# Rank Constrained Similarity Learning (RCSL)
RCSL is an R toolkit for single-cell clustering and trajectory analysis using single-cell RNA-seq data.
## Installation
This package can be insatlled through devtools in R:
```{r}
$ R
> library("devtools")
> devtools::install_github("QinglinMei/RCSL",build_vignettes = T)
```
Now RCSL can be loaded in R:
```{r}
> library(RCSL)
```
## Input
The input to RCSL is a normalized data matrix with columns being cells and rows being genes in log(CPM+1), log(RPKM+1), log(TPM+1) or log(FPKM+1) format; or a data file in RDS format.
## Usage
We provide an example script to run RCSL in *demo_RCSL.R*.
The nine functions of RCSL can also be run independently.
Function | Description
-----------|----------
`GenesFilter` | Perform genes filtering.
`SimS` | Calculate the initial similarity matrix S.
`NeigRepresent` | Calculate the neighbor representation of cells.
`EstClusters` | Estimate the optimal number of clusters C.
`BDSM` | Learn the block-diognal matrix B.
`PlotMST` | Construct MST based on clustering results from RCSL.
`PlotPseudoTime` | Infer the pseudo-temporal ordering of cells.
`getLineage` | Infer the lineage based on the clustering results and the starting cell.
`PlotTrajectory` | Plot the developmental trajectory based on the clustering results and the starting cell.
## Example:
Load packages:
```{r}
> library(RCSL)
> library(SingleCellExperiment)
> library(ggplot2)
> library(igraph)
```
Load Goolam dataset:
```{r}
> origData <- readRDS("./Data/Goolam.rds")
> data <- logcounts(origData)
> label <- origData$cell_type1
> DataName <- "Goolam"
```
Generating clustering result:
```{r}
> res_RCSL <- RCSL(data)
```
Calculating Adjusted Rand Index:
```{r}
> ARI_RCSL <- igraph::compare(res_RCSL$y, label, method = "adjusted.rand")
```
Trajectory analysis:
```{r}
> label <- origData$cell_type1
> res_TrajecAnalysis <- TrajectoryAnalysis(res_RCSL$gfData, res_RCSL$drData, res_RCSL$S,
clustRes = res_RCSL$y, TrueLabel = label, startPoint = 1,
dataName = DataName)
```
Display the plot of constructed MST:
```{r}
> res_TrajecAnalysis$MSTPlot
```
Display the plot of the pseudo-temporal ordering
```{r}
> res_TrajecAnalysis$PseudoTimePlot
```
Display the plot of the inferred developmental trajectory
```{r}
> res_TrajecAnalysis$TrajectoryPlot
```
A vignette in R Notebook format is available [here](https://github.com/QinglinMei/RCSL/blob/master/vignettes/RCSL-vignette.Rmd)
## Required annotations for RCSL
1) The RCSL package requires three extra packages: namely the *SingleCellExperiment* package (see https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html) to read the *SingleCellExperiment* object, the *igraph* package (see https://igraph.org/) to find the stronggest connected components and the *ggplot2* package (see https://cran.r-project.org/web/packages/ggplot2/index.html) to plot the developmental trajectory and MST.
2) The dataset for the demonstration purpose in the directory *Data* was from https://hemberg-lab.github.io/scRNA.seq.datasets/. This dataset is stored in both RDS and text formats.
## DEBUG
Please feel free to contact us if you have problems running our tool at meiql@mail.sdu.edu.cn.