... | ... |
@@ -4,8 +4,8 @@ |
4 | 4 |
\alias{samplePaths} |
5 | 5 |
\title{Creates a set of sample path p-values for each length given a weighted network} |
6 | 6 |
\usage{ |
7 |
-samplePaths(graph, max.path.length, num.samples = 1000, num.warmup = 10, |
|
8 |
- verbose = TRUE) |
|
7 |
+samplePaths(graph, max.path.length, num.samples = 1000, |
|
8 |
+ num.warmup = 10, verbose = TRUE) |
|
9 | 9 |
} |
10 | 10 |
\arguments{ |
11 | 11 |
\item{graph}{A weighted igraph object. Weights must be in \code{edge.weights} or \code{weight} |
... | ... |
@@ -23,7 +23,7 @@ edge attributes.} |
23 | 23 |
A matrix where each row is a path length and each column is the number of paths sampled. |
24 | 24 |
} |
25 | 25 |
\description{ |
26 |
-Randomly traverses paths of increasing lengths within a set network to create an |
|
26 |
+Randomly traverses paths of increasing lengths within a set network to create an |
|
27 | 27 |
empirical pathway distribution for more accurate determination of path significance. |
28 | 28 |
} |
29 | 29 |
\details{ |
... | ... |
@@ -39,26 +39,26 @@ Can take a bit of time. |
39 | 39 |
# Calculate Pearson's correlation. |
40 | 40 |
data(ex_microarray) # Part of ALL dataset. |
41 | 41 |
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph, |
42 |
- weight.method = "cor", use.attr="miriam.uniprot", |
|
42 |
+ weight.method = "cor", use.attr="miriam.uniprot", |
|
43 | 43 |
y=factor(colnames(ex_microarray)), bootstrap = FALSE) |
44 |
- |
|
44 |
+ |
|
45 | 45 |
## Get significantly correlated paths using "p-valvue" method. |
46 |
- ## First, establish path score distribution by calling "samplePaths" |
|
46 |
+ ## First, establish path score distribution by calling "samplePaths" |
|
47 | 47 |
pathsample <- samplePaths(rgraph, max.path.length=10, |
48 | 48 |
num.samples=100, num.warmup=10) |
49 |
- |
|
50 |
- ## Get all significant paths with p<0.1 |
|
51 |
- significant.p <- pathRanker(rgraph, method = "pvalue", |
|
49 |
+ |
|
50 |
+ ## Get all significant paths with p<0.1 |
|
51 |
+ significant.p <- pathRanker(rgraph, method = "pvalue", |
|
52 | 52 |
sampledpaths = pathsample ,alpha=0.1) |
53 | 53 |
|
54 |
-} |
|
55 |
-\author{ |
|
56 |
-Timothy Hancock |
|
57 |
- |
|
58 |
-Ahmed Mohamed |
|
59 | 54 |
} |
60 | 55 |
\seealso{ |
61 | 56 |
Other Path ranking methods: \code{\link{extractPathNetwork}}, |
62 | 57 |
\code{\link{getPathsAsEIDs}}, \code{\link{pathRanker}} |
63 | 58 |
} |
59 |
+\author{ |
|
60 |
+Timothy Hancock |
|
64 | 61 |
|
62 |
+Ahmed Mohamed |
|
63 |
+} |
|
64 |
+\concept{Path ranking methods} |
... | ... |
@@ -1,4 +1,5 @@ |
1 |
-% Generated by roxygen2 (4.0.1): do not edit by hand |
|
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/pathRank.R |
|
2 | 3 |
\name{samplePaths} |
3 | 4 |
\alias{samplePaths} |
4 | 5 |
\title{Creates a set of sample path p-values for each length given a weighted network} |
... | ... |
@@ -22,14 +23,14 @@ edge attributes.} |
22 | 23 |
A matrix where each row is a path length and each column is the number of paths sampled. |
23 | 24 |
} |
24 | 25 |
\description{ |
25 |
-Randomly traverses paths of increasing lengths within a set network to create an |
|
26 |
+Randomly traverses paths of increasing lengths within a set network to create an |
|
26 | 27 |
empirical pathway distribution for more accurate determination of path significance. |
27 | 28 |
} |
28 | 29 |
\details{ |
29 | 30 |
Can take a bit of time. |
30 | 31 |
} |
31 | 32 |
\examples{ |
32 |
-## Prepare a weighted reaction network. |
