4068375e |
## Copyright 2013-2021 Ramon Diaz-Uriarte
|
b137a4a3 |
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
|
fd073de1 |
create_eq_ref <- function(g) {
## "random" gives more prob. to genotypes with
## number of mutated genes close to g/2.
## This gives equal prob to having the reference
## be of any of the possible number of mutated genes.
nm <- sample(g, 1)
ref <- c(rep(1, nm), rep(0, g - nm))
sample(ref)
}
get_magellan_binaries <-
function(names_binaries = c("fl_statistics", "fl_generate", "fl_genchains"))
{
rarch <- Sys.getenv('R_ARCH')
nn_names_binaries <- names_binaries
if(.Platform$OS.type == "windows")
names_binaries <- paste0(names_binaries, ".exe")
if(nzchar(rarch)) {
rarch <- sub("^/", "", rarch)
magellan_binaries <- system.file(package = "OncoSimulR", "exec",
rarch, names_binaries)
} else {
magellan_binaries <- system.file(package = "OncoSimulR", "exec",
names_binaries)
}
names(magellan_binaries) <- nn_names_binaries
return(magellan_binaries)
}
## pkg.env <- new.env()
## ## The next will not install with error
## ## ERROR: hard-coded installation path:
## please report to the package maintainer and use ‘--no-staged-install’
## pkg.env <- c(pkg.env, get_magellan_binaries())
fl_statistics_binary <- function() get_magellan_binaries("fl_statistics")
fl_generate_binary <- function() get_magellan_binaries("fl_generate")
|
b137a4a3 |
|
50a94207 |
rfitness <- function(g, c= 0.5,
sd = 1,
|
b137a4a3 |
mu = 1,
|
50a94207 |
reference = "random", ## "random", "max", or the vector,
## e.g., rep(1, g). If random, a
## random genotype is chosen as
|
fd073de1 |
## reference. If "max" this is rep(1, g)
|
50a94207 |
scale = NULL, ## a two-element vector: min and max
|
b137a4a3 |
wt_is_1 = c("subtract", "divide", "force", "no"),
## wt_is_1 = TRUE, ## wt has fitness 1
|
7c1a570f |
log = FALSE, ## log only makes sense if all values >
|
50a94207 |
## 0. scale with min > 0, and/or set
|
b137a4a3 |
## wt_is_1 = divide
min_accessible_genotypes = NULL,
accessible_th = 0,
|
fd073de1 |
truncate_at_0 = TRUE,
K = 1,
r = TRUE,
|
eb537117 |
i = 0, # Ising, cost incompatibility
I = -1, # Ising, sd for "i"
circular = FALSE, # Ising, circular arrangement
e = 0, # Eggbox, +/- e
E = -1, # Eggbox, noise on "e"
H = -1, # HoC stdev
s = 0.1, # mean multiplivative
S = -1, # SD multiplicative
d = 0, # disminishing/increasing for multiplicative
o = 0, # mean optimum
O = -1, # sd optimum
p = 0, # mean production for non 0 allele (optimum)
P = -1, # sd for p
model = c("RMF", "Additive",
"NK", "Ising", "Eggbox", "Full")) {
|
50a94207 |
## Like Franke et al., 2011 and others of Krug. Very similar to Greene
## and Crona, 2014. And this allows moving from HoC to purely additive
## changing c and sd.
## FIXME future: do this with order too?
## - do not generate a matrix of genotypes but a matrix of ordered genot.
|
b137a4a3 |
wt_is_1 = match.arg(wt_is_1)
|
fd073de1 |
model = match.arg(model)
|
e719a81d |
if(is_null_na(g)) stop("Number of genes argument (g) is null or NA")
|
50a94207 |
m <- generate_matrix_genotypes(g)
|
7c1a570f |
done <- FALSE
|
b137a4a3 |
## attempts <- 0 ## for debugging/tracking purposes
|
7c1a570f |
while(!done) {
|
fd073de1 |
if(model == "RMF") {
## attempts <- attempts + 1
f_r <- rnorm(nrow(m), mean = mu, sd = sd)
if(inherits(reference, "character") && length(reference) == 1) {
if(reference == "random") {
referenceI <- m[sample(nrow(m), 1), ]
} else if(reference == "max") {
referenceI <- rep(1, g)
} else if(reference == "random2") {
referenceI <- create_eq_ref(g)
}
} else {
referenceI <- reference
|
7c1a570f |
}
|
fd073de1 |
d_reference <- apply(m, 1, function(x) sum(abs(x - referenceI)))
f_det <- -c * d_reference
## f_det <- rowSums(m) * slope/nrow(m) ## this is Greene and Krona
fi <- f_r + f_det
|
eb537117 |
} else if (model == "Additive") {
## get fitness effect for mutations in each gene
mutants <-rep(1,g)
