... | ... |
@@ -52,8 +52,10 @@ |
52 | 52 |
#' |
53 | 53 |
#' |
54 | 54 |
#' @examples |
55 |
+#' \dontrun{ |
|
55 | 56 |
#' ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19', |
56 | 57 |
#' near=TRUE, genetype = 'Ensembl_gene') |
58 |
+#' } |
|
57 | 59 |
#' |
58 | 60 |
#' @export |
59 | 61 |
geneGOEnricher <- |
... | ... |
@@ -301,12 +303,13 @@ geneGOEnricher <- |
301 | 303 |
#' |
302 | 304 |
#' |
303 | 305 |
#' @examples |
306 |
+#' \dontrun{ |
|
304 | 307 |
#' #Pathway enrichment based on the gen sets that falls into the TAD regions |
305 | 308 |
#' ncRNAPathway<-genePathwayEnricher(gene = brain_disorder_ncRNA , |
306 | 309 |
#' org_assembly='hg19', |
307 | 310 |
#' isTADSearch = TRUE, |
308 | 311 |
#' TAD = tad_hg19, |
309 |
-#' genetype = 'Ensembl_gene') |
|
312 |
+#' genetype = 'Ensembl_gene')} |
|
310 | 313 |
#' |
311 | 314 |
#' |
312 | 315 |
#' @export |
... | ... |
@@ -579,11 +582,12 @@ genePathwayEnricher <- |
579 | 582 |
#' |
580 | 583 |
#' @importFrom rtracklayer import |
581 | 584 |
#' @examples |
582 |
-#' |
|
585 |
+#' \dontrun{ |
|
583 | 586 |
#' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
584 | 587 |
#' regionNC <- rtracklayer::import(regions, format = "BED") |
585 | 588 |
#' regionGO<-geneRegionGOEnricher(region = regionNC, org_assembly= 'hg19', |
586 | 589 |
#' near = TRUE) |
590 |
+#' } |
|
587 | 591 |
#' |
588 | 592 |
#' @export |
589 | 593 |
geneRegionGOEnricher <- |
... | ... |
@@ -799,12 +803,12 @@ geneRegionGOEnricher <- |
799 | 803 |
#' @return Pathway enrichment object of the given input |
800 | 804 |
#' |
801 | 805 |
#' @examples |
802 |
-#' |
|
806 |
+#' \dontrun{ |
|
803 | 807 |
#' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
804 | 808 |
#' regionNC <- rtracklayer::import(regions, format = "BED") |
805 | 809 |
#' ncPath<-geneRegionPathwayEnricher(region = regionNC, |
806 | 810 |
#' org_assembly = 'hg19', |
807 |
-#' near = TRUE) |
|
811 |
+#' near = TRUE) } |
|
808 | 812 |
#' @export |
809 | 813 |
geneRegionPathwayEnricher <- |
810 | 814 |
function(region, |
... | ... |
@@ -214,7 +214,7 @@ assembly <- function(org_assembly = c("hg19", |
214 | 214 |
if (index == 1) { |
215 | 215 |
mart = useMart( |
216 | 216 |
biomart = "ENSEMBL_MART_ENSEMBL", |
217 |
- host = "grch37.ensembl.org", |
|
217 |
+ host = "https://grch37.ensembl.org", |
|
218 | 218 |
path = "/biomart/martservice", |
219 | 219 |
dataset = "hsapiens_gene_ensembl" |
220 | 220 |
) |
... | ... |
@@ -53,12 +53,13 @@ options(readr.num_columns = 0) |
53 | 53 |
#' @return MiRNA GO term enrichment object for the given input |
54 | 54 |
#' |
55 | 55 |
#' @examples |
56 |
+#' \dontrun{ |
|
56 | 57 |
#' subsetGene <- brain_mirna[1:30,] |
57 | 58 |
#' |
58 | 59 |
#' miGO <-mirnaGOEnricher(gene=subsetGene, |
59 | 60 |
#' org_assembly='hg19', |
60 | 61 |
#' near = TRUE, |
61 |
-#' target = FALSE) |
|
62 |
+#' target = FALSE) } |
|
62 | 63 |
#' @export mirnaGOEnricher |
63 | 64 |
mirnaGOEnricher <- |
64 | 65 |
function(gene, |
... | ... |
@@ -22,10 +22,12 @@ |
22 | 22 |
#' @return KEGG pathway enrichment results |
23 | 23 |
#' |
24 | 24 |
#' @examples |
25 |
+#' \dontrun{ |
|
25 | 26 |
#' subsetGene <- breastmRNA[1:30,] |
26 | 27 |
#' |
27 | 28 |
#' br_enr<-KeggEnrichment(genes = subsetGene, |
28 | 29 |
#' org_assembly='hg19') |
30 |
+#'} |
|
29 | 31 |
#' |
30 | 32 |
#' @export |
31 | 33 |
#' |
... | ... |
@@ -163,7 +165,8 @@ KeggEnrichment <- |
163 | 165 |
#' |
164 | 166 |
#' |
165 | 167 |
#' @examples |
166 |
-#' br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19') |
|
168 |
+#' \dontrun{ |
|
169 |
+#' br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19') } |
|
167 | 170 |
#' |
168 | 171 |
#' @export |
169 | 172 |
reactomeEnrichment <- |
