Browse code

update docs using roxygen2

ahmohamed authored on 19/09/2016 02:16:33
Showing 40 changed files

... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/dbExtract.R
2 3
 \name{KGML2igraph}
3 4
 \alias{KGML2igraph}
4 5
 \title{Processes KGML files into igraph objects}
... ...
@@ -7,12 +8,12 @@ KGML2igraph(filename, parse.as = c("metabolic", "signaling"),
7 8
   expand.complexes = FALSE, verbose = TRUE)
8 9
 }
9 10
 \arguments{
10
-\item{filename}{A character vector containing the KGML files to be processed.
11
+\item{filename}{A character vector containing the KGML files to be processed. 
11 12
 If a directory path is provided, all *.xml files in it and its subdirectories are included.}
12 13
 
13 14
 \item{parse.as}{Whether to process file into a metabolic or a signaling network.}
14 15
 
15
-\item{expand.complexes}{Split protein complexes into individual gene nodes. This argument is
16
+\item{expand.complexes}{Split protein complexes into individual gene nodes. This argument is 
16 17
 ignored if \code{parse.as="metabolic"}}
17 18
 
18 19
 \item{verbose}{Whether to display the progress of the function.}
... ...
@@ -33,8 +34,8 @@ to their corresponding substrates and products. Each reaction vertex has \code{g
33 34
 listing all genes associated with the reaction. As a general rule, reactions inherit all annotation
34 35
 attributes of its catalyzig genes.
35 36
 
36
-Signaling network have genes as vertices and edges represent interactions, such as activiation / inhibition.
37
-Genes participating in successive reactions are also connected. Signaling parsing method processes <ECrel>, <PPrel>
37
+Signaling network have genes as vertices and edges represent interactions, such as activiation / inhibition. 
38
+Genes participating in successive reactions are also connected. Signaling parsing method processes <ECrel>, <PPrel> 
38 39
 and <PCrel> interactions from KGML files.
39 40
 
40 41
 To generate a genome scale network, simply provide a list of files to be parsed, or put all
... ...
@@ -42,9 +43,9 @@ file in a directory, as pass the directory path as \code{filename}
42 43
 }
43 44
 \examples{
44 45
 if(is.loaded("readkgmlfile")){ # This is false if libxml2 wasn't available at installation.
45
-    filename <- system.file("extdata", "hsa00860.xml", package="NetPathMiner")
46
+    filename <- system.file("extdata", "hsa00860.xml", package="NetPathMiner") 
46 47
 
47
-    # Process KGML file as a metabolic network
48
+    # Process KGML file as a metabolic network 
48 49
     g <- KGML2igraph(filename)
49 50
     plotNetwork(g)
50 51
 
... ...
@@ -52,12 +53,13 @@ if(is.loaded("readkgmlfile")){ # This is false if libxml2 wasn't available at in
52 53
     g <- KGML2igraph(filename, parse.as="signaling", expand.complexes=TRUE)
53 54
     plotNetwork(g)
54 55
 }
56
+
55 57
 }
56 58
 \author{
57 59
 Ahmed Mohamed
58 60
 }
59 61
 \seealso{
60
-Other Database extraction methods: \code{\link{SBML2igraph}};
62
+Other Database extraction methods: \code{\link{SBML2igraph}},
61 63
   \code{\link{biopax2igraph}}
62 64
 }
63 65
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netWeight.R
2 3
 \name{stdAttrNames}
3 4
 \alias{fetchAttribute}
4 5
 \alias{stdAttrNames}
... ...
@@ -12,7 +13,7 @@ fetchAttribute(graph, organism = "Homo sapiens", target.attr, source.attr,
12 13
 \arguments{
13 14
 \item{graph}{An annotated igraph object.}
14 15
 
15
-\item{return.value}{Specify whether to return the names of matched standard annotations, or modify the
16
+\item{return.value}{Specify whether to return the names of matched standard annotations, or modify the 
16 17
 graph attribute names to match the standards.}
17 18
 
18 19
 \item{organism}{The latin name of the organism (Case-sensitive).}
... ...
@@ -25,7 +26,7 @@ graph attribute names to match the standards.}
25 26
 }
26 27
 \value{
27 28
 For \code{stdAttrNames}, \code{matches} gives the original attribute names and their MIRIAM version.
28
-Since this is done by simple text matching, mismatches may occur for ambiguous annotations (such as GO, EC number).
29
+Since this is done by simple text matching, mismatches may occur for ambiguous annotations (such as GO, EC number). 
29 30
 \code{graph} returns the input graph with attribute names standardized.
30 31
 
