git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/OncoSimulR@109070 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -2,7 +2,7 @@ Package: OncoSimulR |
2 | 2 |
Type: Package |
3 | 3 |
Title: Forward Genetic Simulation of Cancer Progresion with Epistasis |
4 | 4 |
Version: 1.99.8 |
5 |
-Date: 2015-10-01 |
|
5 |
+Date: 2015-30-01 |
|
6 | 6 |
Author: Ramon Diaz-Uriarte. |
7 | 7 |
Maintainer: Ramon Diaz-Uriarte <rdiaz02@gmail.com> |
8 | 8 |
Description: Functions for forward population genetic simulation in |
... | ... |
@@ -648,8 +648,8 @@ void addToPhylog(PhylogName& phylog, |
648 | 648 |
|
649 | 649 |
static void nr_innerBNB(const fitnessEffectsAll& fitnessEffects, |
650 | 650 |
const double& initSize, |
651 |
- const double& K, |
|
652 |
- const double& alpha, |
|
651 |
+ const double& K, |
|
652 |
+ const double& alpha, |
|
653 | 653 |
const double& genTime, |
654 | 654 |
const TypeModel typeModel, |
655 | 655 |
const int& mutatorGenotype, |
... | ... |
@@ -665,28 +665,28 @@ static void nr_innerBNB(const fitnessEffectsAll& fitnessEffects, |
665 | 665 |
const int& detectionDrivers, |
666 | 666 |
const double& minDetectDrvCloneSz, |
667 | 667 |
const double& extraTime, |
668 |
- const int& verbosity, |
|
669 |
- double& totPopSize, |
|
670 |
- double& e1, |
|
671 |
- double& n_0, |
|
672 |
- double& n_1, |
|
673 |
- double& ratioForce, |
|
674 |
- double& currentTime, |
|
675 |
- int& speciesFS, |
|
676 |
- int& outNS_i, |
|
677 |
- int& iter, |
|
678 |
- std::vector<Genotype>& genot_out, |
|
679 |
- std::vector<double>& popSizes_out, |
|
680 |
- std::vector<int>& index_out, |
|
681 |
- std::vector<double>& time_out, |
|
682 |
- std::vector<double>& sampleTotPopSize, |
|
683 |
- std::vector<double>& sampleLargestPopSize, |
|
684 |
- std::vector<int>& sampleMaxNDr, |
|
685 |
- std::vector<int>& sampleNDrLargestPop, |
|
686 |
- bool& reachDetection, |
|
668 |
+ const int& verbosity, |
|
669 |
+ double& totPopSize, |
|
670 |
+ double& e1, |
|
671 |
+ double& n_0, |
|
672 |
+ double& n_1, |
|
673 |
+ double& ratioForce, |
|
674 |
+ double& currentTime, |
|
675 |
+ int& speciesFS, |
|
676 |
+ int& outNS_i, |
|
677 |
+ int& iter, |
|
678 |
+ std::vector<Genotype>& genot_out, |
|
679 |
+ std::vector<double>& popSizes_out, |
|
680 |
+ std::vector<int>& index_out, |
|
681 |
+ std::vector<double>& time_out, |
|
682 |
+ std::vector<double>& sampleTotPopSize, |
|
683 |
+ std::vector<double>& sampleLargestPopSize, |
|
684 |
+ std::vector<int>& sampleMaxNDr, |
|
685 |
+ std::vector<int>& sampleNDrLargestPop, |
|
686 |
+ bool& reachDetection, |
|
687 | 687 |
std::mt19937& ran_gen, |
688 | 688 |
// randutils::mt19937_rng& ran_gen, |
