Browse code

update

guldenolgun authored on 20/10/2022 00:42:15
Showing 30 changed files

... ...
@@ -1,7 +1,7 @@
1 1
 Package: NoRCE
2 2
 Type: Package
3 3
 Title: NoRCE: Noncoding RNA Sets Cis Annotation and Enrichment
4
-Version: 1.9.2
4
+Version: 1.9.3
5 5
 Authors@R: c(person("Gulden", "Olgun", 
6 6
            email = "gulden@cs.bilkent.edu.tr", 
7 7
 		   role = c("aut", "cre")))
... ...
@@ -9,7 +9,7 @@ Description: While some non-coding RNAs (ncRNAs) are assigned  critical regulato
9 9
 License: MIT + file LICENSE
10 10
 Depends: R (>= 4.2.0) 
11 11
 Imports:
12
-  KEGGREST,png,dplyr,graphics,RSQLite,DBI,tidyr,grDevices,stringr,
12
+  KEGGREST,png,dplyr,graphics,RSQLite,DBI,tidyr,grDevices,stringr,GenomeInfoDb,
13 13
   S4Vectors,SummarizedExperiment,reactome.db,rWikiPathways,RCurl,
14 14
   dbplyr,utils,ggplot2,igraph,stats,reshape2,readr, GO.db,zlibbioc,
15 15
   biomaRt,rtracklayer,IRanges,GenomicRanges,GenomicFeatures,AnnotationDbi
... ...
@@ -44,6 +44,7 @@ import(stringr)
44 44
 import(zlibbioc)
45 45
 importFrom(AnnotationDbi,Term)
46 46
 importFrom(AnnotationDbi,mappedkeys)
47
+importFrom(GenomeInfoDb,seqlevels)
47 48
 importFrom(GenomicFeatures,as.list)
48 49
 importFrom(GenomicFeatures,intronsByTranscript)
49 50
 importFrom(GenomicRanges,GRanges)
... ...
@@ -12,8 +12,10 @@
12 12
 #' @import readr
13 13
 #'
14 14
 #' @examples
15
+#' \dontrun{
15 16
 #' fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE")
16 17
 #' gtf <- extractBiotype(gtfFile = fileImport)
18
+#' }
17 19
 #'
18 20
 #' @export
19 21
 #'
... ...
@@ -43,9 +45,11 @@ extractBiotype <- function(gtfFile) {
43 45
 #' @return Table format of genes with a given biotypes
44 46
 #'
45 47
 #' @examples
48
+#' \dontrun{
46 49
 #' biotypes <- c('unprocessed_pseudogene','transcribed_unprocessed_pseudogene')
47 50
 #' fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE")
48 51
 #' extrResult <- filterBiotype(fileImport, biotypes)
52
+#' }
49 53
 #'
50 54
 #' @export
51 55
 filterBiotype <- function(gtfFile, biotypes) {
... ...
@@ -52,11 +52,13 @@ setClass(
52 52
 #' @return GO enrichment results
53 53
 #'
54 54
 #' @examples
55
+#' \dontrun{
55 56
 #' subsetGene <- breastmRNA[1:30,]
56 57
 #' breastEnr <- goEnrichment(genes = subsetGene,
57 58
 #'                           org_assembly = 'hg19',
58 59
 #'                           GOtype = 'MF',
59 60
 #'                           min = 2)
61
+#'                           }
60 62
 #'
61 63
 #' @importFrom stats chisq.test cor cor.test fisher.test na.omit p.adjust
62 64
 #' @importFrom stats pbinom phyper reorder setNames var
... ...
@@ -147,9 +147,10 @@ getmiRNACount <- function(mirnagene, cancer, databaseFile) {
147 147
 #'       value and pvalue
148 148
 #'
149 149
 #' @examples
150
-#'
150
+#' \dontrun{
151 151
 #' #Assume that mirnanorce and mrnanorce are custom patient by gene data
152
-#' a<-calculateCorr(exp1 = mirna, exp2 = mrna )
152
+#' a<-calculateCorr(exp1 = mirna, exp2 = mrna ) 
153
+#' }
153 154
 #'
154 155
 #' @export
155 156
 calculateCorr <-
... ...
@@ -47,8 +47,9 @@ pkg.env$isSymbol = FALSE
47 47
 #' @importFrom IRanges IRanges
48 48
 #'
49 49
 #' @examples
50
-#'
51
-#' assembly('hg19')
50
+#'  \dontrun{
51
+#' assembly('hg19') 
52
+#' }
52 53
 #'
53 54
 #' @export
54 55
 assembly <- function(org_assembly = c("hg19",
... ...
@@ -255,14 +256,15 @@ assembly <- function(org_assembly = c("hg19",
255 256
 #' @import zlibbioc
256 257
 #'
257 258
 #' @examples
258
-#'
259
+#'  \dontrun{
259 260
 #' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
260 261
 #' regionNC <- rtracklayer::import(regions, format = "BED")
261 262
 #'
262 263
 #' neighbour <- getUCSC(bedfile = regionNC,
263 264
 #'                      upstream = 1000,
264 265
 #'                      downstream = 1000,
265
-#'                      org_assembly = 'hg19')
266
+#'                      org_assembly = 'hg19') 
