... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
Package: NoRCE |
2 | 2 |
Type: Package |
3 | 3 |
Title: NoRCE: Noncoding RNA Sets Cis Annotation and Enrichment |
4 |
-Version: 1.9.2 |
|
4 |
+Version: 1.9.3 |
|
5 | 5 |
Authors@R: c(person("Gulden", "Olgun", |
6 | 6 |
email = "gulden@cs.bilkent.edu.tr", |
7 | 7 |
role = c("aut", "cre"))) |
... | ... |
@@ -9,7 +9,7 @@ Description: While some non-coding RNAs (ncRNAs) are assigned critical regulato |
9 | 9 |
License: MIT + file LICENSE |
10 | 10 |
Depends: R (>= 4.2.0) |
11 | 11 |
Imports: |
12 |
- KEGGREST,png,dplyr,graphics,RSQLite,DBI,tidyr,grDevices,stringr, |
|
12 |
+ KEGGREST,png,dplyr,graphics,RSQLite,DBI,tidyr,grDevices,stringr,GenomeInfoDb, |
|
13 | 13 |
S4Vectors,SummarizedExperiment,reactome.db,rWikiPathways,RCurl, |
14 | 14 |
dbplyr,utils,ggplot2,igraph,stats,reshape2,readr, GO.db,zlibbioc, |
15 | 15 |
biomaRt,rtracklayer,IRanges,GenomicRanges,GenomicFeatures,AnnotationDbi |
... | ... |
@@ -44,6 +44,7 @@ import(stringr) |
44 | 44 |
import(zlibbioc) |
45 | 45 |
importFrom(AnnotationDbi,Term) |
46 | 46 |
importFrom(AnnotationDbi,mappedkeys) |
47 |
+importFrom(GenomeInfoDb,seqlevels) |
|
47 | 48 |
importFrom(GenomicFeatures,as.list) |
48 | 49 |
importFrom(GenomicFeatures,intronsByTranscript) |
49 | 50 |
importFrom(GenomicRanges,GRanges) |
... | ... |
@@ -12,8 +12,10 @@ |
12 | 12 |
#' @import readr |
13 | 13 |
#' |
14 | 14 |
#' @examples |
15 |
+#' \dontrun{ |
|
15 | 16 |
#' fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE") |
16 | 17 |
#' gtf <- extractBiotype(gtfFile = fileImport) |
18 |
+#' } |
|
17 | 19 |
#' |
18 | 20 |
#' @export |
19 | 21 |
#' |
... | ... |
@@ -43,9 +45,11 @@ extractBiotype <- function(gtfFile) { |
43 | 45 |
#' @return Table format of genes with a given biotypes |
44 | 46 |
#' |
45 | 47 |
#' @examples |
48 |
+#' \dontrun{ |
|
46 | 49 |
#' biotypes <- c('unprocessed_pseudogene','transcribed_unprocessed_pseudogene') |
47 | 50 |
#' fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE") |
48 | 51 |
#' extrResult <- filterBiotype(fileImport, biotypes) |
52 |
+#' } |
|
49 | 53 |
#' |
50 | 54 |
#' @export |
51 | 55 |
filterBiotype <- function(gtfFile, biotypes) { |
... | ... |
@@ -52,11 +52,13 @@ setClass( |
52 | 52 |
#' @return GO enrichment results |
53 | 53 |
#' |
54 | 54 |
#' @examples |
55 |
+#' \dontrun{ |
|
55 | 56 |
#' subsetGene <- breastmRNA[1:30,] |
56 | 57 |
#' breastEnr <- goEnrichment(genes = subsetGene, |
57 | 58 |
#' org_assembly = 'hg19', |
58 | 59 |
#' GOtype = 'MF', |
59 | 60 |
#' min = 2) |
61 |
+#' } |
|
60 | 62 |
#' |
61 | 63 |
#' @importFrom stats chisq.test cor cor.test fisher.test na.omit p.adjust |
62 | 64 |
#' @importFrom stats pbinom phyper reorder setNames var |
... | ... |
@@ -147,9 +147,10 @@ getmiRNACount <- function(mirnagene, cancer, databaseFile) { |
147 | 147 |
#' value and pvalue |
148 | 148 |
