Name Mode Size
R 040000
data 040000
inst 040000
man 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 2 kb
LICENSE.md 100644 34 kb
NAMESPACE 100644 2 kb
NEWS.md 100644 0 kb
README.Rmd 100644 4 kb
README.md 100644 3 kb
_pkgdown.yml 100644 0 kb
README.md
<!-- README.md is generated from README.Rmd. Please edit that file --> # PRONE - The PROteomics Normalization Evaluator <img src="man/figures/PRONE_package_logo.png" align="right" alt="" width="150" /> R Package for preprocessing, normalizing, and analyzing proteomics data ## Introduction High-throughput omics data are often affected by systematic biases introduced throughout all the steps of a clinical study, from sample collection to quantification. Failure to account for these biases can lead to erroneous results and misleading conclusions in downstream analysis. Normalization methods aim to adjust for these biases to make the actual biological signal more prominent. However, selecting an appropriate normalization method is challenging due to the wide range of available approaches. Therefore, a comparative evaluation of unnormalized and normalized data is essential in identifying an appropriate normalization strategy for a specific data set. This R package provides different functions for preprocessing, normalizing, and evaluating different normalization approaches. Furthermore, normalization methods can be evaluated on downstream steps, such as differential expression analysis and statistical enrichment analysis. Spike-in data sets with known ground truth and real-world data sets of biological experiments acquired by either tandem mass tag (TMT) or label-free quantification (LFQ) can be analyzed. ## Installation To install the package, run: ``` r # Official BioC installation instructions if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("PRONE") # Load and attach PRONE library("PRONE") ``` If you have troubles downloading PRONE from Bioconductor, you still have the option to install PRONE from GitHub. However, the Bioconductor download is recommended! ``` r # Install PRONE.R from github and build vignettes if (!requireNamespace("devtools", quietly = TRUE)){ install.packages("devtools") } devtools::install_github("lisiarend/PRONE", build_vignettes = TRUE, dependencies = TRUE) # Load and attach PRONE library("PRONE") ``` ## Workflow A six-step workflow was developed in R version 4.2.2 to evaluate the effectiveness of the previously defined normalization methods on proteomics data. The workflow incorporates a set of novel functions and also integrates various methods adopted by state-of-the-art tools. <img src="man/figures/Workflow_PRONE.png" width="700"/> Following the upload of the proteomics data into a SummarizedExperiment object, proteins with too many missing values can be removed, outlier samples identified, and normalization carried out. Furthermore, an exploratory analysis of the performance of normalization methods can be conducted. Finally, differential expression analysis can be executed to further evaluate the effectiveness of normalization methods. For data sets with known ground truth, such as spike-in and simulated data sets, performance metrics, such as true positives (TPs), false positives (FPs), and area under the curve (AUC) values, can be computed. The evaluation of DE results of real-world experiments is based on visual quality inspection, for instance, using volcano plots, and an intersection analysis of the DE proteins of different normalization methods is available. ## Usage To get familiar with the functionalities of the R package, check out the article [Getting started with PRONE](https://lisiarend.github.io/PRONE/articles/PRONE.html). ## Citation TODO