## FIXME: Why not just?
## f_single_mut <- rnorm(g, mean = mu, sd = sd)
f_single_mut <- sapply(mutants, FUN = function(x)
rnorm(x, mean = mu, sd = sd))
## find which gene is mutated
m2 <- m == 1
## Sum the fitness effect of that mutation to generate a vector fi with
## the fitness for each mutant condition
fi <- apply(m2, MARGIN = 1, FUN = function (x) sum(x*f_single_mut))
## remove unnecessary variables
rm (f_single_mut, m2)
|
fd073de1 |
} else if(model == "NK") {
if(K >= g) stop("It makes no sense to have K >= g")
argsnk <- paste0("-K ", K,
ifelse(r, " -r ", " "),
g, " 2")
fl1 <- system2(fl_generate_binary(), args = argsnk, stdout = TRUE)[-1]
|
eb537117 |
} else if (model == "Ising") {
argsIsing <- paste0("-i ", i, " -I ", I ,
ifelse(circular, " -c ", " "),
g, " 2")
fl1 <- system2(fl_generate_binary(), args = argsIsing, stdout = TRUE)[-1]
} else if (model == "Eggbox") {
argsEgg <- paste0("-e ", e, " -E ", E," ", g, " 2")
fl1 <- system2(fl_generate_binary(), args = argsEgg, stdout = TRUE)[-1]
} else if (model == "Full") {
if(K >= g) stop("It makes no sense to have K >= g")
argsFull <- paste0("-K ", K, ifelse(r, " -r ", " "),
"-i ", i, " -I ", I , ifelse(circular, " -c ", " "),
"-e ", e, " -E ", E, " ",
"-H ", H, " ",
"-s ", s, " -S ", S, " -d ", d, " ",
"-o ", o, " -O ", O, " -p ", p, " -P ", P, " ",
g, " 2")
fl1 <- system2(fl_generate_binary(), args = argsFull, stdout = TRUE)[-1]
}
if (model == "Eggbox" || model == "Ising" || model == "Full" || model == "NK") {
|
fd073de1 |
fl1 <- matrix(
as.numeric(unlist(strsplit(paste(fl1, collapse = " "), " "))),
ncol = g + 1, byrow = TRUE)
m1 <- fl1[, 1:g]
fi <- fl1[, g + 1]
## For scaling, etc, all that matters, if anything, is the wildtype
## We could order by doing this
## But I am not 100% sure this will always be the same as
## generate_matrix_genotypes
## oo <- do.call(order,
## c(list(muts),
## as.list(data.frame(m1[, rev(1:ncol(m1))]))))
## m2 <- m1[oo, ]
## Or create an id and order by it?
## When we get to 20 genes, this is slow, about 18 seconds each
## apply. Matching is fast (< 0.5 seconds)
gtstring <- apply(m, 1, function(x) paste0(x, collapse = ""))
gtstring2 <- apply(m1, 1, function(x) paste0(x, collapse = ""))
oo <- match(gtstring, gtstring2)
fi <- fi[oo]
## make sure no left overs
rm(gtstring, gtstring2, oo, fl1, m1)
## Had we not ordered, do this!!!
## Which one is WT?
## muts <- rowSums(m1)
## w_wt <- which(muts == 0)
## if(w_wt != 1) {
## f_a <- fi[1]
## fi[1] <- fi[w_wt]
## fi[w_wt] <- f_a
## rm(f_a)
## }
## m[] <- m1
## rm(m1)
## rm(fl1)
}
|
43ee9bac |
if(!(length(scale) == 3)) {
|
b137a4a3 |
if(!is.null(scale)) {
|
43ee9bac |
fi <- (fi - min(fi))/(max(fi) - min(fi))
fi <- scale[1] + fi * (scale[2] - scale[1])
