git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/OncoSimulR@109102 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -538,7 +538,7 @@ to be detected. For \code{oncoSimulSample} this can be a vector. |
538 | 538 |
as labels for the genes, you will see numbers (however, as a character |
539 | 539 |
string).} |
540 | 540 |
|
541 |
- |
|
541 |
+%% Fixme: mention probCancer is not a binomial, but a negative binomial. |
|
542 | 542 |
|
543 | 543 |
|
544 | 544 |
} |
... | ... |
@@ -777,6 +777,7 @@ test_that("long example OK", { |
777 | 777 |
"H" = "h1, h2", "I" = "i1", |
778 | 778 |
"J" = "j1, j2", "K" = "k1, k2", "M" = "m1") |
779 | 779 |
set.seed(1) ## for repeatability |
780 |
+ ## These are seeds in R; no problems with different compilers, etc. |
|
780 | 781 |
noint <- rexp(5, 10) |
781 | 782 |
names(noint) <- paste0("n", 1:5) |
782 | 783 |
fea <- allFitnessEffects(rT = p4, epistasis = epist, orderEffects = oe, |
... | ... |
@@ -2,11 +2,13 @@ data(examplePosets) |
2 | 2 |
|
3 | 3 |
p701 <- examplePosets[["p701"]] |
4 | 4 |
|
5 |
-nindiv <- 4 |
|
6 |
- |
|
7 | 5 |
|
8 | 6 |
test_that("oncoSimulSample success with large num tries", { |
9 |
- p1 <- oncoSimulSample(nindiv, p701, max.num.tries = 5000 * nindiv, |
|
7 |
+ ## If nindiv small, sometimes you reach cancer at first try in every |
|
8 |
+ ## indiv. |
|
9 |
+ nindiv <- 500 |
|
10 |
+ p1 <- oncoSimulSample(nindiv, p701, |
|
11 |
+ max.num.tries = 5000 * nindiv, |
|
10 | 12 |
onlyCancer = TRUE) |
11 | 13 |
expect_true(p1$probCancer < 1) |
12 | 14 |
expect_true(p1$attemptsUsed > nindiv) |
... | ... |
@@ -15,7 +17,9 @@ test_that("oncoSimulSample success with large num tries", { |
15 | 17 |
|
16 | 18 |
|
17 | 19 |
|
20 |
+ |
|
18 | 21 |
test_that("oncoSimulSample success when no onlyCancer", { |
22 |
+ nindiv <- 4 |
|
19 | 23 |
p4 <- oncoSimulSample(nindiv, p701, |
20 | 24 |
max.num.tries = nindiv, |
21 | 25 |
onlyCancer = FALSE) |
... | ... |
@@ -27,6 +31,7 @@ test_that("oncoSimulSample success when no onlyCancer", { |
27 | 31 |
|
28 | 32 |
|
29 | 33 |
test_that("oncoSimulSample exits with minimal num tries", { |
34 |
+ nindiv <- 50 |
|
30 | 35 |
p5 <- oncoSimulSample(nindiv, p701, |
31 | 36 |
initSize = 10, |
32 | 37 |
finalTime = 50, |
... | ... |
@@ -38,10 +43,11 @@ test_that("oncoSimulSample exits with minimal num tries", { |
38 | 43 |
|
39 | 44 |
|
40 | 45 |
test_that("oncoSimulSample exits with small num tries", { |
46 |
+ nindiv <- 50 |
|
41 | 47 |
p6 <- oncoSimulSample(nindiv, p701, |
42 | 48 |
initSize = 10, |
43 | 49 |
finalTime = 50, |
44 |
- max.num.tries = nindiv + 1, |
|
50 |
+ max.num.tries = nindiv + 2, |
|
45 | 51 |
onlyCancer = TRUE) |
46 | 52 |
expect_true(p6$HittedMaxTries) |
47 | 53 |
expect_true(is.na(p6$popSummary)) |
... | ... |
@@ -5,15 +5,25 @@ data(examplesFitnessEffects) |
5 | 5 |
|
6 | 6 |
## sometimes cancer is not reached. No problem. |
7 | 7 |
|
8 |
+## Very rarely, popSize > 1e15, and we get an exception. Decrease |
|
9 |
+## sampleEvery. And e2 only has two genes. |
|
10 |
+ |
|
8 | 11 |
for(i in 1:length(examplesFitnessEffects)) { |
9 | 12 |
cat(paste("\n Doing i = ", i , " name = ", |
10 | 13 |
names(examplesFitnessEffects)[i], "\n")) |
14 |
+ if (names(examplesFitnessEffects)[16] == "e2") { |
|
15 |
+ detectionDrv <- 2 |
|
16 |
+ sE <- 0.05 |
|
17 |
+ } else { |
|
18 |
+ detectionDrv <- 4 |
|
19 |
+ sE <- 2 |
|
20 |
+ } |
|
11 | 21 |
tmp <- oncoSimulIndiv(examplesFitnessEffects[[i]], |
12 | 22 |
model = "Bozic", |
13 | 23 |
mu = 1e-6, |
14 | 24 |
detectionSize = 1e8, |
15 |
- detectionDrivers = 4, |
|
16 |
- sampleEvery = 2, |
|
25 |
+ detectionDrivers = detectionDrv, |
|
26 |
+ sampleEvery = sE, |
|
17 | 27 |
max.num.tries = 100, |
18 | 28 |
initSize = 2000, |
19 | 29 |
onlyCancer = FALSE) |