689 |
- double& runningWallTime, |
|
689 |
+ double& runningWallTime, |
|
690 | 690 |
bool& hittedWallTime, |
691 | 691 |
const std::map<int, std::string>& intName, |
692 | 692 |
const fitness_as_genes& genesInFitness, |
... | ... |
@@ -1287,6 +1287,8 @@ static void nr_innerBNB(const fitnessEffectsAll& fitnessEffects, |
1287 | 1287 |
adjust_fitness_B, adjust_fitness_MF); |
1288 | 1288 |
|
1289 | 1289 |
if(tmpParam.birth > 0.0) { |
1290 |
+ // if(keepMutationTimes) |
|
1291 |
+ // update_mutation_freqs(newMutation, currentTime, mutation_freq_at); |
|
1290 | 1292 |
//FIXME: phylog |
1291 | 1293 |
if(keepPhylog) |
1292 | 1294 |
addToPhylog(phylog, Genotypes[nextMutant], newGenotype, currentTime, |
... | ... |
@@ -164,7 +164,7 @@ test_that("initMutant non lexicog order", |
164 | 164 |
expect_true( "m, d, f_u" %in% cn ) |
165 | 165 |
}) |
166 | 166 |
|
167 |
- |
|
167 |
+## FIXME: we could use stronger test: we will never see M > D |
|
168 | 168 |
test_that("initMutant with oncoSimulSample", { |
169 | 169 |
o3init <- allFitnessEffects(orderEffects = c( |
170 | 170 |
"M > D > F" = 0.99, |
... | ... |
@@ -187,7 +187,7 @@ test_that("initMutant with oncoSimulSample", { |
187 | 187 |
mu = 5e-5, finalTime = 5000, |
188 | 188 |
detectionDrivers = 2, |
189 | 189 |
onlyCancer = TRUE, |
190 |
- initSize = 10, |
|
190 |
+ initSize = 500, |
|
191 | 191 |
initMutant = c("z > d"), |
192 | 192 |
thresholdWhole = 1 ## check presence of initMutant |
193 | 193 |
) |
... | ... |
@@ -202,52 +202,56 @@ test_that("initMutant with oncoSimulSample", { |
202 | 202 |
as.character(ossI$popSummary$OccurringDrivers)), 1:4) |
203 | 203 |
}) |
204 | 204 |
|
205 |
-## This fails less than 1 in /10000. Handle reliably |
|
206 |
-## test_that("initMutant with oncoSimulSample, 2", { |
|
207 |
-## o3init <- allFitnessEffects(orderEffects = c( |
|
208 |
-## "M > D > F" = 0.99, |
|
209 |
-## "D > M > F" = 0.2, |
|
210 |
-## "D > M" = 0.1, |
|
211 |
-## "M > D" = 0.9, |
|
212 |
-## "M > A" = 0.25), |
|
213 |
-## noIntGenes = c("u" = 0.01, |
|
214 |
-## "v" = 0.01, |
|
215 |
-## "w" = 0.001, |
|
216 |
-## "x" = 0.0001, |
|
217 |
-## "y" = -0.0001, |
|
218 |
-## "z" = -0.001), |
|
219 |
-## geneToModule = |
|
220 |
-## c("Root" = "Root", |
|
221 |
-## "A" = "a", |
|
222 |
-## "M" = "m", |
|
223 |
-## "F" = "f", |
|
224 |
-## "D" = "d") ) |
|
225 |
-## ossI <- oncoSimulSample(4, |
|
226 |
-## o3init, model = "Exp", |
|
227 |
-## mu = 5e-5, finalTime = 5000, |
|
228 |
-## detectionDrivers = 3, |
|
229 |
-## onlyCancer = TRUE, |
|
230 |
-## initSize = 10, |
|
231 |
-## initMutant = c("z > a"), |
|
232 |
-## thresholdWhole = 1 ## check presence of initMutant |
|
233 |
