... | ... |
@@ -1,12 +1,14 @@ |
1 | 1 |
Package: PanomiR |
2 | 2 |
Title: Inferring miRNAs targeting of pathway groups |
3 |
-Version: 0.99.6 |
|
3 |
+Version: 0.99.7 |
|
4 | 4 |
Authors@R: c( |
5 | 5 |
person("Pourya", "Naderi", email = "pouryany@gmail.com", |
6 | 6 |
role = c("aut", "cre")), |
7 |
- person("Winston", "Hide", email = "whide@bidmc.harvard.edu", |
|
7 |
+ person("Yue Yang (Alan)", "Teo", email = "yueyang.teo@epfl.ch", |
|
8 | 8 |
role = c("aut")), |
9 | 9 |
person("Ilya", "Sytchev", email = "isytchev@hsph.harvard.edu", |
10 |
+ role = c("aut")), |
|
11 |
+ person("Winston", "Hide", email = "whide@bidmc.harvard.edu", |
|
10 | 12 |
role = c("aut"))) |
11 | 13 |
Description: PanomiR is a package to detect miRNAs that target groups of |
12 | 14 |
pathways from gene expression data. This package provides functionality |
... | ... |
@@ -19,6 +21,7 @@ Encoding: UTF-8 |
19 | 21 |
RoxygenNote: 7.1.2 |
20 | 22 |
Suggests: |
21 | 23 |
testthat (>= 3.0.0), |
24 |
+ BiocStyle, |
|
22 | 25 |
knitr, |
23 | 26 |
rmarkdown |
24 | 27 |
Config/testthat/edition: 3 |
... | ... |
@@ -1,8 +1,9 @@ |
1 | 1 |
--- |
2 |
-title: "PanomiR Package Walkthrough" |
|
2 |
+title: "PanomiR Package Vignette" |
|
3 |
+author: "Pourya Naderi" |
|
4 |
+package: PanomiR |
|
3 | 5 |
output: |
4 |
- rmarkdown::html_vignette: |
|
5 |
- toc: true |
|
6 |
+ BiocStyle::html_document |
|
6 | 7 |
bibliography: references.bib |
7 | 8 |
vignette: > |
8 | 9 |
%\VignetteIndexEntry{PanomiR} |
... | ... |
@@ -17,13 +18,13 @@ knitr::opts_chunk$set( |
17 | 18 |
) |
18 | 19 |
``` |
19 | 20 |
|
20 |
-## Introduction |
|
21 |
+# Introduction |
|
21 | 22 |
|
22 | 23 |
PanomiR is a package for pathway and microRNA Analysis of gene expression data. |
23 | 24 |
This document provides details about how to install and utilize various |
24 | 25 |
functionality in PanomiR. |
25 | 26 |
|
26 |
-## Installation |
|
27 |
+# Installation |
|
27 | 28 |
|
28 | 29 |
PanomiR can be accessed via Bioconductor. To install, start R (version >= 4.1.0) |
29 | 30 |
and run the following code. |
... | ... |
@@ -41,7 +42,7 @@ You can also install the latest development version of PanomiR using GitHub. |
41 | 42 |
devtools::install_github("pouryany/PanomiR") |
42 | 43 |
``` |
43 | 44 |
|
44 |
-## Overview |
|
45 |
+# Overview |
|
45 | 46 |
|
46 | 47 |
PanomiR is a pipeline to prioritize disease-associated miRNAs based on activity |
47 | 48 |
of disease-associated pathways. The input datasets for PanomiR are (a) a gene |
... | ... |
@@ -57,7 +58,7 @@ Individual steps of the workflow can be used in isolation to carry out different |
57 | 58 |
analyses. The following sections outline each step and material needed to |
58 | 59 |
execute PanomiR. |
59 | 60 |
|
60 |
-## 1. Pathway summarization |
|
61 |
+# Pathway summarization |
|
61 | 62 |
|
62 | 63 |
PanomiR can generate pathway activity profiles given a gene expression dataset |
63 | 64 |
and a list of pathways.Pathway summaries are numbers that represent the overall |
... | ... |
@@ -103,7 +104,7 @@ head(summaries)[,1:2] |
103 | 104 |
|
104 | 105 |
|
105 | 106 |
|
106 |
-## 2. Differential Pathway activation |
|
107 |
+# Differential Pathway activation |
|
107 | 108 |
|
108 | 109 |
Once you generate the pathway activity profiles, as discussed in the last |
109 | 110 |
section, there are several analysis that you can perform. We have bundled some |
... | ... |
@@ -132,7 +133,7 @@ de.paths <- output0$DEP |
132 | 133 |
head(de.paths,3) |
133 | 134 |
``` |
134 | 135 |
|
135 |
-## 3. Finding clusters of pathways |
|
136 |
+# Finding clusters of pathways |
|
136 | 137 |
|
137 | 138 |
PanomiR provides a function to find groups coordinated differentially |
138 | 139 |
