according to the Region_count metadata attribute and takes the two samples |
|
23 |
+## that have the highest count. |
|
24 | 24 |
|
25 | 25 |
initGMQL("gtf") |
26 | 26 |
test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
27 | 27 |
r = readDataset(test_path) |
28 |
-o = order(r,list(DESC(Region_Count)), mtop = 2) |
|
28 |
+o = order(r,list(DESC("Region_Count")), mtop = 2) |
|
29 | 29 |
|
30 | 30 |
} |
... | ... |
@@ -21,18 +21,18 @@ that their distance from the anchor region is greater than, or equal to, 'value' |
21 | 21 |
} |
22 | 22 |
\examples{ |
23 | 23 |
|
24 |
-### Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
|
25 |
-it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
26 |
-and takes the first/closest one for each TSS, |
|
27 |
-provided that such distance is greater than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
28 |
-from the same provider (joinby clause). |
|
24 |
+## Given a dataset 'hm' and one called 'tss' with a sample including Transcription Start Site annotations, |
|
25 |
+## it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
26 |
+## and takes the first/closest one for each TSS, |
|
27 |
+## provided that such distance is greater than 120K bases and joined 'tss' and 'hm' samples are obtained |
|
28 |
+## from the same provider (joinby clause). |
|
29 | 29 |
|
30 |
-#' initGMQL("gtf") |
|
30 |
+initGMQL("gtf") |
|
31 | 31 |
test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
32 | 32 |
test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
33 | 33 |
TSS = readDataset(test_path) |
34 | 34 |
HM = readDataset(test_path2) |
35 |
-join_data = join(tss,hm,genometric_predicate=list(list(MD("1"),DGE("120000"))),c("provider"),region_output="RIGHT") |
|
35 |
+join_data = join(TSS,HM,genometric_predicate=list(list(MD(1),DGE(120000))),c("provider"),region_output="RIGHT") |
|
36 | 36 |
|
37 | 37 |
} |
38 | 38 |
\seealso{ |
... | ... |
@@ -25,17 +25,17 @@ while DLE(0) searched for experiment regions adjacent to, or overlapping, the an |
25 | 25 |
\examples{ |
26 | 26 |
|
27 | 27 |
### Given a dataset HM and one called TSS with a sample including Transcription Start Site annotations, |
28 |
-it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
29 |
-and takes the first/closest one for each TSS, |
|
30 |
-provided that such distance is lesser than 120K bases and joined TSS and HM samples are obtained |
|
31 |
-from the same provider (joinby clause). |
|
28 |
+## it searches for those regions of hm that are at a minimal distance from a transcription start site (TSS) |
|
29 |
+## and takes the first/closest one for each TSS, |
|
30 |
+## provided that such distance is lesser than 120K bases and joined TSS and HM samples are obtained |
|
31 |
+## from the same provider (joinby clause). |
|
32 | 32 |
|
33 | 33 |
initGMQL("gtf") |
34 | 34 |
test_path <- system.file("example","DATA_SET_VAR_GTF",package = "GMQL") |
35 | 35 |
test_path2 <- system.file("example","DATA_SET_VAR_GDM",package = "GMQL") |
36 | 36 |
TSS = readDataset(test_path) |
37 | 37 |
HM = readDataset(test_path2) |
38 |
-join_data = join(TSS,HM,genometric_predicate=list(list(MD("1"),DLE("120000"))),c("provider"),region_output="RIGHT") |
|
38 |
+join_data = join(TSS,HM,genometric_predicate=list(list(MD(1),DLE(120000))),c("provider"),region_output="RIGHT") |
|
39 | 39 |
|