267
+#'                      }
266 268
 #'
267 269
 #'@export
268 270
 getUCSC <-
... ...
@@ -323,7 +325,7 @@ getUCSC <-
323 325
 #' @return genes
324 326
 #'
325 327
 #' @examples
326
-#'
328
+#' \dontrun{
327 329
 #' regions <- system.file("extdata", "ncRegion.txt", package = "NoRCE")
328 330
 #' regionNC <- rtracklayer::import(regions, format = "BED")
329 331
 #'
... ...
@@ -331,7 +333,7 @@ getUCSC <-
331 333
 #'                  upstream = 1000,
332 334
 #'                  downstream = 2000,
333 335
 #'                  org_assembly = 'hg19')
334
-#'
336
+#'  }
335 337
 #' @export
336 338
 getNearToExon <-
337 339
   function(bedfile,
... ...
@@ -386,7 +388,7 @@ getNearToExon <-
386 388
 #' @return genes
387 389
 #'
388 390
 #' @examples
389
-#'
391
+#' \dontrun{
390 392
 #' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
391 393
 #' regionNC <- rtracklayer::import(regions, format = "BED")
392 394
 #'
... ...
@@ -394,7 +396,7 @@ getNearToExon <-
394 396
 #'                  upstream = 1000,
395 397
 #'                  downstream = 2000,
396 398
 #'                  org_assembly = 'hg19')
397
-#'
399
+#' }
398 400
 #' @importFrom GenomicFeatures as.list intronsByTranscript
399 401
 #'
400 402
 #' @export
... ...
@@ -465,7 +467,7 @@ getNearToIntron <-
465 467
 #' @return List of protein coding genes that falls into the TAD regions
466 468
 #'
467 469
 #' @examples
468
-#'
470
+#' \dontrun{
469 471
 #' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
470 472
 #' regionNC <- rtracklayer::import(regions, format = "BED")
471 473
 #'
... ...
@@ -473,7 +475,7 @@ getNearToIntron <-
473 475
 #'                  tad = tad_hg19,
474 476
 #'                  org_assembly = 'hg19',
475 477
 #'                  cellline = 'HUVEC')
476
-#'
478
+#' }
477 479
 #' @export
478 480
 getTADOverlap <-
479 481
   function(bedfile,
... ...
@@ -553,11 +555,11 @@ getTADOverlap <-
553 555
 #' @importFrom IRanges IRanges
554 556
 #'
555 557
 #' @examples
556
-#'
558
+#' \dontrun{
557 559
 #' convGene <-convertGeneID(genetype = "mirna",
558 560
 #'                          genelist = brain_mirna[1:30,],
559 561
 #'                          org_assembly = 'hg19')
560
-#'
562
+#' }
561 563
 #'
562 564
 #' @export
563 565
 convertGeneID <-
... ...
@@ -687,9 +689,9 @@ convertGeneID <-
687 689
 #' @return cell line of the input tad data
688 690
 #'
689 691
 #' @examples
690
-#'
692
+#' \dontrun{
691 693
 #' listTAD(TADName = tad_hg19)
692
-#'
694
+#' }
693 695
 #'
694 696
 #' @export
695 697
 #'
... ...
@@ -757,13 +759,14 @@ packageCheck <- function(pkg)
757 759
 #' @return changed parameters
758 760
 #'
759 761
 #' @examples
760
-#'
762
+#' \dontrun{
761 763
 #' type <- c('downstream','upstream')
762 764
 #'
763 765
 #' value <- c(2000,30000)
764 766
 #'
765 767
 #' setParameters(type,value)
766
-#'
768
+#' }
769
+#' 
767 770
 #' @export
768 771
 setParameters <- function(type, value) {
769 772
   for (i in seq_along(type)) {
... ...
@@ -345,10 +345,12 @@ mirnaGOEnricher <-
345 345
 #' @return MiRNA pathway enrichment object for the given input
346 346
 #'
347 347
 #' @examples
348
+#' \dontrun{
348 349
 #' miPath <- mirnaPathwayEnricher(gene = brain_mirna,
349 350
 #'                                org_assembly = 'hg19',
350 351
 #'                                near = TRUE)
351
-#'
352
+#' }
353
+#' 
352 354
 #' @export
353 355
 mirnaPathwayEnricher <-
354 356
   function(gene,
... ...
@@ -653,12 +655,14 @@ mirnaPathwayEnricher <-
653 655
 #' 
654 656
 #'
655 657
 #'@examples
658
+#' \dontrun{
656 659
 #' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
657 660
 #' regionNC <- rtracklayer::import(regions, format = "BED")
658 661
 #'
659 662
 #' a<- mirnaRegionGOEnricher(region = regionNC,
660 663
 #'                           org_assembly = 'hg19',
661 664
 #'                           near = TRUE)
665
+#'}
662 666
 #'
663 667
 #' @export