-## ) |
|
234 |
-## ssp <- ossI$popSample |
|
235 |
-## expect_equal(ssp[, c("a", "z")], |
|
236 |
-## matrix(1, nrow = 4, ncol = 2, |
|
237 |
-## dimnames = list(NULL, c("a", "z")))) |
|
238 |
-## expect_false(sum(ssp) == prod(dim(ssp))) ## we don't just have all of |
|
239 |
-## ## them, which would turn the |
|
240 |
-## ## previous into irrelevant |
|
241 |
-## expect_equal(grep("a", |
|
242 |
-## as.character(ossI$popSummary$OccurringDrivers)), 1:4) |
|
243 |
-## }) |
|
205 |
+ |
|
206 |
+test_that("initMutant with oncoSimulSample, 2", { |
|
207 |
+ o3init <- allFitnessEffects(orderEffects = c( |
|
208 |
+ "M > D > F" = 0.99, |
|
209 |
+ "D > M > F" = 0.2, |
|
210 |
+ "D > M" = 0.1, |
|
211 |
+ "M > D" = 0.9, |
|
212 |
+ "M > A" = 0.25, |
|
213 |
+ "A > H" = 0.2, |
|
214 |
+ "A > G" = 0.3), |
|
215 |
+ noIntGenes = c("u" = 0.1, |
|
216 |
+ "v" = 0.2, |
|
217 |
+ "w" = 0.001, |
|
218 |
+ "x" = 0.0001, |
|
219 |
+ "y" = -0.0001, |
|
220 |
+ "z" = -0.001), |
|
221 |
+ geneToModule = |
|
222 |
+ c("Root" = "Root", |
|
223 |
+ "A" = "a", |
|
224 |
+ "M" = "m", |
|
225 |
+ "F" = "f", |
|
226 |
+ "D" = "d", |
|
227 |
+ "H" = "h", |
|
228 |
+ "G" = "g") ) |
|
229 |
+ ossI <- oncoSimulSample(4, |
|
230 |
+ o3init, model = "Exp", |
|
231 |
+ mu = 5e-5, finalTime = 5000, |
|
232 |
+ detectionDrivers = 3, |
|
233 |
+ onlyCancer = TRUE, |
|
234 |
+ initSize = 500, |
|
235 |
+ initMutant = c("z > a"), |
|
236 |
+ thresholdWhole = 1 ## check presence of initMutant |
|
237 |
+ ) |
|
238 |
+ ssp <- ossI$popSample |
|
239 |
+ expect_equal(ssp[, c("a", "z")], |
|
240 |
+ matrix(1, nrow = 4, ncol = 2, |
|
241 |
+ dimnames = list(NULL, c("a", "z")))) |
|
242 |
+ expect_false(sum(ssp) == prod(dim(ssp))) ## we don't just have all of |
|
243 |
+ ## them, which would turn the |
|
244 |
+ ## previous into irrelevant |
|
245 |
+ expect_equal(grep("a", |
|
246 |
+ as.character(ossI$popSummary$OccurringDrivers)), 1:4) |
|
247 |
+}) |
|
244 | 248 |
|
245 | 249 |
|
246 | 250 |
test_that("initMutant with oncoSimulPop", { |
247 | 251 |
o3init <- allFitnessEffects(orderEffects = c( |
248 | 252 |
"M > D > F" = 0.99, |
249 | 253 |
"D > M > F" = 0.2, |
250 |
- "D > M" = 0.1, |
|
254 |
+ "D > M" = 0.2, |
|
251 | 255 |
"M > D" = 0.9), |
252 | 256 |
noIntGenes = c("u" = 0.01, |
253 | 257 |
"v" = 0.01, |
... | ... |
@@ -262,11 +266,11 @@ test_that("initMutant with oncoSimulPop", { |
262 | 266 |
"D" = "d") ) |
263 | 267 |
ospI <- oncoSimulPop(4, |
264 | 268 |
o3init, model = "Exp", |
265 |
- mu = 5e-5, finalTime = 1000, |
|
269 |
+ mu = 5e-5, finalTime = 5000, |
|
266 | 270 |
detectionDrivers = 3, |
267 | 271 |
onlyCancer = TRUE, |
268 | 272 |
keepPhylog = TRUE, |
