Name Mode Size
.github 040000
R 040000
data 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
.lintr 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 0 kb
LICENSE.md 100644 1 kb
NAMESPACE 100644 0 kb
NEWS 100644 0 kb
README.Rmd 100644 13 kb
README.md 100644 22 kb
README.md
<!-- badges: start --> [![R-CMD-check](https://github.com/pouryany/PanomiR/workflows/R-CMD-check/badge.svg)](https://github.com/pouryany/PanomiR/actions) [![lint](https://github.com/pouryany/PanomiR/workflows/lint/badge.svg)](https://github.com/pouryany/PanomiR/actions) <!-- badges: end --> ## Introduction PanomiR is a package for pathway and microRNA Analysis of gene expression data. This document provides details about how to install and utilize various functionality in PanomiR. For questions, comments, and other queries, contact <pouryany@gmail.com> ## Installation PanomiR can be accessed via Bioconductor. To install, start R and run the following code. ``` r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("PanomiR") ``` You can also install the latest development version of PanomiR using GitHub. ``` r devtools::install_github("pouryany/PanomiR") ``` ## Overview PanomiR is a pipeline to prioritize disease-associated miRNAs based on activity of disease-associated pathways. The input datasets for PanomiR are (a) a gene expression disease dataset along with covariates, (b) a background collection of pathways/genesets, and (c) a collection of miRNAs containing gene targets. The general workflow of PanomiR is (a) generation of pathway summary statistics from gene expression data, (b) detection of differentially activated pathways, (c) finding coherent groups, or clusters, of differentially activated pathways, and (d) detecting miRNAs targeting each group of pathways. Individual steps of the workflow can be used in isolation to carry out different analyses. The following sections outline each step and material needed to execute PanomiR. ## 1. Pathway summarization PanomiR can generate pathway activity profiles given a gene expression dataset and a list of pathways.Pathway summaries are numbers that represent the overall activity of genes that belong to each pathway. These numbers are calculated based on a methodology previously described in part in (Altschuler et al. 2013; Joachim et al. 2018). Briefly, genes in each sample are ranked by their expression values and then pathway summaries are calculated as the average rank-squared of genes within a pathway. The summaries are then center and scaled (zNormalized) across samples. The default list of background pathways in PanomiR is formatted into a table (`data("path_gene_table")`). The table is based on canonical pathways collection of Molecular Signatures Database (MSigDB) V6.2 and it contains annotated pathways from a variety of sources (Liberzon et al. 2011). \*\* Users interested in using other pathway/geneset backgrounds, such as newer versions of MSigDB or KEGG, should refer to the [appendix](#geneset) of this manual. This section uses a reduced example dataset from The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) dataset to generate Pathway summary statistics (Ally et al. 2017). ``` r library(PanomiR) # Pathway reference from the PanomiR package data("path_gene_table") data("miniTestsPanomiR") # Generating pathway summary statistics summaries <- pathwaySummary(miniTestsPanomiR$mini_LIHC_Exp, path_gene_table, method = "x2", zNormalize = TRUE) head(summaries)[,1:2] ``` ## TCGA-BC-A10S-01A-22R-A131-07 ## BIOCARTA_41BB_PATHWAY -0.1506216 ## BIOCARTA_ACE2_PATHWAY -0.5676447 ## BIOCARTA_ACH_PATHWAY -0.3211747 ## BIOCARTA_ACTINY_PATHWAY 1.4363526 ## BIOCARTA_AGPCR_PATHWAY -0.1948523 ## BIOCARTA_AGR_PATHWAY 0.6802993 ## TCGA-BC-4073-01B-02R-A131-07 ## BIOCARTA_41BB_PATHWAY -0.1269436 ## BIOCARTA_ACE2_PATHWAY -0.8327436 ## BIOCARTA_ACH_PATHWAY -0.4390042 ## BIOCARTA_ACTINY_PATHWAY 1.4975456 ## BIOCARTA_AGPCR_PATHWAY -0.2499193 ## BIOCARTA_AGR_PATHWAY 0.5420588 ## 2. Differential Pathway activation Once you generate the pathway activity profiles, as discussed in the last section, there are several analysis that you can perform. We have bundled some of the most important ones into standalone functions. Here, we describe differential pathway activation profiling, which is examining differences in pathway activity profiles in user-determined conditions. At this stage you need to provide a pathway-gene association table, an expression dataset, and a covariates table. You need to specity what covariates you would like to contrast. You also need to provide a contrast, as formatted in limma. If the contrast is not provided, the function assumes the first two levels of the provided contrast covariate. **Note:** make sure the contrast covariate is formatted as factor. ``` r output0 <- differentialPathwayAnalysis( geneCounts = miniTestsPanomiR$mini_LIHC_Exp, pathways = path_gene_table, covariates = miniTestsPanomiR$mini_LIHC_Cov, condition = 'shortLetterCode') de.paths <- output0$DEP head(de.paths) ``` ## logFC ## REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING -0.9159376 ## BIOCARTA_AKT_PATHWAY -0.5744103 ## PID_IL5_PATHWAY -0.6219876 ## REACTOME_ADVANCED_GLYCOSYLATION_ENDPRODUCT_RECEPTOR_SIGNALING 0.4899259 ## REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS -1.0070977 ## BIOCARTA_PTC1_PATHWAY 0.6625938 ## AveExpr ## REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING 0.3044281 ## BIOCARTA_AKT_PATHWAY 0.3123897 ## PID_IL5_PATHWAY 0.4240432 ## REACTOME_ADVANCED_GLYCOSYLATION_ENDPRODUCT_RECEPTOR_SIGNALING 1.3942628 ## REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS 1.2536069 ## BIOCARTA_PTC1_PATHWAY -1.5149008 ## t ## REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING -10.404966 ## BIOCARTA_AKT_PATHWAY -6.770069 ## PID_IL5_PATHWAY -6.255756 ## REACTOME_ADVANCED_GLYCOSYLATION_ENDPRODUCT_RECEPTOR_SIGNALING 6.096421 ## REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS -5.905357 ## BIOCARTA_PTC1_PATHWAY 5.717801 ## P.Value ## REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING 1.942463e-06 ## BIOCARTA_AKT_PATHWAY 6.903010e-05 ## PID_IL5_PATHWAY 1.276971e-04 ## REACTOME_ADVANCED_GLYCOSYLATION_ENDPRODUCT_RECEPTOR_SIGNALING 1.555564e-04 ## REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS 1.979562e-04 ## BIOCARTA_PTC1_PATHWAY 2.519967e-04 ## adj.P.Val ## REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING 0.002012391 ## BIOCARTA_AKT_PATHWAY 0.035757593 ## PID_IL5_PATHWAY 0.040289104 ## REACTOME_ADVANCED_GLYCOSYLATION_ENDPRODUCT_RECEPTOR_SIGNALING 0.040289104 ## REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS 0.041016532 ## BIOCARTA_PTC1_PATHWAY 0.041612753 ## B ## REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING 5.240095 ## BIOCARTA_AKT_PATHWAY 2.126311 ## PID_IL5_PATHWAY 1.550780 ## REACTOME_ADVANCED_GLYCOSYLATION_ENDPRODUCT_RECEPTOR_SIGNALING 1.364364 ## REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS 1.135618 ## BIOCARTA_PTC1_PATHWAY 0.905467 ## contrast ## REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING shortLetterCodeTP-shortLetterCodeNT ## BIOCARTA_AKT_PATHWAY shortLetterCodeTP-shortLetterCodeNT ## PID_IL5_PATHWAY shortLetterCodeTP-shortLetterCodeNT ## REACTOME_ADVANCED_GLYCOSYLATION_ENDPRODUCT_RECEPTOR_SIGNALING shortLetterCodeTP-shortLetterCodeNT ## REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS shortLetterCodeTP-shortLetterCodeNT ## BIOCARTA_PTC1_PATHWAY shortLetterCodeTP-shortLetterCodeNT ## 3. Finding clusters of pathways PanomiR provides a function to find groups coordinated differentially activated pathways based on a pathway co-expression network (PCxN) previously