#' |
149 | 149 |
#' @examples |
150 |
-#' |
|
150 |
+#' \dontrun{ |
|
151 | 151 |
#' #Assume that mirnanorce and mrnanorce are custom patient by gene data |
152 |
-#' a<-calculateCorr(exp1 = mirna, exp2 = mrna ) |
|
152 |
+#' a<-calculateCorr(exp1 = mirna, exp2 = mrna ) |
|
153 |
+#' } |
|
153 | 154 |
#' |
154 | 155 |
#' @export |
155 | 156 |
calculateCorr <- |
... | ... |
@@ -47,8 +47,9 @@ pkg.env$isSymbol = FALSE |
47 | 47 |
#' @importFrom IRanges IRanges |
48 | 48 |
#' |
49 | 49 |
#' @examples |
50 |
-#' |
|
51 |
-#' assembly('hg19') |
|
50 |
+#' \dontrun{ |
|
51 |
+#' assembly('hg19') |
|
52 |
+#' } |
|
52 | 53 |
#' |
53 | 54 |
#' @export |
54 | 55 |
assembly <- function(org_assembly = c("hg19", |
... | ... |
@@ -255,14 +256,15 @@ assembly <- function(org_assembly = c("hg19", |
255 | 256 |
#' @import zlibbioc |
256 | 257 |
#' |
257 | 258 |
#' @examples |
258 |
-#' |
|
259 |
+#' \dontrun{ |
|
259 | 260 |
#' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
260 | 261 |
#' regionNC <- rtracklayer::import(regions, format = "BED") |
261 | 262 |
#' |
262 | 263 |
#' neighbour <- getUCSC(bedfile = regionNC, |
263 | 264 |
#' upstream = 1000, |
264 | 265 |
#' downstream = 1000, |
265 |
-#' org_assembly = 'hg19') |
|
266 |
+#' org_assembly = 'hg19') |
|
267 |
+#' } |
|
266 | 268 |
#' |
267 | 269 |
#'@export |
268 | 270 |
getUCSC <- |
... | ... |
@@ -323,7 +325,7 @@ getUCSC <- |
323 | 325 |
#' @return genes |
324 | 326 |
#' |
325 | 327 |
#' @examples |
326 |
-#' |
|
328 |
+#' \dontrun{ |
|
327 | 329 |
#' regions <- system.file("extdata", "ncRegion.txt", package = "NoRCE") |
328 | 330 |
#' regionNC <- rtracklayer::import(regions, format = "BED") |
329 | 331 |
#' |
... | ... |
@@ -331,7 +333,7 @@ getUCSC <- |
331 | 333 |
#' upstream = 1000, |
332 | 334 |
#' downstream = 2000, |
333 | 335 |
#' org_assembly = 'hg19') |
334 |
-#' |
|
336 |
+#' } |
|
335 | 337 |
#' @export |
336 | 338 |
getNearToExon <- |
337 | 339 |
function(bedfile, |
... | ... |
@@ -386,7 +388,7 @@ getNearToExon <- |
386 | 388 |
#' @return genes |
387 | 389 |
#' |
388 | 390 |
#' @examples |
389 |
-#' |
|
391 |
+#' \dontrun{ |
|
390 | 392 |
#' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
391 | 393 |
#' regionNC <- rtracklayer::import(regions, format = "BED") |
392 | 394 |
#' |
... | ... |
@@ -394,7 +396,7 @@ getNearToExon <- |
394 | 396 |
#' upstream = 1000, |
395 | 397 |
#' downstream = 2000, |
396 | 398 |
#' org_assembly = 'hg19') |
397 |
-#' |
|
399 |
+#' } |
|
398 | 400 |
#' @importFrom GenomicFeatures as.list intronsByTranscript |
399 | 401 |
#' |
400 | 402 |
#' @export |
... | ... |
@@ -465,7 +467,7 @@ getNearToIntron <- |
465 | 467 |
#' @return List of protein coding genes that falls into the TAD regions |
466 | 468 |
#' |
467 | 469 |
#' @examples |
468 |
-#' |
|
470 |
+#' \dontrun{ |
|
469 | 471 |
#' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