269 |
- initSize = 10, |
|
273 |
+ initSize = 500, |
|
270 | 274 |
initMutant = c("d > m > y"), |
271 | 275 |
mc.cores = 2 |
272 | 276 |
) |
... | ... |
@@ -302,7 +306,7 @@ test_that("initMutant with oncoSimulPop, 2", { |
302 | 306 |
"D > M > F" = 0.2, |
303 | 307 |
"D > M" = 0.1, |
304 | 308 |
"M > D" = 0.9), |
305 |
- noIntGenes = c("u" = 0.01, |
|
309 |
+ noIntGenes = c("u" = 0.01, |
|
306 | 310 |
"v" = 0.01, |
307 | 311 |
"w" = 0.001, |
308 | 312 |
"x" = 0.0001, |
... | ... |
@@ -319,7 +323,7 @@ test_that("initMutant with oncoSimulPop, 2", { |
319 | 323 |
detectionDrivers = 4, ## yes, reach end |
320 | 324 |
onlyCancer = FALSE, |
321 | 325 |
keepPhylog = TRUE, |
322 |
- initSize = 10, |
|
326 |
+ initSize = 100, |
|
323 | 327 |
initMutant = c("m > v > d"), |
324 | 328 |
mc.cores = 2 |
325 | 329 |
) |
... | ... |
@@ -164,7 +164,7 @@ test_that("exercising oncoSimulSample, new format", { |
164 | 164 |
test_that("check error unknown timeSample", { |
165 | 165 |
data(examplePosets) |
166 | 166 |
p701 <- examplePosets[["p701"]] |
167 |
- r1 <- oncoSimulIndiv(p701, onlyCancer = TRUE) |
|
167 |
+ r1 <- oncoSimulIndiv(p701, onlyCancer = TRUE, max.num.tries = 5000) |
|
168 | 168 |
expect_error(samplePop(r1, timeSample = "uniformo"), |
169 | 169 |
"Unknown timeSample option") |
170 | 170 |
expect_error(samplePop(r1, timeSample = "uni"), |
... | ... |
@@ -182,7 +182,7 @@ test_that("check error unknown timeSample", { |
182 | 182 |
test_that("check error unknown typeSample", { |
183 | 183 |
data(examplePosets) |
184 | 184 |
p701 <- examplePosets[["p701"]] |
185 |
- r1 <- oncoSimulIndiv(p701, onlyCancer = TRUE) |
|
185 |
+ r1 <- oncoSimulIndiv(p701, onlyCancer = TRUE, max.num.tries = 5000) |
|
186 | 186 |
expect_error(samplePop(r1, typeSample = "uniformo"), |
187 | 187 |
"Unknown typeSample option") |
188 | 188 |
expect_error(samplePop(r1, typeSample = "uni"), |
... | ... |
@@ -6,7 +6,7 @@ nindiv <- 4 |
6 | 6 |
|
7 | 7 |
|
8 | 8 |
test_that("oncoSimulSample success with large num tries", { |
9 |
- p1 <- oncoSimulSample(nindiv, p701, max.num.tries = 200 * nindiv, |
|
9 |
+ p1 <- oncoSimulSample(nindiv, p701, max.num.tries = 5000 * nindiv, |
|
10 | 10 |
onlyCancer = TRUE) |
11 | 11 |
expect_true(p1$probCancer < 1) |
12 | 12 |
expect_true(p1$attemptsUsed > nindiv) |
... | ... |
@@ -37,7 +37,7 @@ test_that("oncoSimulSample exits with minimal num tries", { |
37 | 37 |
|
38 | 38 |
test_that("oncoSimulSample exits with small num tries", { |
39 | 39 |
p6 <- oncoSimulSample(nindiv, p701, |
40 |
- max.num.tries = nindiv + 4, |
|
40 |
+ max.num.tries = nindiv + 2, |
|
41 | 41 |
onlyCancer = TRUE) |
42 | 42 |
expect_true(p6$HittedMaxTries) |