... | ... |
@@ -97,7 +97,9 @@ Given genes that fall in a given upstream and downstream region of |
97 | 97 |
mRNAs of interest, GO term enrichment analysis is carried out |
98 | 98 |
} |
99 | 99 |
\examples{ |
100 |
+\dontrun{ |
|
100 | 101 |
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19', |
101 | 102 |
near=TRUE, genetype = 'Ensembl_gene') |
103 |
+} |
|
102 | 104 |
|
103 | 105 |
} |
... | ... |
@@ -97,12 +97,13 @@ Given genes that fall in the given upstream and downstream region of |
97 | 97 |
mRNAs of interest, pathway enrichment analysis is carried out |
98 | 98 |
} |
99 | 99 |
\examples{ |
100 |
+\dontrun{ |
|
100 | 101 |
#Pathway enrichment based on the gen sets that falls into the TAD regions |
101 | 102 |
ncRNAPathway<-genePathwayEnricher(gene = brain_disorder_ncRNA , |
102 | 103 |
org_assembly='hg19', |
103 | 104 |
isTADSearch = TRUE, |
104 | 105 |
TAD = tad_hg19, |
105 |
- genetype = 'Ensembl_gene') |
|
106 |
+ genetype = 'Ensembl_gene')} |
|
106 | 107 |
|
107 | 108 |
|
108 | 109 |
} |
... | ... |
@@ -92,10 +92,11 @@ Given gene regions that fall in the given upstream and downstream region |
92 | 92 |
of mRNAs of interest, GO term enrichment analysis is carried out |
93 | 93 |
} |
94 | 94 |
\examples{ |
95 |
- |
|
95 |
+\dontrun{ |
|
96 | 96 |
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
97 | 97 |
regionNC <- rtracklayer::import(regions, format = "BED") |
98 | 98 |
regionGO<-geneRegionGOEnricher(region = regionNC, org_assembly= 'hg19', |
99 | 99 |
near = TRUE) |
100 |
+ } |
|
100 | 101 |
|
101 | 102 |
} |
... | ... |
@@ -92,10 +92,10 @@ Given gene regions that fall in the given upstream and downstream region |
92 | 92 |
of mRNAs of interest, pathway enrichment analysis is carried out |
93 | 93 |
} |
94 | 94 |
\examples{ |
95 |
- |
|
95 |
+\dontrun{ |
|
96 | 96 |
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
97 | 97 |
regionNC <- rtracklayer::import(regions, format = "BED") |
98 | 98 |
ncPath<-geneRegionPathwayEnricher(region = regionNC, |
99 | 99 |
org_assembly = 'hg19', |
100 |
- near = TRUE) |
|
100 |
+ near = TRUE) } |
|
101 | 101 |
} |
... | ... |
@@ -96,10 +96,11 @@ GO term enrichments of the microRNA genes with mRNAs that fall in the |
96 | 96 |
given upstream/downstream regions of the microRNA genes |
97 | 97 |
} |
98 | 98 |
\examples{ |
99 |
+\dontrun{ |
|
99 | 100 |
subsetGene <- brain_mirna[1:30,] |
100 | 101 |
|
101 | 102 |
miGO <-mirnaGOEnricher(gene=subsetGene, |
102 | 103 |
org_assembly='hg19', |
103 | 104 |
near = TRUE, |
104 |
- target = FALSE) |
|
105 |
+ target = FALSE) } |
|
105 | 106 |
} |
... | ... |
@@ -120,7 +120,7 @@ setParameters("searchRegion", "all") |
120 | 120 |
|
121 | 121 |
#Import the gene set regions |
122 | 122 |
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
123 |
-regionNC <- import(regions, format = "BED") |
|
123 |
+regionNC <- rtracklayer::import(regions, format = "BED") |
|
124 | 124 |
|
125 | 125 |
#Perform the analysis on the gene regions |
126 | 126 |
regionGO<-geneRegionGOEnricher(region = regionNC, org_assembly= 'hg19', near = TRUE) |
... | ... |
@@ -154,7 +154,7 @@ User-defined TAD regions can be used as an input for the TAD regions and gene en |
154 | 154 |
```{r, eval=FALSE} |
155 | 155 |
# Read the custom TAD boundaries |
156 | 156 |
cus_TAD<-system.file("extdata", "DER-18_TAD_adultbrain.txt", package = "NoRCE") |
157 |
-tad_custom <- import(cus_TAD, format = 'bed') |
|
157 |
+tad_custom <- rtracklayer::import(cus_TAD, format = 'bed') |
|
158 | 158 |
|
159 | 159 |
# Use custom TAD boundaries for enrichment |
160 | 160 |
ncGO_tad <- geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly = 'hg19', genetype = 'Ensembl_gene', isTADSearch = TRUE, TAD = tad_custom) |