Browse code

further test hardening

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/OncoSimulR@109102 bc3139a8-67e5-0310-9ffc-ced21a209358

Ramon Diaz-Uriarte authored on 02/10/2015 13:06:43
Showing 5 changed files

... ...
@@ -538,7 +538,7 @@ to be detected.  For \code{oncoSimulSample} this can be a vector.
538 538
   as labels for the genes, you will see numbers (however, as a character
539 539
   string).}
540 540
 
541
-
541
+%% Fixme: mention probCancer is not a binomial, but a negative binomial.
542 542
 
543 543
 
544 544
 }
... ...
@@ -777,6 +777,7 @@ test_that("long example OK", {
777 777
                  "H" = "h1, h2", "I" = "i1",
778 778
                  "J" = "j1, j2", "K" = "k1, k2", "M" = "m1")
779 779
     set.seed(1) ## for repeatability
780
+    ## These are seeds in R; no problems with different compilers, etc.
780 781
     noint <- rexp(5, 10)
781 782
     names(noint) <- paste0("n", 1:5)
782 783
     fea <- allFitnessEffects(rT = p4, epistasis = epist, orderEffects = oe,
... ...
@@ -2,11 +2,13 @@ data(examplePosets)
2 2
 
3 3
 p701 <- examplePosets[["p701"]]
4 4
 
5
-nindiv <- 4
6
-
7 5
 
8 6
 test_that("oncoSimulSample success with large num tries", {
9
-    p1 <- oncoSimulSample(nindiv, p701, max.num.tries = 5000 * nindiv,
7
+    ## If nindiv small, sometimes you reach cancer at first try in every
8
+    ## indiv.
9
+    nindiv <- 500
10
+    p1 <- oncoSimulSample(nindiv, p701,
11
+                          max.num.tries = 5000 * nindiv,
10 12
                           onlyCancer = TRUE)
11 13
     expect_true(p1$probCancer < 1)
12 14
     expect_true(p1$attemptsUsed > nindiv)
... ...
@@ -15,7 +17,9 @@ test_that("oncoSimulSample success with large num tries", {
15 17
 
16 18
 
17 19
 
20
+
18 21
 test_that("oncoSimulSample success when no onlyCancer", {
22
+    nindiv <- 4
19 23
     p4 <- oncoSimulSample(nindiv, p701,
20 24
                           max.num.tries = nindiv,
21 25
                           onlyCancer = FALSE)
... ...
@@ -27,6 +31,7 @@ test_that("oncoSimulSample success when no onlyCancer", {
27 31
 
28 32
 
29 33
 test_that("oncoSimulSample exits with minimal num tries", {
34
+    nindiv <- 50
30 35
     p5 <- oncoSimulSample(nindiv, p701,
31 36
                           initSize = 10,
32 37
                           finalTime = 50,
... ...
@@ -38,10 +43,11 @@ test_that("oncoSimulSample exits with minimal num tries", {
38 43
 
39 44
 
40 45
 test_that("oncoSimulSample exits with small num tries", {
46
+    nindiv <- 50
41 47
     p6 <- oncoSimulSample(nindiv, p701,
42 48
                           initSize = 10,
43 49
                           finalTime = 50,
44
-                          max.num.tries = nindiv + 1,
50
+                          max.num.tries = nindiv + 2,
45 51
                           onlyCancer = TRUE)
46 52
     expect_true(p6$HittedMaxTries)
47 53
     expect_true(is.na(p6$popSummary))
... ...
@@ -5,15 +5,25 @@ data(examplesFitnessEffects)
5 5
 
6 6
 ## sometimes cancer is not reached. No problem.
7 7
 
8
+## Very rarely, popSize > 1e15, and we get an exception. Decrease
9
+## sampleEvery. And e2 only has two genes.
10
+
8 11
 for(i in 1:length(examplesFitnessEffects)) {
9 12
     cat(paste("\n Doing i = ", i , " name = ",
10 13
               names(examplesFitnessEffects)[i], "\n"))
14
+    if (names(examplesFitnessEffects)[16] == "e2") {
15
+        detectionDrv <- 2
16
+        sE <- 0.05
17
+    } else {
18
+        detectionDrv <- 4
19
+        sE <- 2
20
+    }
11 21
     tmp <-  oncoSimulIndiv(examplesFitnessEffects[[i]],
12 22
                            model = "Bozic", 
13 23
                            mu = 1e-6,
14 24
                            detectionSize = 1e8, 
15
-                           detectionDrivers = 4,
16
-                           sampleEvery = 2,
25
+                           detectionDrivers = detectionDrv,
26
+                           sampleEvery = sE,
17 27
                            max.num.tries = 100,
18 28
                            initSize = 2000,
19 29
                            onlyCancer = FALSE)
... ...
@@ -23,12 +33,19 @@ for(i in 1:length(examplesFitnessEffects)) {
23 33
 for(i in 1:length(examplesFitnessEffects)) {
24 34
     cat(paste("\n Doing i = ", i , " name = ",
25 35
               names(examplesFitnessEffects)[i], "\n"))
36
+    if (names(examplesFitnessEffects)[16] == "e2") {
37
+        detectionDrv <- 2
38
+        sE <- 0.05
39
+    } else {
40
+        detectionDrv <- 4
41
+        sE <- 2
42
+    }
26 43
     tmp <-  oncoSimulIndiv(examplesFitnessEffects[[i]],
27 44
                            model = "Exp", 
28 45
                            mu = 1e-6,
29 46
                            detectionSize = 1e8, 
30
-                           detectionDrivers = 4,
31
-                           sampleEvery = 2,
47
+                           detectionDrivers = detectionDrv,
48
+                           sampleEvery = sE,
32 49
                            max.num.tries = 100,
33 50
                            initSize = 2000,
34 51
                            onlyCancer = FALSE)
... ...
@@ -37,8 +54,6 @@ for(i in 1:length(examplesFitnessEffects)) {
37 54
 
