% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pathCluster.R \name{predictPathCluster} \alias{predictPathCluster} \title{Predicts new paths given a pathCluster model} \usage{ predictPathCluster(pfit, newdata) } \arguments{ \item{pfit}{The pathway cluster model trained by \code{\link{pathCluster}} or \code{\link{pathClassifier}}.} \item{newdata}{The binary pathway dataset to be assigned a cluster label.} } \value{ A list with the following elements: \tabular{ll}{ \code{labels} \tab a vector indicating the 3M cluster membership. \cr \code{posterior.probs} \tab a matrix of posterior probabilities for each path belonging to each cluster. } } \description{ Predicts new paths given a pathCluster model. } \examples{ ## Prepare a weighted reaction network. ## Conver a metabolic network to a reaction network. data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism. rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE) ## Assign edge weights based on Affymetrix attributes and microarray dataset. # Calculate Pearson's correlation. data(ex_microarray) # Part of ALL dataset. rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph, weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE) ## Get ranked paths using probabilistic shortest paths. ranked.p <- pathRanker(rgraph, method="prob.shortest.path", K=20, minPathSize=8) ## Convert paths to binary matrix. ybinpaths <- pathsToBinary(ranked.p) p.cluster <- pathCluster(ybinpaths, M=2) ## just an example of how to predict cluster membership. pclust.pred <- predictPathCluster(p.cluster,ybinpaths$paths) } \seealso{ Other Path clustering & classification methods: \code{\link{pathClassifier}}, \code{\link{pathCluster}}, \code{\link{pathsToBinary}}, \code{\link{plotClassifierROC}}, \code{\link{plotClusterMatrix}}, \code{\link{plotPathClassifier}}, \code{\link{plotPathCluster}}, \code{\link{predictPathClassifier}} } \author{ Ichigaku Takigawa Timothy Hancock } \concept{Path clustering & classification methods}