664 668
 mirnaRegionGOEnricher <-
... ...
@@ -931,12 +935,13 @@ mirnaRegionGOEnricher <-
931 935
 #' 
932 936
 #'
933 937
 #' @examples
934
-#'
938
+#' \dontrun{
935 939
 #' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
936 940
 #' regionNC <- rtracklayer::import(regions, format = "BED")
937 941
 #'
938 942
 #' a<- mirnaRegionPathwayEnricher(region = regionNC,
939
-#'              org_assembly = 'hg19')
943
+#'              org_assembly = 'hg19') 
944
+#'              }
940 945
 #'
941 946
 #' @export
942 947
 mirnaRegionPathwayEnricher <-
... ...
@@ -1178,10 +1183,11 @@ mirnaRegionPathwayEnricher <-
1178 1183
 #' @return miRNA:mRNA target sets of the given genes
1179 1184
 #'
1180 1185
 #' @examples
1181
-#'
1186
+#' \dontrun{
1182 1187
 #' a<- predictmiTargets(gene = brain_mirna[1:100,],
1183 1188
 #'                      org_assembly = 'hg19',
1184 1189
 #'                      type = "mirna")
1190
+#'                      }
1185 1191
 #'
1186 1192
 #'
1187 1193
 #' @export
... ...
@@ -81,10 +81,12 @@ drawDotPlot <- function(mrnaObject, type = "pAdjust", n) {
81 81
 #' @return Text file of the enrichment results in a tabular format
82 82
 #' 
83 83
 #' @examples 
84
+#' \dontrun{
84 85
 #' ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
85 86
 #'    near=TRUE, genetype = 'Ensembl_gene')
86 87
 #'    
87 88
 #' writeEnrichment(mrnaObject = ncGO,fileName = "a.txt",sept = '\t')
89
+#' }
88 90
 #'
89 91
 #' @export
90 92
 writeEnrichment <-
... ...
@@ -125,10 +127,12 @@ writeEnrichment <-
125 127
 #' @importFrom dplyr %>%
126 128
 #' 
127 129
 #' @examples 
130
+#' \dontrun{
128 131
 #' ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
129 132
 #'    near=TRUE, genetype = 'Ensembl_gene')
130 133
 #'    
131 134
 #' result = topEnrichment(mrnaObject = ncGO, type = "pvalue", n = 10)
135
+#' }
132 136
 #'
133 137
 #' @export
134 138
 topEnrichment <- function(mrnaObject, type, n) {
... ...
@@ -382,8 +386,10 @@ createNetwork <-
382 386
 #'
383 387
 #'
384 388
 #' @examples
389
+#' \dontrun{
385 390
 #' ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna,
386 391
 #'                                    org_assembly = 'hg19',near = TRUE)
392
+#'                                    }
387 393
 #'
388 394
 #' @export
389 395
 getGoDag <-
... ...
@@ -482,11 +488,13 @@ getGoDag <-
482 488
 #' @importFrom utils browseURL read.table write.table
483 489
 #' 
484 490
 #' @examples
491
+#' \dontrun{
485 492
 #' ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna,
486 493
 #'                                    org_assembly = 'hg19',near = TRUE)
487 494
 #'
488 495
 #' getKeggDiagram(mrnaObject = ncRNAPathway, org_assembly ='hg19',
489 496
 #'                pathway = ncRNAPathway@ID[1])
497
+#'                }
490 498
 #' @export
491 499
 #'
492 500
 getKeggDiagram <-
... ...
@@ -543,11 +551,12 @@ getKeggDiagram <-
543 551
 #' @return Shows reactome diagram marked with an enriched genes in a browser
544 552
 #'
545 553
 #' @examples
546
-#'
554
+#' \dontrun{
547 555
 #' br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19')
548 556
 #'
549 557
 #' getReactomeDiagram(mrnaObject = br_enr,pathway = br_enr@ID[1],
550 558
 #'                    imageFormat = 'png')
559
+#'                    }
551 560
 #'
552 561
 #'@export
553 562
 getReactomeDiagram <- function(mrnaObject, pathway, imageFormat) {
... ...
@@ -42,6 +42,8 @@ commonGene <- function(mrnaobject,
42 42
     ab <- list(ab)
43 43
   return(ab)
44 44
 }
45
+
46
+#' @importFrom GenomeInfoDb seqlevels
45 47
 commonGeneRegion <- function(mrnaobject,
46 48
                              org_assembly,
47 49
                              downstream,
... ...
@@ -21,7 +21,8 @@ setting required information
21 21
 Get the required information for the given assembly
22 22
 }
23 23
 \examples{
24
-
25
-assembly('hg19')
24
+ \dontrun{
25
+assembly('hg19') 
26
+}
26 27
 
