Browse code

fix vignettes

pcastellanoescuder authored on 14/12/2023 15:30:57
Showing 6 changed files

... ...
@@ -1,6 +1,6 @@
1 1
 Package: POMA
2 2
 Title: Tools for Omics Data Analysis   
3
-Version: 1.13.3
3
+Version: 1.13.4
4 4
 Authors@R: 
5 5
     c(person(given = "Pol",
6 6
              family = "Castellano-Escuder",
... ...
@@ -70,6 +70,7 @@ Suggests:
70 70
     BiocStyle,
71 71
     covr,
72 72
     ggraph,
73
+    ggtext,
73 74
     knitr,
74 75
     patchwork,
75 76
     plotly,
... ...
@@ -1,4 +1,4 @@
1
-# POMA 1.13.3
1
+# POMA 1.13.4
2 2
 
3 3
 * New POMA theme and colorblind-friendly palette
4 4
 * Available sample normalization (sum and quantile)
... ...
@@ -16,50 +16,49 @@ output: github_document
16 16
 | _BioC_ branch 	| Status 	| Version 	| Dependencies 	| Rank 	|
17 17
 |-	|-	|-	|-	|-	|
18 18
 | [Release](http://bioconductor.org/packages/release/bioc/html/POMA.html) 	| [![Bioc release status](https://bioconductor.org/shields/build/release/bioc/POMA.svg)](https://bioconductor.org/checkResults/release/bioc-LATEST/POMA/) 	| [![BioC released version](https://img.shields.io/badge/release%20version-1.6.0-blue.svg)](https://www.bioconductor.org/packages/POMA) 	| [![Dependencies](http://bioconductor.org/shields/dependencies/release/POMA.svg)](http://bioconductor.org/packages/release/bioc/html/POMA.html#since) 	| [![Rank](http://www.bioconductor.org/shields/downloads/release/POMA.svg)](https://bioconductor.org/packages/stats/bioc/POMA) 	|
19
-| [Devel](http://bioconductor.org/packages/devel/bioc/html/POMA.html) 	| [![Bioc devel status](https://bioconductor.org/shields/build/devel/bioc/POMA.svg)](https://bioconductor.org/checkResults/devel/bioc-LATEST/POMA/) 	| [![BioC devel version](https://img.shields.io/badge/devel%20version-1.13.3-blue.svg)](https://bioconductor.org/packages/devel/bioc/html/POMA.html) 	| [![Dependencies](http://bioconductor.org/shields/dependencies/devel/POMA.svg)](http://bioconductor.org/packages/devel/bioc/html/POMA.html#since) 	| [![Rank](http://www.bioconductor.org/shields/downloads/devel/POMA.svg)](https://bioconductor.org/packages/stats/bioc/POMA) 	|
19
+| [Devel](http://bioconductor.org/packages/devel/bioc/html/POMA.html) 	| [![Bioc devel status](https://bioconductor.org/shields/build/devel/bioc/POMA.svg)](https://bioconductor.org/checkResults/devel/bioc-LATEST/POMA/) 	| [![BioC devel version](https://img.shields.io/badge/devel%20version-1.13.4-blue.svg)](https://bioconductor.org/packages/devel/bioc/html/POMA.html) 	| [![Dependencies](http://bioconductor.org/shields/dependencies/devel/POMA.svg)](http://bioconductor.org/packages/devel/bioc/html/POMA.html#since) 	| [![Rank](http://www.bioconductor.org/shields/downloads/devel/POMA.svg)](https://bioconductor.org/packages/stats/bioc/POMA) 	|
20 20
 
21 21
   <!-- badges: end -->
22 22
 
23 23
 The `POMA` package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, `POMA` leverages the standardized `SummarizedExperiment` class from Bioconductor, ensuring seamless integration and compatibility with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making `POMA` an essential asset for researchers handling omics datasets.   
24 24
 
25
-<!-- For more information and to get started, visit the POMA website.  -->
26
-
27 25
 <!-- POMA provides two different Shiny apps both for exploratory data analysis and statistical analysis that implement all POMA functions in two user-friendly web interfaces.      -->
28 26
 
29 27
 <!--   - **POMAShiny**: Shiny version of this package. https://github.com/pcastellanoescuder/POMAShiny   -->
30 28
 <!--   - **POMAcounts**: Shiny version for exploratory and statistical analysis of mass spectrometry spectral counts data and RNAseq data. https://github.com/pcastellanoescuder/POMAcounts    -->
31 29
 