43 | 43 |
expect_true(is.na(p6$popSummary)) |
... | ... |
@@ -197,13 +197,13 @@ test_that("exercising the sampling code, v2 objects", { |
197 | 197 |
"F" = "f1, f2, f3", |
198 | 198 |
"D" = "d1, d2") ) |
199 | 199 |
o1 <- oncoSimulIndiv(oi, detectionSize = 1e4, |
200 |
- onlyCancer = TRUE) |
|
200 |
+ onlyCancer = TRUE, |
|
201 |
+ max.num.tries = 5000) |
|
201 | 202 |
o4 <- oncoSimulPop(2, |
202 | 203 |
oi, |
203 | 204 |
detectionSize = 1e4, |
204 |
- onlyCancer = TRUE) |
|
205 |
- ## many of them are generating warnings, because sampling |
|
206 |
- ## with pop size of 0. That is OK. |
|
205 |
+ onlyCancer = TRUE, |
|
206 |
+ max.num.tries = 5000) |
|
207 | 207 |
expect_message(samplePop(o1), |
208 | 208 |
"Subjects by Genes matrix of 1 subjects and 10 genes") |
209 | 209 |
expect_message(samplePop(o1, typeSample = "single", |
... | ... |
@@ -242,14 +242,14 @@ test_that("exercising the sampling code, v2 objects, more", { |
242 | 242 |
typeDep = "MN") |
243 | 243 |
cbn1 <- allFitnessEffects(cs) |
244 | 244 |
o1 <- oncoSimulIndiv(cbn1, detectionSize = 1e4, |
245 |
- onlyCancer = TRUE) |
|
245 |
+ onlyCancer = TRUE, |
|
246 |
+ max.num.tries = 5000) |
|
246 | 247 |
o4 <- oncoSimulPop(4, |
247 | 248 |
cbn1, |
248 | 249 |
detectionSize = 1e4, |
249 | 250 |
onlyCancer = TRUE, |
250 |
- mc.cores = 2) |
|
251 |
- ## many of them are generating warnings, because sampling |
|
252 |
- ## with pop size of 0. That is OK. |
|
251 |
+ mc.cores = 2, |
|
252 |
+ max.num.tries = 5000) |
|
253 | 253 |
expect_message(samplePop(o1), |
254 | 254 |
"Subjects by Genes matrix of 1 subjects and 6 genes") |
255 | 255 |
expect_message(samplePop(o1, typeSample = "single", |
... | ... |
@@ -1,15 +1,15 @@ |
1 | 1 |
\usepackage[% |
2 |
- shash={ea5bee4}, |
|
3 |
- lhash={ea5bee4855766a04a04786475d269790a28c8373}, |
|
2 |
+ shash={d3b5a5a}, |
|
3 |
+ lhash={d3b5a5acc1dd65694d086183fbf8b7fd2919c025}, |
|
4 | 4 |
authname={ramon diaz-uriarte (at Bufo)}, |
5 | 5 |
authemail={rdiaz02@gmail.com}, |
6 |
- authsdate={2015-09-27}, |
|
7 |
- authidate={2015-09-27 14:25:22 +0200}, |
|
8 |
- authudate={1443356722}, |
|
6 |
+ authsdate={2015-10-01}, |
|
7 |
+ authidate={2015-10-01 14:42:40 +0200}, |
|
8 |
+ authudate={1443703360}, |
|
9 | 9 |
commname={ramon diaz-uriarte (at Bufo)}, |
10 | 10 |
commemail={rdiaz02@gmail.com}, |
11 |
- commsdate={2015-09-27}, |
|
12 |
- commidate={2015-09-27 14:25:22 +0200}, |
|
13 |
- commudate={1443356722}, |
|
11 |
+ commsdate={2015-10-01}, |
|
12 |
+ commidate={2015-10-01 14:42:40 +0200}, |
|
13 |
+ commudate={1443703360}, |
|
14 | 14 |
refnames={ (HEAD -> master)} |
15 | 15 |
]{gitsetinfo} |
16 | 16 |
\ No newline at end of file |