470 | 472 |
#' regionNC <- rtracklayer::import(regions, format = "BED") |
471 | 473 |
#' |
... | ... |
@@ -473,7 +475,7 @@ getNearToIntron <- |
473 | 475 |
#' tad = tad_hg19, |
474 | 476 |
#' org_assembly = 'hg19', |
475 | 477 |
#' cellline = 'HUVEC') |
476 |
-#' |
|
478 |
+#' } |
|
477 | 479 |
#' @export |
478 | 480 |
getTADOverlap <- |
479 | 481 |
function(bedfile, |
... | ... |
@@ -553,11 +555,11 @@ getTADOverlap <- |
553 | 555 |
#' @importFrom IRanges IRanges |
554 | 556 |
#' |
555 | 557 |
#' @examples |
556 |
-#' |
|
558 |
+#' \dontrun{ |
|
557 | 559 |
#' convGene <-convertGeneID(genetype = "mirna", |
558 | 560 |
#' genelist = brain_mirna[1:30,], |
559 | 561 |
#' org_assembly = 'hg19') |
560 |
-#' |
|
562 |
+#' } |
|
561 | 563 |
#' |
562 | 564 |
#' @export |
563 | 565 |
convertGeneID <- |
... | ... |
@@ -687,9 +689,9 @@ convertGeneID <- |
687 | 689 |
#' @return cell line of the input tad data |
688 | 690 |
#' |
689 | 691 |
#' @examples |
690 |
-#' |
|
692 |
+#' \dontrun{ |
|
691 | 693 |
#' listTAD(TADName = tad_hg19) |
692 |
-#' |
|
694 |
+#' } |
|
693 | 695 |
#' |
694 | 696 |
#' @export |
695 | 697 |
#' |
... | ... |
@@ -757,13 +759,14 @@ packageCheck <- function(pkg) |
757 | 759 |
#' @return changed parameters |
758 | 760 |
#' |
759 | 761 |
#' @examples |
760 |
-#' |
|
762 |
+#' \dontrun{ |
|
761 | 763 |
#' type <- c('downstream','upstream') |
762 | 764 |
#' |
763 | 765 |
#' value <- c(2000,30000) |
764 | 766 |
#' |
765 | 767 |
#' setParameters(type,value) |
766 |
-#' |
|
768 |
+#' } |
|
769 |
+#' |
|
767 | 770 |
#' @export |
768 | 771 |
setParameters <- function(type, value) { |
769 | 772 |
for (i in seq_along(type)) { |
... | ... |
@@ -345,10 +345,12 @@ mirnaGOEnricher <- |
345 | 345 |
#' @return MiRNA pathway enrichment object for the given input |
346 | 346 |
#' |
347 | 347 |
#' @examples |
348 |
+#' \dontrun{ |
|
348 | 349 |
#' miPath <- mirnaPathwayEnricher(gene = brain_mirna, |
349 | 350 |
#' org_assembly = 'hg19', |
350 | 351 |
#' near = TRUE) |
351 |
-#' |
|
352 |
+#' } |
|
353 |
+#' |
|
352 | 354 |
#' @export |
353 | 355 |
mirnaPathwayEnricher <- |
354 | 356 |
function(gene, |
... | ... |
@@ -653,12 +655,14 @@ mirnaPathwayEnricher <- |
653 | 655 |
#' |
654 | 656 |
#' |
655 | 657 |
#'@examples |
658 |
+#' \dontrun{ |
|
656 | 659 |
#' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
657 | 660 |
#' regionNC <- rtracklayer::import(regions, format = "BED") |
658 | 661 |
#' |
659 | 662 |
#' a<- mirnaRegionGOEnricher(region = regionNC, |
660 | 663 |
#' org_assembly = 'hg19', |
661 | 664 |
#' near = TRUE) |
665 |
+#'} |
|
662 | 666 |
#' |
663 | 667 |
#' @export |
664 | 668 |
mirnaRegionGOEnricher <- |
... | ... |
@@ -931,12 +935,13 @@ mirnaRegionGOEnricher <- |
931 | 935 |
#' |
932 | 936 |
#' |
933 | 937 |
#' @examples |
934 |
-#' |
|
938 |
+#' \dontrun{ |
|
935 | 939 |
#' regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
936 | 940 |
#' regionNC <- rtracklayer::import(regions, format = "BED") |
937 | 941 |
#' |
938 | 942 |
#' a<- mirnaRegionPathwayEnricher(region = regionNC, |
939 |
-#' org_assembly = 'hg19') |
|
943 |
+#' org_assembly = 'hg19') |
|
944 |
+#' } |
|
940 | 945 |
#' |
941 | 946 |
#' @export |
942 | 947 |
mirnaRegionPathwayEnricher <- |
... | ... |
@@ -1178,10 +1183,11 @@ mirnaRegionPathwayEnricher <- |
1178 | 1183 |
#' @return miRNA:mRNA target sets of the given genes |
1179 | 1184 |
#' |
1180 | 1185 |
#' @examples |
1181 |
-#' |
|
1186 |
+#' \dontrun{ |
|
1182 | 1187 |
#' a<- predictmiTargets(gene = brain_mirna[1:100,], |
1183 | 1188 |
#' org_assembly = 'hg19', |
1184 | 1189 |
#' type = "mirna") |
1190 |
+#' } |
|
1185 | 1191 |
#' |
1186 | 1192 |
#' |
1187 | 1193 |
#' @export |
... | ... |
@@ -81,10 +81,12 @@ drawDotPlot <- function(mrnaObject, type = "pAdjust", n) { |
81 | 81 |
#' @return Text file of the enrichment results in a tabular format |
82 | 82 |
#' |
83 | 83 |
#' @examples |
84 |
+#' \dontrun{ |
|
84 | 85 |
#' ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19', |
85 | 86 |
#' near=TRUE, genetype = 'Ensembl_gene') |
86 | 87 |
#' |
87 | 88 |
#' writeEnrichment(mrnaObject = ncGO,fileName = "a.txt",sept = '\t') |
89 |
+#' } |
|
88 | 90 |
#' |
89 | 91 |
#' @export |
90 | 92 |
writeEnrichment <- |
... | ... |
@@ -125,10 +127,12 @@ writeEnrichment <- |
125 | 127 |
#' @importFrom dplyr %>% |
126 | 128 |
#' |
127 | 129 |
#' @examples |
130 |
+#' \dontrun{ |
|
128 | 131 |
#' ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19', |
129 | 132 |
#' near=TRUE, genetype = 'Ensembl_gene') |
130 | 133 |
#' |
131 | 134 |
#' result = topEnrichment(mrnaObject = ncGO, type = "pvalue", n = 10) |
135 |
+#' } |
|
132 | 136 |
#' |
133 | 137 |
#' @export |
134 | 138 |
topEnrichment <- function(mrnaObject, type, n) { |
... | ... |
@@ -382,8 +386,10 @@ createNetwork <- |
382 | 386 |
#' |
383 | 387 |
#' |
384 | 388 |
#' @examples |
389 |
+#' \dontrun{ |
|
385 | 390 |
#' ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna, |
386 | 391 |
#' org_assembly = 'hg19',near = TRUE) |
392 |
+#' } |
|
387 | 393 |
#' |
388 | 394 |
#' @export |
389 | 395 |
getGoDag <- |
... | ... |
@@ -482,11 +488,13 @@ getGoDag <- |
482 | 488 |
#' @importFrom utils browseURL read.table write.table |
483 | 489 |
#' |
484 | 490 |
#' @examples |
491 |
+#' \dontrun{ |
|
485 | 492 |
#' ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna, |
486 | 493 |
#' org_assembly = 'hg19',near = TRUE) |
487 | 494 |
#' |
488 | 495 |
#' getKeggDiagram(mrnaObject = ncRNAPathway, org_assembly ='hg19', |
489 | 496 |
#' pathway = ncRNAPathway@ID[1]) |
497 |
+#' } |
|
490 | 498 |
#' @export |
491 | 499 |
#' |
492 | 500 |
getKeggDiagram <- |
... | ... |
@@ -543,11 +551,12 @@ getKeggDiagram <- |
543 | 551 |