activated pathways based on a pathway co-expression network (PCxN) previously |
... | ... |
@@ -177,7 +178,7 @@ head(pathwayClustsLIHC$Clustering) |
177 | 178 |
``` |
178 | 179 |
|
179 | 180 |
|
180 |
-## 4. Prioritizing miRNAs per cluster of pathways. |
|
181 |
+# Prioritizing miRNAs per cluster of pathways. |
|
181 | 182 |
|
182 | 183 |
PanomiR identifies miRNAs that target clusters of pathways, as defined in the |
183 | 184 |
last section. In order to this, you would need a reference table of |
... | ... |
@@ -187,7 +188,7 @@ This section provides an overview of prioritization process. Readers interested |
187 | 188 |
in knowing more about the technical details of PanomiR are refered to |
188 | 189 |
accompaniying publication (Work under preparation). |
189 | 190 |
|
190 |
-### Enrichment reference |
|
191 |
+## Enrichment reference |
|
191 | 192 |
Here, we provide a preprocessed small example table of miRNA-pathway enrichment |
192 | 193 |
in `miniTestsPanomiR$miniEnrich` object. This table contains enrichment analysis |
193 | 194 |
results using Fisher's Exact Test between MSigDB pathways and TargetScan miRNA |
... | ... |
@@ -197,7 +198,7 @@ example table is contains only a full subset of the full pairwise enrichment. |
197 | 198 |
You can refer to [section 5](#geneset) of this manual on how to create full |
198 | 199 |
tables and how to customize them to your specific gene expression data. |
199 | 200 |
|
200 |
-### Generating targeting scores |
|
201 |
+## Generating targeting scores |
|
201 | 202 |
PanomiR generates a score for individual miRNAs targeting a group of pathways. |
202 | 203 |
These scores are generated based on the reference enrichment table. |
203 | 204 |
We are interested in knowing to what extent each miRNA targets pathway clusters |
... | ... |
@@ -207,7 +208,7 @@ The significance of observed scores from a given group of pathways (clusters |
207 | 208 |
in this case) is contrasted against the null distribution to generate a |
208 | 209 |
targeting p-value. These p-values are used to rank miRNAs per cluster. |
209 | 210 |
|
210 |
-### Sampling parameter |
|
211 |
+## Sampling parameter |
|
211 | 212 |
The above described process requires repeated sampling to empirically obtain the |
212 | 213 |
null distribution. The argument `sampRate` denotes the number of repeats in the |
213 | 214 |
process. Note that in the example below, we use a sampling rate of 50, the |
... | ... |
@@ -240,7 +241,7 @@ head(output2$Cluster1) |
240 | 241 |
|
241 | 242 |
|
242 | 243 |
|
243 |
-## 5. miRNA-Pathway enrichment tables |
|
244 |
+# miRNA-Pathway enrichment tables |
|
244 | 245 |
|
245 | 246 |
PanomiR best performs on tissue/experiment-customized datasets. In order to do |
246 | 247 |
this, you need to create a customized enrichment table. You can simply do so by |
... | ... |
@@ -287,7 +288,7 @@ tempEnrich <-miRNAPathwayEnrichment(targetScan_03[1:30],msigdb_c2[1:30]) |
287 | 288 |
head(reportEnrichment(tempEnrich)) |
288 | 289 |
``` |
289 | 290 |
|
290 |
-## 6. Customized genesets and recommendations {#geneset} |
|
291 |
+# Customized genesets and recommendations {#geneset} |
|
291 | 292 |
|
292 | 293 |
PanomiR can integrate genesets and pathways from external sources including |
293 | 294 |
those annotated in MSigDB. In order to do so, you need to provide a |
... | ... |
@@ -329,10 +330,10 @@ newPathGeneTable <- tableFromGSC(yourGeneSetCollection) |
329 | 330 |
|
330 | 331 |
``` |
331 | 332 |
|
332 |
-## Session info |
|
333 |
+# Session info |
|
333 | 334 |
```{r sessionInfo} |
334 | 335 |
sessionInfo() |
335 | 336 |
|
336 | 337 |
``` |
337 | 338 |
|
338 |
-## References |
|
339 | 339 |
\ No newline at end of file |
340 |
+# References |
|
340 | 341 |
\ No newline at end of file |