described in (Pita-Juárez et al. 2018). Briefly, PCxN is a network where nodes are pathways and links are co-expression between the nodes. It is formatted into a table were rows represent edges. The edges of PCxN are marked by two numbers, 1- a correlation co-efficient and 2- a significance adjusted p-value. Cut-offs for both of these numbers can be manually set using PanomiR functions. See function manuals for more info. PCxN and its associated genesets are already released and can be accessed through [pcxn Bioconductor package](http://bioconductor.org/packages/release/bioc/html/pcxn.html) and [pcxnData package](http://bioconductor.org/packages/release/data/experiment/html/pcxnData.html). Here we have provided a small version of PCxN for tutorial purposes. A more recent version of PCxN based on MSigDB V6.2 is available through the data repository accompanying PanomiR manuscript, which can be found [here](https://github.com/pouryany/PanomiR_paper). ``` r # using an updated version of pcxn set.seed(2) pathwayClustsLIHC <- mappingPathwaysClusters( pcxn = miniTestsPanomiR$miniPCXN, dePathways = de.paths[1:300,], topPathways = 200, outDir=".", plot = FALSE, subplot = FALSE, prefix='', clusteringFunction = "cluster_louvain", correlationCutOff = 0.1) head(pathwayClustsLIHC$Clustering) ``` ## Pathway cluster ## 1 BIOCARTA_NO1_PATHWAY 1 ## 2 BIOCARTA_AKT_PATHWAY 1 ## 3 BIOCARTA_ALK_PATHWAY 1 ## 4 BIOCARTA_RANKL_PATHWAY 1 ## 5 BIOCARTA_MCM_PATHWAY 3 ## 6 BIOCARTA_CELLCYCLE_PATHWAY 3 ## 4. Prioritizing miRNAs per cluster of pathways. PanomiR identifies miRNAs that target clusters of pathways, as defined in the last section. In order to this, you would need a reference table of miRNA-Pathway association score (enrichment). We recommend using a customized miRNA-Pathway association table, tailored to your experimental data. Here, we provide a pre-processed table for LIHC table and in the next section, we will explain how to generate the customized tables. Note that in the example below, we use a sampling rate of 50, the recommended rate is between 500-1000. Also, we set the saveSampling argument to FALSE. This argument should be set to TRUE if you wish to save your sampling and check for different outputs from the clustering algorithms or pathway thresholds. ``` r set.seed(1) output2 <- prioritizeMicroRNA(enriches0 = miniTestsPanomiR$miniEnrich, pathClust = miniTestsPanomiR$miniPathClusts$Clustering, topClust = 1, sampRate = 50, method = c("aggInv"), outDir = "Output/", dataDir = "outData/", saveSampling = FALSE, runJackKnife = FALSE, numCores = 1, prefix = "outmiR", saveCSV = FALSE) ``` ## [1] "Working on Cluster1." ## [1] "Performing aggInv function." ## [1] "aggInv Method Done" ``` r head(output2$Cluster1) ``` ## x cluster_hits aggInv_cover aggInv_pval ## 1 hsa-miR-101-3p.2 6 -1.9566603 0.0001216703 ## 2 hsa-miR-101-3p.1 4 -0.3395771 0.0006214715 ## 3 hsa-miR-124-3p.2/hsa-miR-506-3p 7 -0.2357761 0.0008599272 ## 4 hsa-miR-1247-5p 4 -1.6599230 0.0021625662 ## 5 hsa-miR-1249-3p 1 -2.4578993 0.0042061415 ## 6 hsa-miR-1252-5p 4 -0.7572036 0.0050836835 ## aggInv_fdr ## 1 0.002433406 ## 2 0.005732848 ## 3 0.005732848 ## 4 0.010812831 ## 5 0.016824566 ## 6 0.016945612 ## 5. miRNA-Pathway enrichment tables PanomiR best performs on tissue/experiment-customized datasets. In order to do this, you need to create a customized enrichment table. You can simply do so by using the pathway and miRNA list that we have provided as a part of the package. simply, plug in the name of the genes present (expressed) in your experiment in the following code ``` r # using an updated version of pcxn data("msigdb_c2") data("targetScan_03") customeTableEnrich <- miRNAPathwayEnrichment(mirSets = targetScan_03, pathwaySets = msigdb_c2, geneSelection = yourGenes, mirSelection = yourMicroRNAs, fromID = "ENSEMBL", toID = "ENTREZID", minPathSize = 9, numCores = 1, outDir = ".", saveOutName = NULL) ``` In the above section, the field `fromID` denotes the gene representation format of your input list. Here is a quick example that runs fast. ``` r # using an updated version of pcxn data("msigdb_c2") data("targetScan_03") tempEnrich <-miRNAPathwayEnrichment(targetScan_03[1:30],msigdb_c2[1:30]) head(tempEnrich) ``` ## x y pval Intersect ## 1 hsa-miR-103a-3p/hsa-miR-107 BIOCARTA_RELA_PATHWAY 0.4476283 1 ## 2 hsa-miR-124-3p.1 BIOCARTA_RELA_PATHWAY 0.1342510 2 ## 3 hsa-miR-124-3p.2/hsa-miR-506-3p BIOCARTA_RELA_PATHWAY 0.4476283 1 ## 4 hsa-miR-1252-5p BIOCARTA_RELA_PATHWAY 1.0000000 0 ## 5 hsa-miR-1271-5p/hsa-miR-96-5p BIOCARTA_RELA_PATHWAY 1.0000000 0 ## 6 hsa-miR-103a-3p/hsa-miR-107 BIOCARTA_NO1_PATHWAY 0.7143586 1 ## mirset_Size not_mirset pathway_Size ratio_in ratio_out ratio_ratios ## 1 14 378 16 0.06666667 0.03439153 1.9384615 ## 2 16 376 16 0.14285714 0.03723404 3.8367347 ## 3 14 378 16 0.06666667 0.03439153 1.9384615 ## 4 10 382 16 0.00000000 0.02617801 0.0000000 ## 5 17 375 16 0.00000000 0.04533333 0.0000000 ## 6 14 378 33 0.03125000 0.03439153 0.9086538 ## Session info ``` r sessionInfo() ``` ## R Under development (unstable) (2021-12-03 r81290) ## Platform: x86_64-apple-darwin17.0 (64-bit) ## Running under: macOS Mojave 10.14.6 ## ## Matrix products: default ## BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib ## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib ## ## locale: ## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 ## ## attached base packages: ## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages: ## [1] PanomiR_0.99.1 ## ## loaded via a namespace (and not attached): ## [1] igraph_1.2.10 knitr_1.37 magrittr_2.0.1 tidyselect_1.1.1 ## [5] R6_2.5.1 rlang_0.4.12 fastmap_1.1.0 fansi_0.5.0 ## [9] stringr_1.4.0 dplyr_1.0.7 tools_4.2.0 parallel_4.2.0 ## [13] xfun_0.29 utf8_1.2.2 DBI_1.1.2 withr_2.4.3 ## [17] htmltools_0.5.2 ellipsis_0.3.2 assertthat_0.2.1 yaml_2.2.1 ## [21] digest_0.6.29 tibble_3.1.6 lifecycle_1.0.1 crayon_1.4.2 ## [25] purrr_0.3.4 vctrs_0.3.8 glue_1.6.0 evaluate_0.14 ## [29] rmarkdown_2.11 limma_3.51.2 stringi_1.7.6 compiler_4.2.0 ## [33] pillar_1.6.4 forcats_0.5.1 generics_0.1.1 pkgconfig_2.0.3 ## References <div id="refs" class="references csl-bib-body hanging-indent"> <div id="ref-ally2017comprehensive" class="csl-entry"> Ally, Adrian, Miruna Balasundaram, Rebecca Carlsen, Eric Chuah, Amanda Clarke, Noreen Dhalla, Robert A Holt, et al. 2017. “Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma.” *Cell* 169 (7): 1327–41. </div> <div id="ref-altschuler2013pathprinting" class="csl-entry"> Altschuler, Gabriel M, Oliver Hofmann, Irina Kalatskaya, Rebecca Payne, Shannan J Ho Sui, Uma Saxena, Andrei V Krivtsov, et al. 2013. “Pathprinting: An Integrative Approach to Understand the Functional Basis of Disease.” *Genome Medicine* 5 (7): 1–13. </div> <div id="ref-joachim2018relative" class="csl-entry"> Joachim, Rose B, Gabriel M Altschuler, John N Hutchinson, Hector R Wong, Winston A Hide, and Lester Kobzik. 2018. “The Relative Resistance of Children to Sepsis Mortality: From Pathways to Drug Candidates.” *Molecular Systems Biology* 14 (5): e7998. </div> <div id="ref-liberzon2011molecular" class="csl-entry"> Liberzon, Arthur, Aravind Subramanian, Reid Pinchback, Helga Thorvaldsdóttir, Pablo Tamayo, and Jill P Mesirov. 2011. “Molecular Signatures Database (MSigDB) 3.0.” *Bioinformatics* 27 (12): 1739–40. </div> <div id="ref-pita2018pathway" class="csl-entry"> Pita-Juárez, Yered, Gabriel Altschuler, Sokratis Kariotis, Wenbin Wei, Katjuša Koler, Claire Green, Rudolph E Tanzi, and Winston Hide. 2018. “The Pathway Coexpression Network: Revealing Pathway Relationships.” *PLoS Computational Biology* 14 (3): e1006042. </div> </div>