|
33 |
+ ## Prepare a weighted reaction network. |
|
33 | 34 |
## Conver a metabolic network to a reaction network. |
34 | 35 |
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism. |
35 | 36 |
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE) |
... | ... |
@@ -38,17 +39,18 @@ Can take a bit of time. |
38 | 39 |
# Calculate Pearson's correlation. |
39 | 40 |
data(ex_microarray) # Part of ALL dataset. |
40 | 41 |
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph, |
41 |
- weight.method = "cor", use.attr="miriam.uniprot", |
|
42 |
+ weight.method = "cor", use.attr="miriam.uniprot", |
|
42 | 43 |
y=factor(colnames(ex_microarray)), bootstrap = FALSE) |
43 |
- |
|
44 |
+ |
|
44 | 45 |
## Get significantly correlated paths using "p-valvue" method. |
45 |
- ## First, establish path score distribution by calling "samplePaths" |
|
46 |
+ ## First, establish path score distribution by calling "samplePaths" |
|
46 | 47 |
pathsample <- samplePaths(rgraph, max.path.length=10, |
47 | 48 |
num.samples=100, num.warmup=10) |
48 |
- |
|
49 |
- ## Get all significant paths with p<0.1 |
|
50 |
- significant.p <- pathRanker(rgraph, method = "pvalue", |
|
49 |
+ |
|
50 |
+ ## Get all significant paths with p<0.1 |
|
51 |
+ significant.p <- pathRanker(rgraph, method = "pvalue", |
|
51 | 52 |
sampledpaths = pathsample ,alpha=0.1) |
53 |
+ |
|
52 | 54 |
} |
53 | 55 |
\author{ |
54 | 56 |
Timothy Hancock |
... | ... |
@@ -56,7 +58,7 @@ Timothy Hancock |
56 | 58 |
Ahmed Mohamed |
57 | 59 |
} |
58 | 60 |
\seealso{ |
59 |
-Other Path ranking methods: \code{\link{extractPathNetwork}}; |
|
60 |
- \code{\link{getPathsAsEIDs}}; \code{\link{pathRanker}} |
|
61 |
+Other Path ranking methods: \code{\link{extractPathNetwork}}, |
|
62 |
+ \code{\link{getPathsAsEIDs}}, \code{\link{pathRanker}} |
|
61 | 63 |
} |
62 | 64 |
|
added plotCytoscapeGML , Geneset export formats, bug fixes
... | ... |
@@ -1,3 +1,4 @@ |
1 |
+% Generated by roxygen2 (4.0.1): do not edit by hand |
|
1 | 2 |
\name{samplePaths} |
2 | 3 |
\alias{samplePaths} |
3 | 4 |
\title{Creates a set of sample path p-values for each length given a weighted network} |
... | ... |
@@ -6,26 +7,23 @@ samplePaths(graph, max.path.length, num.samples = 1000, num.warmup = 10, |
6 | 7 |
verbose = TRUE) |
7 | 8 |
} |
8 | 9 |
\arguments{ |
9 |
- \item{graph}{A weighted igraph object. Weights must be in |
|
10 |
- \code{edge.weights} or \code{weight} edge attributes.} |
|
10 |
+\item{graph}{A weighted igraph object. Weights must be in \code{edge.weights} or \code{weight} |
|
11 |
+edge attributes.} |
|
11 | 12 |
|
12 |
- \item{max.path.length}{The maxmimum path length.} |
|
13 |
+\item{max.path.length}{The maxmimum path length.} |
|
13 | 14 |
|
14 |
- \item{num.samples}{The numner of paths to sample} |
|
15 |
+\item{num.samples}{The numner of paths to sample} |
|
15 | 16 |
|
16 |
- \item{num.warmup}{The number of warm up paths to sample.} |
|
17 |
+\item{num.warmup}{The number of warm up paths to sample.} |
|
17 | 18 |
|
18 |
- \item{verbose}{Whether to display the progress of the |
|
19 |
- function.} |
|
19 |
+\item{verbose}{Whether to display the progress of the function.} |
|
20 | 20 |
} |
21 | 21 |
\value{ |
22 |
-A matrix where each row is a path length and each column is |
|
23 |
-the number of paths sampled. |
|
22 |
+A matrix where each row is a path length and each column is the number of paths sampled. |
|
24 | 23 |
} |
25 | 24 |
\description{ |
26 |
-Randomly traverses paths of increasing lengths within a set |