#' @return Shows reactome diagram marked with an enriched genes in a browser |
544 | 552 |
#' |
545 | 553 |
#' @examples |
546 |
-#' |
|
554 |
+#' \dontrun{ |
|
547 | 555 |
#' br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19') |
548 | 556 |
#' |
549 | 557 |
#' getReactomeDiagram(mrnaObject = br_enr,pathway = br_enr@ID[1], |
550 | 558 |
#' imageFormat = 'png') |
559 |
+#' } |
|
551 | 560 |
#' |
552 | 561 |
#'@export |
553 | 562 |
getReactomeDiagram <- function(mrnaObject, pathway, imageFormat) { |
... | ... |
@@ -58,8 +58,9 @@ Calculates the correlation coefficient values between two custom |
58 | 58 |
expression data. |
59 | 59 |
} |
60 | 60 |
\examples{ |
61 |
- |
|
61 |
+\dontrun{ |
|
62 | 62 |
#Assume that mirnanorce and mrnanorce are custom patient by gene data |
63 |
-a<-calculateCorr(exp1 = mirna, exp2 = mrna ) |
|
63 |
+a<-calculateCorr(exp1 = mirna, exp2 = mrna ) |
|
64 |
+} |
|
64 | 65 |
|
65 | 66 |
} |
... | ... |
@@ -23,8 +23,10 @@ when input gene list is mixed or when research of the interest is only |
23 | 23 |
focused on specific group of genes. |
24 | 24 |
} |
25 | 25 |
\examples{ |
26 |
+\dontrun{ |
|
26 | 27 |
biotypes <- c('unprocessed_pseudogene','transcribed_unprocessed_pseudogene') |
27 | 28 |
fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE") |
28 | 29 |
extrResult <- filterBiotype(fileImport, biotypes) |
30 |
+} |
|
29 | 31 |
|
30 | 32 |
} |
... | ... |
@@ -37,7 +37,9 @@ Plot and save the GO term DAG of the top n enrichments in terms of |
37 | 37 |
p-values or adjusted p-values with an user provided format |
38 | 38 |
} |
39 | 39 |
\examples{ |
40 |
+\dontrun{ |
|
40 | 41 |
ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna, |
41 | 42 |
org_assembly = 'hg19',near = TRUE) |
43 |
+ } |
|
42 | 44 |
|
43 | 45 |
} |
... | ... |
@@ -31,9 +31,11 @@ specific to only one KEGG pathway id and identifies the enriched genes |
31 | 31 |
in the diagram. |
32 | 32 |
} |
33 | 33 |
\examples{ |
34 |
+\dontrun{ |
|
34 | 35 |
ncRNAPathway<-mirnaPathwayEnricher(gene = brain_mirna, |
35 | 36 |
org_assembly = 'hg19',near = TRUE) |
36 | 37 |
|
37 | 38 |
getKeggDiagram(mrnaObject = ncRNAPathway, org_assembly ='hg19', |
38 | 39 |
pathway = ncRNAPathway@ID[1]) |
40 |
+ } |
|
39 | 41 |
} |
... | ... |
@@ -30,7 +30,7 @@ genes |
30 | 30 |
Get only those neighbouring genes that fall within exon region |
31 | 31 |
} |
32 | 32 |
\examples{ |
33 |
- |
|
33 |
+\dontrun{ |
|
34 | 34 |
regions <- system.file("extdata", "ncRegion.txt", package = "NoRCE") |
35 | 35 |
regionNC <- rtracklayer::import(regions, format = "BED") |
36 | 36 |
|
... | ... |
@@ -38,5 +38,5 @@ r<-getNearToExon(bedfile = regionNC, |
38 | 38 |
upstream = 1000, |
39 | 39 |
downstream = 2000, |
40 | 40 |
org_assembly = 'hg19') |
41 |
- |
|
41 |
+ } |
|
42 | 42 |
} |
... | ... |
@@ -30,7 +30,7 @@ genes |
30 | 30 |
Get only those neighbouring genes that fall within intron region |