27 28
 }
... ...
@@ -58,8 +58,9 @@ Calculates the correlation coefficient values between two custom
58 58
 expression data.
59 59
 }
60 60
 \examples{
61
-
61
+\dontrun{
62 62
 #Assume that mirnanorce and mrnanorce are custom patient by gene data
63
-a<-calculateCorr(exp1 = mirna, exp2 = mrna )
63
+a<-calculateCorr(exp1 = mirna, exp2 = mrna ) 
64
+}
64 65
 
65 66
 }
... ...
@@ -30,10 +30,10 @@ GRange object of the given input
30 30
 Convert gene ids according to the gene type
31 31
 }
32 32
 \examples{
33
-
33
+\dontrun{
34 34
 convGene <-convertGeneID(genetype = "mirna",
35 35
                          genelist = brain_mirna[1:30,],
36 36
                          org_assembly = 'hg19')
37
-
37
+}
38 38
 
39 39
 }
... ...
@@ -22,7 +22,9 @@ Get the biotype of the non-coding genes. It is suitable for the
22 22
 GENCODE gtf files
23 23
 }
24 24
 \examples{
25
+\dontrun{
25 26
 fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE")
26 27
 gtf <- extractBiotype(gtfFile = fileImport)
28
+}
27 29
 
28 30
 }
... ...
@@ -23,8 +23,10 @@ when input gene list is mixed or when research of the interest is only
23 23
 focused on specific group of genes.
24 24
 }
25 25
 \examples{
26
+\dontrun{
26 27
 biotypes <- c('unprocessed_pseudogene','transcribed_unprocessed_pseudogene')
27 28
 fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE")
28 29
 extrResult <- filterBiotype(fileImport, biotypes)
30
+}
29 31
 