}
if(wt_is_1 == "divide") {
## We need to shift to avoid ratios involving negative numbers and
## we need to avoid having any fitness at 0, specially the wt. If
## any negative value, add the min, and shift by the magnitude of
## the min to avoid any at 0.
## If you use scale and wt_is_1, this will move the scale. It is
## not possible to obtain a linear transformation that will keep
## the min and max of the scale, and wt at 1.
min_fi <- min(fi)
if(min_fi < 0)
fi <- fi + 2 * abs(min(fi))
fi <- fi/fi[1]
} else if (wt_is_1 == "subtract") {
fi <- fi - fi[1] + 1.0
} else if(wt_is_1 == "force") {
fi[1] <- 1.0
if(!is.null(scale)) {
if( (1 > scale[2]) || (1 < scale[1]))
warning("Using wt_is_1 = force and scale, but scale does ",
"not include 1")
}
|
b137a4a3 |
}
|
43ee9bac |
} else { ## a length-3 scale
if(scale[2] > scale[3]) warning("In scale, minimum fitness > wildtype")
|
e5e1295b |
if(scale[1] < scale[3]) warning("In scale, maximum fitness < wildtype")
|
43ee9bac |
fiwt <- fi[1]
|
e5e1295b |
new_fi <- rep(NA, length(fi))
mode(new_fi) <- "numeric"
## If WT is min or max, there are no below or above
if(max(fi) == fiwt)
warning("WT has maximum fitness. Range will be from scale[2] to scale[3]")
if(min(fi) == fiwt)
warning("WT has minimum fitness. Range will be from scale[3] to scale[1]")
if(max(fi) > fiwt) {
prod_above <- (scale[1] - scale[3]) / (max(fi) - fiwt)
fi_above <- which(fi >= fiwt)
new_fi[fi_above] <- ((fi[fi_above] - fiwt) * prod_above) + scale[3]
}
if(min(fi) < fiwt) {
prod_below <- (scale[3] - scale[2]) / (fiwt - min(fi))
fi_below <- which(fi < fiwt)
new_fi[fi_below] <- ((fi[fi_below] - fiwt) * prod_below) + scale[3]
}
new_fi[1] <- scale[3]
fi <- new_fi
rm(new_fi)
|
b137a4a3 |
}
|
43ee9bac |
|
7c1a570f |
if(log) {
|
43ee9bac |
if(length(scale == 3)) {
wt_is_1 <- "no"
message("You passed a three-element scale argument. ",
"Setting wt_is_1 to no ",
"to avoid modifying your requested value for WT.")
}
|
edc593d3 |
## If you want logs, you certainly do not want
## the log of a negative number
fi[fi < 0] <- 0
if(wt_is_1 == "no") {
fi <- log(fi)
|
43ee9bac |
} else {
## by decree, fitness of wt is 1. So shift everything
fi <- log(fi) + 1
}
## former expression, but it was more confusing
|
edc593d3 |
## fi <- log(fi/fi[1]) + 1
}
|
43ee9bac |
|
edc593d3 |
if(truncate_at_0) {
## yes, truncate but add noise to prevent identical
fi[fi <= 0] <- runif(sum(fi <= 0),
min = 1e-10,
max = 1e-9)
|
7c1a570f |
}
m <- cbind(m, Fitness = fi)
|
b137a4a3 |
if(!is_null_na(min_accessible_genotypes)) {
|
c95df82d |
## num_accessible_genotypes <- count_accessible_g(m, accessible_th)
## Recall accessibleGenotypes includes the wt, if accessible.
num_accessible_genotypes <- length(wrap_accessibleGenotypes(m, accessible_th)) - 1
|
b137a4a3 |
## message("\n num_accessible_genotypes = ", num_accessible_genotypes, "\n")
|
13b90b40 |
if(num_accessible_genotypes >= min_accessible_genotypes) {
|
7c1a570f |
done <- TRUE
|
13b90b40 |
attributes(m) <- c(attributes(m),
accessible_genotypes = num_accessible_genotypes,
accessible_th = accessible_th)
|
7c1a570f |
} else {
## Cannot start again with a fitness column
m <- m[, -ncol(m), drop = FALSE]
}
} else {
done <- TRUE
}
|
50a94207 |
}
|
b137a4a3 |
## message("\n number of attempts = ", attempts, "\n")
|
50a94207 |
class(m) <- c(class(m), "genotype_fitness_matrix")
return(m)
}
|
34c1b54f |
|
c95df82d |
|