31 | 31 |
} |
32 | 32 |
\examples{ |
33 |
- |
|
33 |
+\dontrun{ |
|
34 | 34 |
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
35 | 35 |
regionNC <- rtracklayer::import(regions, format = "BED") |
36 | 36 |
|
... | ... |
@@ -38,5 +38,5 @@ r<-getNearToExon(bedfile = regionNC, |
38 | 38 |
upstream = 1000, |
39 | 39 |
downstream = 2000, |
40 | 40 |
org_assembly = 'hg19') |
41 |
- |
|
41 |
+} |
|
42 | 42 |
} |
... | ... |
@@ -25,10 +25,11 @@ This function is specific to only one pathway id and identifies the |
25 | 25 |
enriched genes in the diagram. |
26 | 26 |
} |
27 | 27 |
\examples{ |
28 |
- |
|
28 |
+\dontrun{ |
|
29 | 29 |
br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19') |
30 | 30 |
|
31 | 31 |
getReactomeDiagram(mrnaObject = br_enr,pathway = br_enr@ID[1], |
32 | 32 |
imageFormat = 'png') |
33 |
+ } |
|
33 | 34 |
|
34 | 35 |
} |
... | ... |
@@ -48,7 +48,7 @@ For given region of interest, overlapped genes in the TAD regions are |
48 | 48 |
found. Results can be filtered according to the available cell lines. |
49 | 49 |
} |
50 | 50 |
\examples{ |
51 |
- |
|
51 |
+\dontrun{ |
|
52 | 52 |
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
53 | 53 |
regionNC <- rtracklayer::import(regions, format = "BED") |
54 | 54 |
|
... | ... |
@@ -56,5 +56,5 @@ r<-getTADOverlap(bedfile = regionNC, |
56 | 56 |
tad = tad_hg19, |
57 | 57 |
org_assembly = 'hg19', |
58 | 58 |
cellline = 'HUVEC') |
59 |
- |
|
59 |
+} |
|
60 | 60 |
} |
... | ... |
@@ -33,13 +33,14 @@ When downstream = 0 / upstream = 0, function converts bed formated regions |
33 | 33 |
to HUGO genes |
34 | 34 |
} |
35 | 35 |
\examples{ |
36 |
- |
|
36 |
+ \dontrun{ |
|
37 | 37 |
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
38 | 38 |
regionNC <- rtracklayer::import(regions, format = "BED") |
39 | 39 |
|
40 | 40 |
neighbour <- getUCSC(bedfile = regionNC, |
41 | 41 |
upstream = 1000, |
42 | 42 |
downstream = 1000, |
43 |
- org_assembly = 'hg19') |
|
43 |
+ org_assembly = 'hg19') |
|
44 |
+ } |
|
44 | 45 |
|
45 | 46 |
} |
... | ... |
@@ -56,10 +56,12 @@ GO enrichment results |
56 | 56 |
Perform enrichment analysis of the given genes |
57 | 57 |
} |
58 | 58 |
\examples{ |
59 |
+\dontrun{ |
|
59 | 60 |
subsetGene <- breastmRNA[1:30,] |
60 | 61 |
breastEnr <- goEnrichment(genes = subsetGene, |
61 | 62 |
org_assembly = 'hg19', |
62 | 63 |
GOtype = 'MF', |
63 | 64 |
min = 2) |
65 |
+ } |
|
64 | 66 |
|
65 | 67 |
} |
... | ... |
@@ -97,8 +97,10 @@ Pathway enrichments of the microRNA genes with mRNAs that fall in the |
97 | 97 |
given upstream/downstream regions of the microRNA genes |
98 | 98 |
} |
99 | 99 |
\examples{ |
100 |
+\dontrun{ |
|
100 | 101 |
miPath <- mirnaPathwayEnricher(gene = brain_mirna, |
101 | 102 |
org_assembly = 'hg19', |
102 | 103 |
near = TRUE) |
104 |
+} |
|
103 | 105 |
|
104 | 106 |
} |
... | ... |