30 32
 }
... ...
@@ -37,7 +37,9 @@ Plot and save the GO term DAG of the top n enrichments in terms of
37 37
 p-values or adjusted p-values with an user provided format
38 38
 }
39 39
 \examples{
40
+\dontrun{
40 41
 ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna,
41 42
                                    org_assembly = 'hg19',near = TRUE)
43
+                                   }
42 44
 
43 45
 }
... ...
@@ -31,9 +31,11 @@ specific to only one KEGG pathway id and identifies the enriched genes
31 31
 in the diagram.
32 32
 }
33 33
 \examples{
34
+\dontrun{
34 35
 ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna,
35 36
                                    org_assembly = 'hg19',near = TRUE)
36 37
 
37 38
 getKeggDiagram(mrnaObject = ncRNAPathway, org_assembly ='hg19',
38 39
                pathway = ncRNAPathway@ID[1])
40
+               }
39 41
 }
... ...
@@ -30,7 +30,7 @@ genes
30 30
 Get only those neighbouring genes that fall within exon region
31 31
 }
32 32
 \examples{
33
-
33
+\dontrun{
34 34
 regions <- system.file("extdata", "ncRegion.txt", package = "NoRCE")
35 35
 regionNC <- rtracklayer::import(regions, format = "BED")
36 36
 
... ...
@@ -38,5 +38,5 @@ r<-getNearToExon(bedfile = regionNC,
38 38
                  upstream = 1000,
39 39
                  downstream = 2000,
40 40
                  org_assembly = 'hg19')
41
-
41
+ }
42 42
 }
... ...
@@ -30,7 +30,7 @@ genes
30 30
 Get only those neighbouring genes that fall within intron region
31 31
 }
32 32
 \examples{
33
-
33
+\dontrun{
34 34
 regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
35 35
 regionNC <- rtracklayer::import(regions, format = "BED")
36 36
 
... ...
@@ -38,5 +38,5 @@ r<-getNearToExon(bedfile = regionNC,
38 38
                  upstream = 1000,
39 39
                  downstream = 2000,
40 40
                  org_assembly = 'hg19')
41
-
41
+}
42 42
 }
... ...
@@ -25,10 +25,11 @@ This function is specific to only one pathway id and identifies the
25 25
 enriched genes in the diagram.
26 26
 }
27 27
 \examples{
28
-
28
+\dontrun{
29 29
 br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19')
30 30
 
31 31
 getReactomeDiagram(mrnaObject = br_enr,pathway = br_enr@ID[1],
32 32
                    imageFormat = 'png')
33
+                   }
33 34
 
34 35
 }
... ...
@@ -48,7 +48,7 @@ For given region of interest, overlapped genes in the TAD regions are
48 48
 found. Results can be filtered according to the available cell lines.
49 49
 }
50 50
 \examples{
51
-
51
+\dontrun{
52 52
 regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
53 53
 regionNC <- rtracklayer::import(regions, format = "BED")
54 54
 
... ...
@@ -56,5 +56,5 @@ r<-getTADOverlap(bedfile = regionNC,
56 56
                  tad = tad_hg19,
57 57
                  org_assembly = 'hg19',
58 58
                  cellline = 'HUVEC')
59
-
59
+}
60 60
 }
... ...
@@ -33,13 +33,14 @@ When downstream = 0 / upstream = 0, function converts bed formated regions
33 33
 to HUGO genes
34 34
 }
35 35
 \examples{
36
-
36
+ \dontrun{
37 37
 regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
38 38
 regionNC <- rtracklayer::import(regions, format = "BED")
39 39
 
40 40
 neighbour <- getUCSC(bedfile = regionNC,
41 41
                      upstream = 1000,
42 42
                      downstream = 1000,
43
-                     org_assembly = 'hg19')
43
+                     org_assembly = 'hg19') 
44
+                     }
44 45
 