32
-<!-- The [GitHub page](https://github.com/pcastellanoescuder/POMA) is for active development, issue tracking and forking/pulling purposes. To get an overview of the package, see the [*POMA Workflow*](https://pcastellanoescuder.github.io/POMA/articles/POMA-demo.html) vignette.      -->
33
-
34 30
 ## Installation
35 31
 
36
-To install the Bioconductor version:
32
+To install the Bioconductor last release version:
37 33
 
38 34
 ```{r, eval = FALSE}
39 35
 # install.packages("BiocManager")
40 36
 BiocManager::install("POMA")
41 37
 ```
42 38
 
43
-If you need the GitHub version (not recommended), use:
39
+To install the GitHub devel version:
44 40
 
45 41
 ```{r, eval = FALSE}
46 42
 # install.packages("devtools")
47
-devtools::install_github("pcastellanoescuder/POMA")
43
+devtools::install_github("pcastellanoescuder/POMA", ref = "devel")
48 44
 ```
49 45
 
50 46
 ## Citation
51 47
 
52
-Castellano-Escuder et al. POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis. PLoS Comput Biol. 2021 Jul 1;17(7):e1009148. doi: 10.1371/journal.pcbi.1009148. PMID: 34197462; PMCID: PMC8279420.
53
-
54
-<!-- ### Cited In -->
55
-
56
-<!-- Bellio C, Emperador M, Castellano P, et al. GDF15 Is an Eribulin Response Biomarker also Required for Survival of DTP Breast Cancer Cells. Cancers (Basel). 2022 May 23;14(10):2562. doi: 10.3390/cancers14102562. PMID: 35626166; PMCID: PMC9139899. -->
57
-
58
-<!-- González-Domínguez R, Castellano-Escuder P, Lefèvre-Arbogast S, et al. Apolipoprotein E and sex modulate fatty acid metabolism in a prospective observational study of cognitive decline. Alzheimers Res Ther. 2022 Jan 3;14(1):1. doi: 10.1186/s13195-021-00948-8. PMID: 34980257; PMCID: PMC8725342. -->
59
-
60
-<!-- González-Domínguez R, Castellano-Escuder P, Carmona F, et al. Food and Microbiota Metabolites Associate with Cognitive Decline in Older Subjects: A 12-Year Prospective Study. Mol Nutr Food Res. 2021 Dec;65(23):e2100606. doi: 10.1002/mnfr.202100606. Epub 2021 Oct 28. PMID: 34661340. -->
61
-
62
-<!-- Peron G, Gargari G, Meroño T, et al. Crosstalk among intestinal barrier, gut microbiota and serum metabolome after a polyphenol-rich diet in older subjects with "leaky gut": The MaPLE trial. Clin Nutr. 2021 Oct;40(10):5288-5297. doi: 10.1016/j.clnu.2021.08.027. Epub 2021 Sep 9. PMID: 34534897. -->
48
+Castellano-Escuder et al. POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis. _PLoS Comput Biol._ 2021 Jul 1;17(7):e1009148. doi: 10.1371/journal.pcbi.1009148. PMID: 34197462; PMCID: PMC8279420.
49
+
50
+```{bibtex}
51
+@article{castellano2021pomashiny,
52
+  title={POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis},
53
+  author={Castellano-Escuder, Pol and Gonz{\'a}lez-Dom{\'\i}nguez, Ra{\'u}l and Carmona-Pontaque, Francesc and Andr{\'e}s-Lacueva, Cristina and S{\'a}nchez-Pla, Alex},
54
+  journal={PLOS Computational Biology},
55
+  volume={17},
56
+  number={7},
57
+  pages={e1009148},
58
+  year={2021},
59
+  publisher={Public Library of Science San Francisco, CA USA}
60
+}
61
+```
63 62
 
