% Generated by roxygen2: do not edit by hand % Please edit documentation in R/S3Aggregates.R \name{AGGREGATES-Object} \alias{AGGREGATES-Object} \alias{SUM} \alias{COUNT} \alias{COUNTSAMP} \alias{MIN} \alias{MAX} \alias{AVG} \alias{MEDIAN} \alias{STD} \alias{BAG} \alias{BAGD} \alias{Q1} \alias{Q2} \alias{Q3} \title{AGGREGATES object class constructor} \usage{ SUM(value) COUNT() COUNTSAMP() MIN(value) MAX(value) AVG(value) MEDIAN(value) STD(value) BAG(value) BAGD(value) Q1(value) Q2(value) Q3(value) } \arguments{ \item{value}{string identifying name of metadata or region attribute} } \value{ Aggregate object } \description{ This class constructor is used to create instances of AGGREGATES object, to be used in GMQL functions that require aggregate on value. } \details{ \itemize{ \item{SUM: It prepares input parameter to be passed to the library function sum, performing all the type conversions needed } \item{COUNT: It prepares input parameter to be passed to the library function count, performing all the type conversions needed } \item{COUNTSAMP: It prepares input parameter to be passed to the library function countsamp, performing all the type conversions needed. It is used only with group_by functions} \item{MIN: It prepares input parameter to be passed to the library function minimum, performing all the type conversions needed } \item{MAX: It prepares input parameter to be passed to the library function maximum, performing all the type conversions needed } \item{AVG: It prepares input parameter to be passed to the library function mean, performing all the type conversions needed } \item{MEDIAN: It prepares input parameter to be passed to the library function median, performing all the type conversions needed } \item{STD: It prepares input parameter to be passed to the library function standard deviation, performing all the type conversions needed} \item{BAG: It prepares input parameter to be passed to the library function bag; this function creates comma-separated strings of attribute values, performing all the type conversions needed} \item{BAGD: It prepares input parameter to be passed to the library function bagd; this function creates comma-separated strings of distinct attribute values, performing all the type conversions needed} \item{Q1: It prepares input parameter to be passed to the library function fist quartile, performing all the type conversions needed} \item{Q2: It prepares input parameter to be passed to the library function second quartile, performing all the type conversions needed } \item{Q3: It prepares input parameter to be passed to the library function third quartile, performing all the type conversions needed } } } \examples{ ## This statement initializes and runs the GMQL server for local execution ## and creation of results on disk. Then, with system.file() it defines ## the path to the folder "DATASET" in the subdirectory "example" ## of the package "RGMQL" and opens such folder as a GMQL dataset ## named "exp" using CustomParser init_gmql() test_path <- system.file("example", "DATASET", package = "RGMQL") exp = read_gmql(test_path) ## This statement copies all samples of exp dataset into res dataset, and ## then calculates new metadata attribute sum_score for each of them: ## sum_score is the sum of score values of the sample regions. res = extend(exp, sum_score = SUM("score")) ## This statement copies all samples of exp dataset into res dataset, ## and then calculates new metadata attribute min_pvalue for each of them: ## min_pvalue is the minimum pvalue of the sample regions. res = extend(exp, min_pvalue = MIN("pvalue")) ## This statement copies all samples of exp dataset into res dataset, ## and then calculates new metadata attribute max_score for each of them: ## max_score is the maximum score of the sample regions. res = extend(exp, max_score = MAX("score")) ## The following cover operation produces output regions where at least 2 ## and at most 3 regions of exp dataset overlap, having as resulting region ## attribute the average signal of the overlapping regions; ## the result has one sample for each input cell value. res = cover(exp, 2, 3, groupBy = conds("cell"), avg_signal = AVG("signal")) ## This statement copies all samples of 'exp' dataset into 'out' dataset, ## and then for each of them it adds another metadata attribute, allScore, ## which is the aggregation comma-separated list of all the values ## that the region attribute score takes in the sample. out = extend(exp, allScore = BAG("score")) ## This statement counts the regions in each sample and stores their number ## as value of the new metadata RegionCount attribute of the sample. out = extend(exp, RegionCount = COUNT()) ## This statement copies all samples of exp dataset into res dataset, ## and then calculates new metadata attribute std_score for each of them: ## std_score is the standard deviation of the score values of the sample ## regions. res = extend(exp, std_score = STD("score")) ## This statement copies all samples of exp dataset into res dataset, ## and then calculates new metadata attribute m_score for each of them: ## m_score is the median score of the sample regions. res = extend(exp, m_score = MEDIAN("score")) }