38 55
 
39 56
 for(i in 1:length(examplesFitnessEffects)) {
40
-    cat(paste("\n Doing i = ", i , " name = ",
41
-              names(examplesFitnessEffects)[i], "\n"))
42 57
     tmp <-  oncoSimulIndiv(examplesFitnessEffects[[i]],
43 58
                            model = "McFL", 
44 59
                            mu = 5e-6,
... ...
@@ -57,8 +72,16 @@ for(i in 1:length(examplesFitnessEffects)) {
57 72
 for(i in 1:length(examplesFitnessEffects)) {
58 73
     cat(paste("\n Doing i = ", i , " name = ",
59 74
               names(examplesFitnessEffects)[i], "\n"))
75
+        cat(paste("\n Doing i = ", i , " name = ",
76
+              names(examplesFitnessEffects)[i], "\n"))
77
+    if (names(examplesFitnessEffects)[16] == "e2") {
78
+        sE <- 0.05
79
+    } else {
80
+        sE <- 1
81
+    }
60 82
     tmp <-  oncoSimulSample(4, examplesFitnessEffects[[i]],
61
-                            onlyCancer = FALSE)
83
+                            onlyCancer = FALSE,
84
+                            sampleEvery = sE)
62 85
     expect_true(inherits(tmp, "list"))
63 86
 }
64 87
 
... ...
@@ -67,8 +90,17 @@ for(i in 1:length(examplesFitnessEffects)) {
67 90
 for(i in 1:length(examplesFitnessEffects)) {
68 91
     cat(paste("\n Doing i = ", i , " name = ",
69 92
               names(examplesFitnessEffects)[i], "\n"))
93
+    if (names(examplesFitnessEffects)[16] == "e2") {
94
+        detectionDrv <- 2
95
+        sE <- 0.05
96
+    } else {
97
+        detectionDrv <- 4
98
+        sE <- 2
99
+    }
70 100
     tmp <-  oncoSimulPop(4, examplesFitnessEffects[[i]],
71 101
                          onlyCancer = FALSE,
102
+                         detectionDrivers = detectionDrv,
103
+                         sampleEvery = sE,
72 104
                          mc.cores = 2)
73 105
     expect_true(inherits(tmp, "oncosimulpop"))
74 106
     tmp2 <- samplePop(tmp)
... ...
@@ -1,15 +1,15 @@
1 1
 \usepackage[%
2
-		shash={2119409},
3
-		lhash={2119409e5d31dac53d3c0b23928336e598abaef8},
4
-		authname={ramon diaz-uriarte (at Bufo)},
2
+		shash={64e7888},
3
+		lhash={64e788807673dc53fae66cf103085fd0b76cbe0c},
4
+		authname={Ramon Diaz-Uriarte (at Coleonyx)},
5 5
 		authemail={rdiaz02@gmail.com},
6
-		authsdate={2015-10-01},
7
-		authidate={2015-10-01 17:30:24 +0200},
8
-		authudate={1443713424},
9
-		commname={ramon diaz-uriarte (at Bufo)},
6
+		authsdate={2015-10-02},
7
+		authidate={2015-10-02 12:15:15 +0200},
8
+		authudate={1443780915},
9
+		commname={Ramon Diaz-Uriarte (at Coleonyx)},
10 10
 		commemail={rdiaz02@gmail.com},
11
-		commsdate={2015-10-01},
12
-		commidate={2015-10-01 17:30:24 +0200},
13
-		commudate={1443713424},
11
+		commsdate={2015-10-02},
12
+		commidate={2015-10-02 12:15:15 +0200},
13
+		commudate={1443780915},
14 14
 		refnames={ (HEAD -> master)}
15 15
 	]{gitsetinfo}
16 16
\ No newline at end of file