Browse code

Updated Vignette

Pourya Naderi authored on 31/01/2022 22:45:59
Showing 2 changed files

... ...
@@ -1,12 +1,14 @@
1 1
 Package: PanomiR
2 2
 Title: Inferring miRNAs targeting of pathway groups
3
-Version: 0.99.6
3
+Version: 0.99.7
4 4
 Authors@R: c(
5 5
     person("Pourya", "Naderi", email = "pouryany@gmail.com",
6 6
            role = c("aut", "cre")),
7
-    person("Winston", "Hide", email = "whide@bidmc.harvard.edu",
7
+    person("Yue Yang (Alan)", "Teo", email = "yueyang.teo@epfl.ch",
8 8
            role = c("aut")),
9 9
     person("Ilya", "Sytchev", email = "isytchev@hsph.harvard.edu",
10
+           role = c("aut")),
11
+    person("Winston", "Hide", email = "whide@bidmc.harvard.edu",
10 12
            role = c("aut")))
11 13
 Description: PanomiR is a package to detect miRNAs that target groups of
12 14
     pathways from gene expression data. This package provides functionality 
... ...
@@ -19,6 +21,7 @@ Encoding: UTF-8
19 21
 RoxygenNote: 7.1.2
20 22
 Suggests:
21 23
     testthat (>= 3.0.0),
24
+    BiocStyle,
22 25
     knitr,
23 26
     rmarkdown
24 27
 Config/testthat/edition: 3
... ...
@@ -1,8 +1,9 @@
1 1
 ---
2
-title: "PanomiR Package Walkthrough"
2
+title: "PanomiR Package Vignette"
3
+author: "Pourya Naderi"
4
+package: PanomiR
3 5
 output: 
4
-  rmarkdown::html_vignette:
5
-    toc: true
6
+  BiocStyle::html_document
6 7
 bibliography: references.bib  
7 8
 vignette: >
8 9
   %\VignetteIndexEntry{PanomiR}
... ...
@@ -17,13 +18,13 @@ knitr::opts_chunk$set(
17 18
 )
18 19
 ```
19 20
 
20
-## Introduction
21
+# Introduction
21 22
 
22 23
 PanomiR is a package for pathway and microRNA Analysis of gene expression data.
23 24
 This document provides details about how to install and utilize various 
24 25
 functionality in PanomiR.
25 26
 
26
-## Installation
27
+# Installation
27 28
 
28 29
 PanomiR can be accessed via Bioconductor. To install, start R (version >= 4.1.0)
29 30
 and run the following code.
... ...
@@ -41,7 +42,7 @@ You can also install the latest development version of PanomiR using GitHub.
41 42
 devtools::install_github("pouryany/PanomiR")
42 43
 ```
43 44
 
44
-## Overview
45
+# Overview
45 46
 
46 47
 PanomiR is a pipeline to prioritize disease-associated miRNAs based on activity 
47 48
 of disease-associated pathways. The input datasets for PanomiR are (a) a gene 
... ...
@@ -57,7 +58,7 @@ Individual steps of the workflow can be used in isolation to carry out different
57 58
 analyses. The following sections outline each step and material needed to
58 59
 execute PanomiR. 
59 60
 
60
-## 1. Pathway summarization
61
+# Pathway summarization
61 62
 
62 63
 PanomiR can generate pathway activity profiles given a gene expression dataset
63 64
 and a list of pathways.Pathway summaries are numbers that represent the overall
... ...
@@ -103,7 +104,7 @@ head(summaries)[,1:2]
103 104
 
104 105
 
105 106
 
106
-## 2. Differential Pathway activation
107
+# Differential Pathway activation
107 108
 
108 109
 Once you generate the pathway activity profiles, as discussed in the last
109 110
 section, there are several analysis that you can perform. We have bundled some 
... ...
@@ -132,7 +133,7 @@ de.paths <- output0$DEP
132 133
 head(de.paths,3)
133 134
 ```
134 135
 
135
-## 3. Finding clusters of pathways
136
+# Finding clusters of pathways
136 137
 
137 138
 PanomiR provides a function to find groups coordinated differentially 
138 139
 activated pathways based on a pathway co-expression network (PCxN) previously
... ...
@@ -177,7 +178,7 @@ head(pathwayClustsLIHC$Clustering)
177 178
 ```
178 179
 
179 180
 
180
-## 4. Prioritizing miRNAs per cluster of pathways.
181
+# Prioritizing miRNAs per cluster of pathways.
181 182
 
182 183
 PanomiR identifies miRNAs that target clusters of pathways, as defined in the 
183 184
 last section. In order to this, you would need a reference table of
... ...
@@ -187,7 +188,7 @@ This section provides an overview of prioritization process. Readers interested
187 188
 in knowing more about the technical details of PanomiR are refered to
188 189
 accompaniying publication (Work under preparation).
189 190
 
190
-### Enrichment reference
191
+## Enrichment reference
191 192
 Here, we provide a preprocessed small example table of miRNA-pathway enrichment
192 193
 in `miniTestsPanomiR$miniEnrich` object. This table contains enrichment analysis
193 194
 results using Fisher's Exact Test between MSigDB pathways and TargetScan miRNA
... ...
@@ -197,7 +198,7 @@ example table is contains only a full subset of the full pairwise enrichment.
197 198
 You can refer to [section 5](#geneset) of this manual on how to create full 
198 199
 tables and how to customize them to your specific gene expression data.
199 200
 
200
-### Generating targeting scores
201
+## Generating targeting scores
201 202
 PanomiR generates a score for individual miRNAs targeting a group of pathways.
202 203
 These scores are generated based on the reference enrichment table.
203 204
 We are interested in knowing to what extent each miRNA targets pathway clusters
... ...
@@ -207,7 +208,7 @@ The significance of observed scores from a given group of pathways (clusters
207 208
 in this case) is contrasted against the null distribution to generate a
208 209
 targeting p-value. These p-values are used to rank miRNAs per cluster.
209 210
 
210
-### Sampling parameter
211
+## Sampling parameter
211 212
 The above described process requires repeated sampling to empirically obtain the
212 213
 null distribution. The argument `sampRate` denotes the number of repeats in the
213 214
 process. Note that in the example below, we use a sampling rate of 50, the
... ...
@@ -240,7 +241,7 @@ head(output2$Cluster1)
240 241
 
241 242
 
242 243
 
243
-## 5. miRNA-Pathway enrichment tables 
244
+# miRNA-Pathway enrichment tables 
244 245
 
245 246
 PanomiR best performs on tissue/experiment-customized datasets. In order to do
246 247
 this, you need to create a customized enrichment table. You can simply do so by
... ...
@@ -287,7 +288,7 @@ tempEnrich <-miRNAPathwayEnrichment(targetScan_03[1:30],msigdb_c2[1:30])
287 288
 head(reportEnrichment(tempEnrich))
288 289
 ```
289 290
 
290
-## 6. Customized genesets and recommendations {#geneset}
291
+# Customized genesets and recommendations {#geneset}
291 292
 
292 293
 PanomiR can integrate genesets and pathways from external sources including
293 294
 those annotated in MSigDB. In order to do so, you need to provide a 
... ...
@@ -329,10 +330,10 @@ newPathGeneTable      <- tableFromGSC(yourGeneSetCollection)
329 330
 
330 331
 ```
331 332
 
332
-## Session info
333
+# Session info
333 334
 ```{r sessionInfo}
334 335
 sessionInfo()
335 336
 
336 337
 ```
337 338
 
338
-## References
339 339
\ No newline at end of file
340
+# References
340 341
\ No newline at end of file