\name{evalAllGenotypes} \alias{evalAllGenotypes} \alias{evalGenotype} \title{ Evaluate fitness of one or all possible genotypes. } \description{ Given a fitnessEffects description, obtain the fitness of a single or all genotypes. } \usage{ evalAllGenotypes(fitnessEffects, order = TRUE, max = 256, addwt = FALSE, model = "") evalGenotype(genotype, fitnessEffects, verbose = FALSE, echo = FALSE, model = "") } \arguments{ \item{genotype}{ (For \code{evalGenotype}). A genotype, as a character vector, with genes separated by "," or ">", or as a numeric vector. Use the same integers or characters used in the fitnessEffects object. This is a genotype in terms of genes, not modules. Using "," or ">" makes no difference: the sequence is always taken as the order in which mutations occurred. Whether order matters or not is encoded in the \code{fitnessEffects} object. } \item{fitnessEffects}{A \code{fitnessEffects} object, as produced by \code{\link{allFitnessEffects}}.} \item{order}{ (For \code{evalAllGenotypes}). Does order matter? If it does, then generate not only all possible combinations of the genes, but all possible permutations for each combination. } \item{max}{ (For \code{evalAllGenotypes}). By default, no output is shown if the number of possible genotypes exceeds the max. Increase as needed. } \item{addwt}{ (For \code{evalAllGenotypes}). Add the wildtype (no mutations) explicitly? } \item{model}{ Either nothing (the default) or "Bozic". If "Bozic" then the fitness effects contribute to decreasing the Death rate. Otherwise Birth rate is shown (and labeled as Fitness). } \item{verbose}{ (For \code{evalGenotype}). If set to TRUE, print out the individual terms that are added to 1 (or subtracted from 1, if \code{model} is "Bozic"). } \item{echo}{ (For \code{evalGenotype}). If set to TRUE, show the input genotype and print out a message with the death rate or fitness value. Useful for some examples, as shown in the vignette. } } \value{ For \code{evalGenotype} either the value of fitness or (if \code{verbose = TRUE}) the value of fitness and its individual components. For \code{evalAllGenotypes} a data frame with two columns, the Genotype and the Fitness (or Death Rate, if Bozic). } \author{ Ramon Diaz-Uriarte } \note{ Fitness is used in a slight abuse of the language. Right now, mutations contribute to the birth rate for all models except Bozic, where they modify the death rate. The general expression for fitness is the usual multiplicative one of \eqn{\prod (1 + s_i)}{(1 + s1) (1 + s2) .. (1 + sn)}, where each \eqn{s_i}{s1,s2} refers to the fitness effect of the given gene. When dealing with death rates, we use \eqn{\prod (1 - s_i)}{(1 - s1) (1 - s2) .. (1 - sn)}. Modules are, of course, taken into account if present (i.e., fitness is specified in terms of modules, but the genotype is specified in terms of genes). } \seealso{ \code{\link{allFitnessEffects}}. } \examples{ # A three-gene epistasis example sa <- 0.1 sb <- 0.15 sc <- 0.2 sab <- 0.3 sbc <- -0.25 sabc <- 0.4 sac <- (1 + sa) * (1 + sc) - 1 E3A <- allFitnessEffects(epistasis = c("A:-B:-C" = sa, "-A:B:-C" = sb, "-A:-B:C" = sc, "A:B:-C" = sab, "-A:B:C" = sbc, "A:-B:C" = sac, "A : B : C" = sabc) ) evalAllGenotypes(E3A, order = FALSE, addwt = FALSE) evalAllGenotypes(E3A, order = FALSE, addwt = TRUE, model = "Bozic") evalGenotype("B, C", E3A, verbose = TRUE) ## Order effects and modules ofe2 <- allFitnessEffects(orderEffects = c("F > D" = -0.3, "D > F" = 0.4), geneToModule = c("Root" = "Root", "F" = "f1, f2, f3", "D" = "d1, d2") ) evalAllGenotypes(ofe2, max = 325)[1:15, ] ## Next two are identical evalGenotype("d1 > d2 > f3", ofe2, verbose = TRUE) evalGenotype("d1 , d2 , f3", ofe2, verbose = TRUE) ## This is different evalGenotype("f3 , d1 , d2", ofe2, verbose = TRUE) ## but identical to this one evalGenotype("f3 > d1 > d2", ofe2, verbose = TRUE) ## Restrictions in mutations as a graph. Modules present. p4 <- data.frame(parent = c(rep("Root", 4), "A", "B", "D", "E", "C", "F"), child = c("A", "B", "D", "E", "C", "C", "F", "F", "G", "G"), s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3), sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)), typeDep = c(rep("--", 4), "XMPN", "XMPN", "MN", "MN", "SM", "SM")) fp4m <- allFitnessEffects(p4, geneToModule = c("Root" = "Root", "A" = "a1", "B" = "b1, b2", "C" = "c1", "D" = "d1, d2", "E" = "e1", "F" = "f1, f2", "G" = "g1")) evalAllGenotypes(fp4m, order = FALSE, max = 1024, addwt = TRUE)[1:15, ] evalGenotype("b1, b2, e1, f2, a1", fp4m, verbose = TRUE) ## Of course, this is identical; b1 and b2 are same module ## and order is not present here evalGenotype("a1, b2, e1, f2", fp4m, verbose = TRUE) evalGenotype("a1 > b2 > e1 > f2", fp4m, verbose = TRUE) ## We can use the exact same integer numeric id codes as in the ## fitnessEffects geneModule component: evalGenotype(c(1L, 3L, 7L, 9L), fp4m, verbose = TRUE) } \keyword{ misc }