64 63
 ## News
65 64
 
... ...
@@ -17,7 +17,7 @@ v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/li
17 17
 | *BioC* branch                                                           | Status                                                                                                                                                  | Version                                                                                                                                            | Dependencies                                                                                                                                         | Rank                                                                                                                         |
18 18
 |-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
19 19
 | [Release](http://bioconductor.org/packages/release/bioc/html/POMA.html) | [![Bioc release status](https://bioconductor.org/shields/build/release/bioc/POMA.svg)](https://bioconductor.org/checkResults/release/bioc-LATEST/POMA/) | [![BioC released version](https://img.shields.io/badge/release%20version-1.6.0-blue.svg)](https://www.bioconductor.org/packages/POMA)              | [![Dependencies](http://bioconductor.org/shields/dependencies/release/POMA.svg)](http://bioconductor.org/packages/release/bioc/html/POMA.html#since) | [![Rank](http://www.bioconductor.org/shields/downloads/release/POMA.svg)](https://bioconductor.org/packages/stats/bioc/POMA) |
20
-| [Devel](http://bioconductor.org/packages/devel/bioc/html/POMA.html)     | [![Bioc devel status](https://bioconductor.org/shields/build/devel/bioc/POMA.svg)](https://bioconductor.org/checkResults/devel/bioc-LATEST/POMA/)       | [![BioC devel version](https://img.shields.io/badge/devel%20version-1.13.3-blue.svg)](https://bioconductor.org/packages/devel/bioc/html/POMA.html) | [![Dependencies](http://bioconductor.org/shields/dependencies/devel/POMA.svg)](http://bioconductor.org/packages/devel/bioc/html/POMA.html#since)     | [![Rank](http://www.bioconductor.org/shields/downloads/devel/POMA.svg)](https://bioconductor.org/packages/stats/bioc/POMA)   |
20
+| [Devel](http://bioconductor.org/packages/devel/bioc/html/POMA.html)     | [![Bioc devel status](https://bioconductor.org/shields/build/devel/bioc/POMA.svg)](https://bioconductor.org/checkResults/devel/bioc-LATEST/POMA/)       | [![BioC devel version](https://img.shields.io/badge/devel%20version-1.13.4-blue.svg)](https://bioconductor.org/packages/devel/bioc/html/POMA.html) | [![Dependencies](http://bioconductor.org/shields/dependencies/devel/POMA.svg)](http://bioconductor.org/packages/devel/bioc/html/POMA.html#since)     | [![Rank](http://www.bioconductor.org/shields/downloads/devel/POMA.svg)](https://bioconductor.org/packages/stats/bioc/POMA)   |
21 21
 
22 22
 <!-- badges: end -->
23 23
 
... ...
@@ -33,40 +33,45 @@ Bioconductor tools. This approach guarantees maximum flexibility and
33 33
 replicability, making `POMA` an essential asset for researchers handling
34 34
 omics datasets.
35 35
 
36
-<!-- For more information and to get started, visit the POMA website.  -->
37 36
 <!-- POMA provides two different Shiny apps both for exploratory data analysis and statistical analysis that implement all POMA functions in two user-friendly web interfaces.      -->
38 37
 <!--   - **POMAShiny**: Shiny version of this package. https://github.com/pcastellanoescuder/POMAShiny   -->
39 38
 <!--   - **POMAcounts**: Shiny version for exploratory and statistical analysis of mass spectrometry spectral counts data and RNAseq data. https://github.com/pcastellanoescuder/POMAcounts    -->
40
-<!-- The [GitHub page](https://github.com/pcastellanoescuder/POMA) is for active development, issue tracking and forking/pulling purposes. To get an overview of the package, see the [*POMA Workflow*](https://pcastellanoescuder.github.io/POMA/articles/POMA-demo.html) vignette.      -->
41 39
 
42 40
 ## Installation
43 41
 
44
-To install the Bioconductor version:
42
+To install the Bioconductor last release version:
45 43
 
46 44
 ``` r
47 45
 # install.packages("BiocManager")
48 46
 BiocManager::install("POMA")
49 47
 ```
50 48
 
51
-If you need the GitHub version (not recommended), use:
49
+To install the GitHub devel version:
52 50
 
53 51
 ``` r
54 52
 # install.packages("devtools")
55
-devtools::install_github("pcastellanoescuder/POMA")
53
+devtools::install_github("pcastellanoescuder/POMA", ref = "devel")
56 54
 ```
57 55
 
58 56
 ## Citation
59 57
 
60 58
 Castellano-Escuder et al. POMAShiny: A user-friendly web-based workflow
61
-for metabolomics and proteomics data analysis. PLoS Comput Biol. 2021
59
+for metabolomics and proteomics data analysis. *PLoS Comput Biol.* 2021
62 60
 Jul 1;17(7):e1009148. doi: 10.1371/journal.pcbi.1009148. PMID: 34197462;
63 61
 PMCID: PMC8279420.
64 62
 