... | ... |
@@ -23,12 +33,19 @@ for(i in 1:length(examplesFitnessEffects)) { |
23 | 33 |
for(i in 1:length(examplesFitnessEffects)) { |
24 | 34 |
cat(paste("\n Doing i = ", i , " name = ", |
25 | 35 |
names(examplesFitnessEffects)[i], "\n")) |
36 |
+ if (names(examplesFitnessEffects)[16] == "e2") { |
|
37 |
+ detectionDrv <- 2 |
|
38 |
+ sE <- 0.05 |
|
39 |
+ } else { |
|
40 |
+ detectionDrv <- 4 |
|
41 |
+ sE <- 2 |
|
42 |
+ } |
|
26 | 43 |
tmp <- oncoSimulIndiv(examplesFitnessEffects[[i]], |
27 | 44 |
model = "Exp", |
28 | 45 |
mu = 1e-6, |
29 | 46 |
detectionSize = 1e8, |
30 |
- detectionDrivers = 4, |
|
31 |
- sampleEvery = 2, |
|
47 |
+ detectionDrivers = detectionDrv, |
|
48 |
+ sampleEvery = sE, |
|
32 | 49 |
max.num.tries = 100, |
33 | 50 |
initSize = 2000, |
34 | 51 |
onlyCancer = FALSE) |
... | ... |
@@ -37,8 +54,6 @@ for(i in 1:length(examplesFitnessEffects)) { |
37 | 54 |
|
38 | 55 |
|
39 | 56 |
for(i in 1:length(examplesFitnessEffects)) { |
40 |
- cat(paste("\n Doing i = ", i , " name = ", |
|
41 |
- names(examplesFitnessEffects)[i], "\n")) |
|
42 | 57 |
tmp <- oncoSimulIndiv(examplesFitnessEffects[[i]], |
43 | 58 |
model = "McFL", |
44 | 59 |
mu = 5e-6, |
... | ... |
@@ -57,8 +72,16 @@ for(i in 1:length(examplesFitnessEffects)) { |
57 | 72 |
for(i in 1:length(examplesFitnessEffects)) { |
58 | 73 |
cat(paste("\n Doing i = ", i , " name = ", |
59 | 74 |
names(examplesFitnessEffects)[i], "\n")) |
75 |
+ cat(paste("\n Doing i = ", i , " name = ", |
|
76 |
+ names(examplesFitnessEffects)[i], "\n")) |
|
77 |
+ if (names(examplesFitnessEffects)[16] == "e2") { |
|
78 |
+ sE <- 0.05 |
|
79 |
+ } else { |
|
80 |
+ sE <- 1 |
|
81 |
+ } |
|
60 | 82 |
tmp <- oncoSimulSample(4, examplesFitnessEffects[[i]], |
61 |
- onlyCancer = FALSE) |
|
83 |
+ onlyCancer = FALSE, |
|
84 |
+ sampleEvery = sE) |
|
62 | 85 |
expect_true(inherits(tmp, "list")) |
63 | 86 |
} |
64 | 87 |
|
... | ... |
@@ -67,8 +90,17 @@ for(i in 1:length(examplesFitnessEffects)) { |
67 | 90 |
for(i in 1:length(examplesFitnessEffects)) { |
68 | 91 |
cat(paste("\n Doing i = ", i , " name = ", |
69 | 92 |
names(examplesFitnessEffects)[i], "\n")) |
93 |
+ if (names(examplesFitnessEffects)[16] == "e2") { |
|
94 |
+ detectionDrv <- 2 |
|
95 |
+ sE <- 0.05 |
|
96 |
+ } else { |
|
97 |
+ detectionDrv <- 4 |
|
98 |
+ sE <- 2 |
|
99 |
+ } |
|
70 | 100 |
tmp <- oncoSimulPop(4, examplesFitnessEffects[[i]], |
71 | 101 |
onlyCancer = FALSE, |
102 |
+ detectionDrivers = detectionDrv, |
|
103 |
+ sampleEvery = sE, |
|
72 | 104 |
mc.cores = 2) |
73 | 105 |
expect_true(inherits(tmp, "oncosimulpop")) |
74 | 106 |
tmp2 <- samplePop(tmp) |
... | ... |
@@ -1,15 +1,15 @@ |
1 | 1 |
\usepackage[% |
2 |
- shash={2119409}, |
|
3 |
- lhash={2119409e5d31dac53d3c0b23928336e598abaef8}, |
|
4 |
- authname={ramon diaz-uriarte (at Bufo)}, |
|
2 |
+ shash={64e7888}, |
|
3 |
+ lhash={64e788807673dc53fae66cf103085fd0b76cbe0c}, |
|
4 |
+ authname={Ramon Diaz-Uriarte (at Coleonyx)}, |
|
5 | 5 |
authemail={rdiaz02@gmail.com}, |
6 |
- authsdate={2015-10-01}, |
|
7 |
- authidate={2015-10-01 17:30:24 +0200}, |
|
8 |
- authudate={1443713424}, |
|
9 |
- commname={ramon diaz-uriarte (at Bufo)}, |
|
6 |
+ authsdate={2015-10-02}, |
|
7 |
+ authidate={2015-10-02 12:15:15 +0200}, |
|
8 |
+ authudate={1443780915}, |
|
9 |
+ commname={Ramon Diaz-Uriarte (at Coleonyx)}, |
|
10 | 10 |
commemail={rdiaz02@gmail.com}, |
11 |
- commsdate={2015-10-01}, |
|
12 |
- commidate={2015-10-01 17:30:24 +0200}, |
|
13 |
- commudate={1443713424}, |
|
11 |
+ commsdate={2015-10-02}, |
|
12 |
+ commidate={2015-10-02 12:15:15 +0200}, |
|
13 |
+ commudate={1443780915}, |
|
14 | 14 |
refnames={ (HEAD -> master)} |
15 | 15 |
]{gitsetinfo} |
16 | 16 |
\ No newline at end of file |