|
27 |
-network to create an empirical pathway distribution for |
|
28 |
-more accurate determination of path significance. |
|
25 |
+Randomly traverses paths of increasing lengths within a set network to create an |
|
26 |
+empirical pathway distribution for more accurate determination of path significance. |
|
29 | 27 |
} |
30 | 28 |
\details{ |
31 | 29 |
Can take a bit of time. |
... | ... |
@@ -58,8 +56,7 @@ Timothy Hancock |
58 | 56 |
Ahmed Mohamed |
59 | 57 |
} |
60 | 58 |
\seealso{ |
61 |
-Other Path ranking methods: |
|
62 |
-\code{\link{extractPathNetwork}}; |
|
63 |
-\code{\link{getPathsAsEIDs}}; \code{\link{pathRanker}} |
|
59 |
+Other Path ranking methods: \code{\link{extractPathNetwork}}; |
|
60 |
+ \code{\link{getPathsAsEIDs}}; \code{\link{pathRanker}} |
|
64 | 61 |
} |
65 | 62 |
|
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,65 @@ |
1 |
+\name{samplePaths} |
|
2 |
+\alias{samplePaths} |
|
3 |
+\title{Creates a set of sample path p-values for each length given a weighted network} |
|
4 |
+\usage{ |
|
5 |
+samplePaths(graph, max.path.length, num.samples = 1000, num.warmup = 10, |
|
6 |
+ verbose = TRUE) |
|
7 |
+} |
|
8 |
+\arguments{ |
|
9 |
+ \item{graph}{A weighted igraph object. Weights must be in |
|
10 |
+ \code{edge.weights} or \code{weight} edge attributes.} |
|
11 |
+ |
|
12 |
+ \item{max.path.length}{The maxmimum path length.} |
|
13 |
+ |
|
14 |
+ \item{num.samples}{The numner of paths to sample} |
|
15 |
+ |
|
16 |
+ \item{num.warmup}{The number of warm up paths to sample.} |
|
17 |
+ |
|
18 |
+ \item{verbose}{Whether to display the progress of the |
|
19 |
+ function.} |
|
20 |
+} |
|
21 |
+\value{ |
|
22 |
+A matrix where each row is a path length and each column is |
|
23 |
+the number of paths sampled. |
|
24 |
+} |
|
25 |
+\description{ |
|
26 |
+Randomly traverses paths of increasing lengths within a set |
|
27 |
+network to create an empirical pathway distribution for |
|
28 |
+more accurate determination of path significance. |
|
29 |
+} |
|
30 |
+\details{ |
|
31 |
+Can take a bit of time. |
|
32 |
+} |
|
33 |
+\examples{ |
|
34 |
+## Prepare a weighted reaction network. |
|
35 |
+ ## Conver a metabolic network to a reaction network. |
|
36 |
+ data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism. |
|
37 |
+ rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE) |
|
38 |
+ |
|
39 |
+ ## Assign edge weights based on Affymetrix attributes and microarray dataset. |
|
40 |
+ # Calculate Pearson's correlation. |
|
41 |
+ data(ex_microarray) # Part of ALL dataset. |
|
42 |
+ rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph, |
|
43 |
+ weight.method = "cor", use.attr="miriam.uniprot", |
|
44 |
+ y=factor(colnames(ex_microarray)), bootstrap = FALSE) |
|
45 |
+ |
|
46 |
+ ## Get significantly correlated paths using "p-valvue" method. |
|
47 |
+ ## First, establish path score distribution by calling "samplePaths" |
|
48 |
+ pathsample <- samplePaths(rgraph, max.path.length=10, |
|
49 |
+ num.samples=100, num.warmup=10) |
|
50 |
+ |
|
51 |
+ ## Get all significant paths with p<0.1 |
|
52 |
+ significant.p <- pathRanker(rgraph, method = "pvalue", |
|
53 |
+ sampledpaths = pathsample ,alpha=0.1) |
|
54 |
+} |
|
55 |
+\author{ |
|
56 |
+Timothy Hancock |
|
57 |
+ |
|
58 |
+Ahmed Mohamed |
|
59 |
+} |
|
60 |
+\seealso{ |
|
61 |
+Other Path ranking methods: |
|
62 |
+\code{\link{extractPathNetwork}}; |
|
63 |
+\code{\link{getPathsAsEIDs}}; \code{\link{pathRanker}} |
|
64 |
+} |
|
65 |
+ |