45 46
 }
... ...
@@ -56,10 +56,12 @@ GO enrichment results
56 56
 Perform enrichment analysis of the given genes
57 57
 }
58 58
 \examples{
59
+\dontrun{
59 60
 subsetGene <- breastmRNA[1:30,]
60 61
 breastEnr <- goEnrichment(genes = subsetGene,
61 62
                           org_assembly = 'hg19',
62 63
                           GOtype = 'MF',
63 64
                           min = 2)
65
+                          }
64 66
 
65 67
 }
... ...
@@ -16,8 +16,8 @@ cell line of the input tad data
16 16
 List cell line of the given topological domain regions
17 17
 }
18 18
 \examples{
19
-
19
+\dontrun{
20 20
 listTAD(TADName = tad_hg19)
21
-
21
+}
22 22
 
23 23
 }
... ...
@@ -97,8 +97,10 @@ Pathway enrichments of the microRNA genes with mRNAs that fall in the
97 97
 given upstream/downstream regions of the microRNA genes
98 98
 }
99 99
 \examples{
100
+\dontrun{
100 101
 miPath <- mirnaPathwayEnricher(gene = brain_mirna,
101 102
                                org_assembly = 'hg19',
102 103
                                near = TRUE)
104
+}
103 105
 
104 106
 }
... ...
@@ -95,11 +95,13 @@ GO enrichments of the microRNA regions with mRNAs that fall in the given
95 95
 upstream/downstream regions of the microRNA genes
96 96
 }
97 97
 \examples{
98
+\dontrun{
98 99
 regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
99 100
 regionNC <- rtracklayer::import(regions, format = "BED")
100 101
 
101 102
 a<- mirnaRegionGOEnricher(region = regionNC,
102 103
                           org_assembly = 'hg19',
103 104
                           near = TRUE)
105
+}
104 106
 
105 107
 }
... ...
@@ -95,11 +95,12 @@ Pathway enrichments of the microRNA regions with mRNAs that fall in the
95 95
 given upstream/downstream regions of the microRNA genes
96 96
 }
97 97
 \examples{
98
-
98
+\dontrun{
99 99
 regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE")
100 100
 regionNC <- rtracklayer::import(regions, format = "BED")
101 101
 
102 102
 a<- mirnaRegionPathwayEnricher(region = regionNC,
103
-             org_assembly = 'hg19')
103
+             org_assembly = 'hg19') 
104
+             }
104 105
 
105 106
 }
... ...
@@ -27,10 +27,11 @@ Predict the miRNA targets for the miRNA or mRNA genes, which is specified
27 27
 with type parameter
28 28
 }
29 29
 \examples{
30
-
30
+\dontrun{
31 31
 a<- predictmiTargets(gene = brain_mirna[1:100,],
32 32
                      org_assembly = 'hg19',
33 33
                      type = "mirna")
34
+                     }
34 35
 
35 36
 
36 37
 }
... ...
@@ -54,11 +54,12 @@ isSymbol: Boolean variable that hold the gene format of the gmt file.
54 54
      Otherwise, gene format should be ENTREZ ID. By default, it is FALSE.
55 55
 }
56 56
 \examples{
57
-
57
+\dontrun{
58 58
 type <- c('downstream','upstream')
59 59
 
60 60
 value <- c(2000,30000)
61 61
 
62 62
 setParameters(type,value)
63
+}
63 64
 
64 65
 }
... ...
@@ -24,9 +24,11 @@ Number of top enrichment results of the pathway or GO terms for the given
24 24
 object and the order type - p-value or adjusted p-value.
25 25
 }
26 26
 \examples{
27
+\dontrun{
27 28
 ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
28 29
    near=TRUE, genetype = 'Ensembl_gene')
29 30
    
30 31
 result = topEnrichment(mrnaObject = ncGO, type = "pvalue", n = 10)
32
+}
31 33
 
32 34
 }
... ...
@@ -26,9 +26,11 @@ Text file of the enrichment results in a tabular format
26 26
 Write the tabular form of the pathway or GO term enrichment results
27 27
 }
28 28
 \examples{
29
+\dontrun{
29 30
 ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
30 31
    near=TRUE, genetype = 'Ensembl_gene')
31 32
    
32 33
 writeEnrichment(mrnaObject = ncGO,fileName = "a.txt",sept = '\t')
34
+}
33 35
 
34 36
 }