65
-<!-- ### Cited In -->
66
-<!-- Bellio C, Emperador M, Castellano P, et al. GDF15 Is an Eribulin Response Biomarker also Required for Survival of DTP Breast Cancer Cells. Cancers (Basel). 2022 May 23;14(10):2562. doi: 10.3390/cancers14102562. PMID: 35626166; PMCID: PMC9139899. -->
67
-<!-- González-Domínguez R, Castellano-Escuder P, Lefèvre-Arbogast S, et al. Apolipoprotein E and sex modulate fatty acid metabolism in a prospective observational study of cognitive decline. Alzheimers Res Ther. 2022 Jan 3;14(1):1. doi: 10.1186/s13195-021-00948-8. PMID: 34980257; PMCID: PMC8725342. -->
68
-<!-- González-Domínguez R, Castellano-Escuder P, Carmona F, et al. Food and Microbiota Metabolites Associate with Cognitive Decline in Older Subjects: A 12-Year Prospective Study. Mol Nutr Food Res. 2021 Dec;65(23):e2100606. doi: 10.1002/mnfr.202100606. Epub 2021 Oct 28. PMID: 34661340. -->
69
-<!-- Peron G, Gargari G, Meroño T, et al. Crosstalk among intestinal barrier, gut microbiota and serum metabolome after a polyphenol-rich diet in older subjects with "leaky gut": The MaPLE trial. Clin Nutr. 2021 Oct;40(10):5288-5297. doi: 10.1016/j.clnu.2021.08.027. Epub 2021 Sep 9. PMID: 34534897. -->
63
+``` bibtex
64
+@article{castellano2021pomashiny,
65
+  title={POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis},
66
+  author={Castellano-Escuder, Pol and Gonz{\'a}lez-Dom{\'\i}nguez, Ra{\'u}l and Carmona-Pontaque, Francesc and Andr{\'e}s-Lacueva, Cristina and S{\'a}nchez-Pla, Alex},
67
+  journal={PLOS Computational Biology},
68
+  volume={17},
69
+  number={7},
70
+  pages={e1009148},
71
+  year={2021},
72
+  publisher={Public Library of Science San Francisco, CA USA}
73
+}
74
+```
70 75
 
71 76
 ## News
72 77
 
... ...
@@ -19,7 +19,7 @@ link-citations: true
19 19
 
20 20
 **Compiled date**: `r Sys.Date()`
21 21
 
22
-**Last edited**: 2023-12-07
22
+**Last edited**: 2023-12-14
23 23
 
24 24
 **License**: `r packageDescription("POMA")[["License"]]`
25 25
 
... ...
@@ -44,6 +44,7 @@ BiocManager::install("POMA")
44 44
 
45 45
 ```{r, warning = FALSE, message = FALSE, comment = FALSE}
46 46
 library(POMA)
47
+library(ggtext)
47 48
 library(patchwork)
48 49
 ```
49 50
 
... ...
@@ -19,7 +19,7 @@ link-citations: true
19 19
 
20 20
 **Compiled date**: `r Sys.Date()`
21 21
 
22
-**Last edited**: 2023-12-07
22
+**Last edited**: 2023-12-14
23 23
 
24 24
 **License**: `r packageDescription("POMA")[["License"]]`
25 25
 
... ...
@@ -44,6 +44,7 @@ BiocManager::install("POMA")
44 44
 
45 45
 ```{r, warning = FALSE, message = FALSE}
46 46
 library(POMA)
47
+library(ggtext)
47 48
 ```
48 49
 
49 50
 # The POMA Workflow
... ...
@@ -114,25 +115,21 @@ normalized
114 115
 <!-- `PomaBoxplots` generates boxplots for all samples or features of a `SummarizedExperiment` object. Here, we can compare objects before and after normalization step.     -->
115 116
 
116 117
 ```{r, message = FALSE}
117
-PomaBoxplots(imputed, 
118
-             x = "samples") # data before normalization
118
+PomaBoxplots(imputed, x = "samples") # data before normalization
119 119
 ```
120 120
 
121 121
 ```{r, message = FALSE}
122
-PomaBoxplots(normalized, 
123
-             x = "samples") # data after normalization
122
+PomaBoxplots(normalized, x = "samples") # data after normalization
124 123
 ```
125 124
 
126 125
 <!-- On the other hand, `PomaDensity` shows the distribution of all features before and after the normalization process.     -->
127 126
 
128 127
 ```{r, message = FALSE}
129
-PomaDensity(imputed, 
130
-            x = "features") # data before normalization
128
+PomaDensity(imputed, x = "features") # data before normalization
131 129
 ```
132 130
 
133 131
 ```{r, message = FALSE}
134
-PomaDensity(normalized, 
135
-            x = "features") # data after normalization
132
+PomaDensity(normalized, x = "features") # data after normalization
136 133
 ```
137 134
 
138 135
 ### Outlier Detection