@@ -95,11 +95,13 @@ GO enrichments of the microRNA regions with mRNAs that fall in the given |
95 | 95 |
upstream/downstream regions of the microRNA genes |
96 | 96 |
} |
97 | 97 |
\examples{ |
98 |
+\dontrun{ |
|
98 | 99 |
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
99 | 100 |
regionNC <- rtracklayer::import(regions, format = "BED") |
100 | 101 |
|
101 | 102 |
a<- mirnaRegionGOEnricher(region = regionNC, |
102 | 103 |
org_assembly = 'hg19', |
103 | 104 |
near = TRUE) |
105 |
+} |
|
104 | 106 |
|
105 | 107 |
} |
... | ... |
@@ -95,11 +95,12 @@ Pathway enrichments of the microRNA regions with mRNAs that fall in the |
95 | 95 |
given upstream/downstream regions of the microRNA genes |
96 | 96 |
} |
97 | 97 |
\examples{ |
98 |
- |
|
98 |
+\dontrun{ |
|
99 | 99 |
regions<-system.file("extdata", "ncRegion.txt", package = "NoRCE") |
100 | 100 |
regionNC <- rtracklayer::import(regions, format = "BED") |
101 | 101 |
|
102 | 102 |
a<- mirnaRegionPathwayEnricher(region = regionNC, |
103 |
- org_assembly = 'hg19') |
|
103 |
+ org_assembly = 'hg19') |
|
104 |
+ } |
|
104 | 105 |
|
105 | 106 |
} |
... | ... |
@@ -27,10 +27,11 @@ Predict the miRNA targets for the miRNA or mRNA genes, which is specified |
27 | 27 |
with type parameter |
28 | 28 |
} |
29 | 29 |
\examples{ |
30 |
- |
|
30 |
+\dontrun{ |
|
31 | 31 |
a<- predictmiTargets(gene = brain_mirna[1:100,], |
32 | 32 |
org_assembly = 'hg19', |
33 | 33 |
type = "mirna") |
34 |
+ } |
|
34 | 35 |
|
35 | 36 |
|
36 | 37 |
} |
... | ... |
@@ -54,11 +54,12 @@ isSymbol: Boolean variable that hold the gene format of the gmt file. |
54 | 54 |
Otherwise, gene format should be ENTREZ ID. By default, it is FALSE. |
55 | 55 |
} |
56 | 56 |
\examples{ |
57 |
- |
|
57 |
+\dontrun{ |
|
58 | 58 |
type <- c('downstream','upstream') |
59 | 59 |
|
60 | 60 |
value <- c(2000,30000) |
61 | 61 |
|
62 | 62 |
setParameters(type,value) |
63 |
+} |
|
63 | 64 |
|
64 | 65 |
} |
... | ... |
@@ -24,9 +24,11 @@ Number of top enrichment results of the pathway or GO terms for the given |
24 | 24 |
object and the order type - p-value or adjusted p-value. |
25 | 25 |
} |
26 | 26 |
\examples{ |
27 |
+\dontrun{ |
|
27 | 28 |
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19', |
28 | 29 |
near=TRUE, genetype = 'Ensembl_gene') |
29 | 30 |
|
30 | 31 |
result = topEnrichment(mrnaObject = ncGO, type = "pvalue", n = 10) |
32 |
+} |
|
31 | 33 |
|
32 | 34 |
} |
... | ... |
@@ -26,9 +26,11 @@ Text file of the enrichment results in a tabular format |
26 | 26 |
Write the tabular form of the pathway or GO term enrichment results |
27 | 27 |
} |
28 | 28 |
\examples{ |
29 |
+\dontrun{ |
|
29 | 30 |
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19', |
30 | 31 |
near=TRUE, genetype = 'Ensembl_gene') |
31 | 32 |
|
32 | 33 |
writeEnrichment(mrnaObject = ncGO,fileName = "a.txt",sept = '\t') |
34 |
+} |
|
33 | 35 |
|
34 | 36 |
} |