31 32
 For \code{fetchAttribute}, the input \code{graph} with the fetched attribute mapped to vertices.
... ...
@@ -34,21 +35,21 @@ For \code{fetchAttribute}, the input \code{graph} with the fetched attribute map
34 35
 These functions deals with conforming with MIRIAM annotation guidelines, conversion and mapping between MIRIAM identifiers.
35 36
 }
36 37
 \examples{
37
-data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
38
+ data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human	
38 39
  ## Modify attribute names to match MIRIAM standard annotations.
39 40
  graph <- stdAttrNames(ex_kgml_sig, "graph")
40
-# Use Attribute fetcher to get affymetrix probeset IDs for network vertices.
41
+ 
42
+ # Use Attribute fetcher to get affymetrix probeset IDs for network vertices.
41 43
  \dontrun{
42
-   graph <- fetchAttribute(graph, organism="Homo sapiens",
44
+   graph <- fetchAttribute(graph, organism="Homo sapiens", 
43 45
                    target.attr="miriam.affy.probeset")
44 46
  }
47
+
45 48
 }
46 49
 \author{
47 50
 Ahmed Mohamed
48 51
 }
49 52
 \seealso{
50
-Other Attribute handling methods: \code{\link{getAttrNames}},
51
-  \code{\link{getAttrStatus}}, \code{\link{getAttribute}},
52
-  \code{\link{rmAttribute}}, \code{\link{setAttribute}}
53
+Other Attribute handling methods: \code{\link{getAttrStatus}}
53 54
 }
54 55
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netWeight.R
2 3
 \name{NPMdefaults}
3 4
 \alias{NPMdefaults}
4 5
 \title{Default values for NetPathMiner}
... ...
@@ -17,15 +18,16 @@ This function gets a NetPathMiner default value for a variable.
17 18
 \details{
18 19
 NetPathMiner defines the following defaults:
19 20
 \itemize{
20
-  \item small.comp.ls Dataframe of ubiquitous metabolites. Used by \code{\link{rmSmallCompounds}}.
21
+  \item small.comp.ls Dataframe of ubiquitous metabolites. Used by \code{\link{rmSmallCompounds}}.    
21 22
   \item bridge Dataframe of attributes supported by Brigde Database. Used by \code{\link{fetchAttribute}}.
22 23
   \item bridge.organisms A list of bridge supported organisms. Used by \code{\link{fetchAttribute}}.
23 24
   \item bridge.web The base URL for Brigde Database webservices. Used by \code{\link{fetchAttribute}}.
24 25
 }
25 26
 }
26 27
 \examples{
27
-# Get the default list of small compounds (uniquitous metabolites).
28
+ # Get the default list of small compounds (uniquitous metabolites).
28 29
  NPMdefaults("small.comp.ls")
30
+ 
29 31
 }
30 32
 \author{
31 33
 Ahmed Mohamed
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/NPM-package.R
2 3
 \docType{package}
3 4
 \name{NetPathMiner-package}
4 5
 \alias{NPM}
... ...
@@ -7,10 +8,10 @@
7 8
 \title{General framework for network extraction, path mining.}
8 9
 \description{
9 10
 NetPathMiner implements a flexible module-based process flow for network path mining and visualization,
10
-which can be fully inte-grated with user-customized functions.
11
+which can be fully inte-grated with user-customized functions. 
11 12
 NetPathMiner supports construction of various types of genome scale networks from KGML, SBML and BioPAX
12
-formats, enabling its utility to most common pathway databases.
13
-NetPathMiner also provides different visualization techniques to facilitate the analysis of even
13
+formats, enabling its utility to most common pathway databases. 
14
+NetPathMiner also provides different visualization techniques to facilitate the analysis of even 
14 15
 thousands of output paths.
15 16
 }
16 17
 \author{
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/dbExtract.R
2 3
 \name{SBML2igraph}
3 4
 \alias{SBML2igraph}
4 5
 \title{Processes SBML files into igraph objects}
... ...
@@ -7,7 +8,7 @@ SBML2igraph(filename, parse.as = c("metabolic", "signaling"),
7 8
   miriam.attr = "all", gene.attr, expand.complexes, verbose = TRUE)
8 9
 }
9 10
 \arguments{
10
-\item{filename}{A character vector containing the SBML files to be processed. If a directory path
11
+\item{filename}{A character vector containing the SBML files to be processed. If a directory path 
11 12
 is provided, all *.xml and *.sbml files in it and its subdirectories are included.}
12 13
 
13 14
 \item{parse.as}{Whether to process file into a metabolic or a signaling network.}
... ...
@@ -16,10 +17,10 @@ is provided, all *.xml and *.sbml files in it and its subdirectories are include
16 17
 written in MIRIAM guidelines (see Details) are extracted (Default). If \code{"none"}, then no attributes
17 18
 are extracted. Otherwise, only attributes matching those specified are extracted.}
18 19
 
19
-\item{gene.attr}{An attribute to distinguish \code{species} representing genes from those
20
+\item{gene.attr}{An attribute to distinguish \code{species} representing genes from those 
20 21
 representing small molecules (see Details). Ignored if \code{parse.as="metabolic"}.}
21 22
 
22
-\item{expand.complexes}{Split protein complexes into individual gene nodes. Ignored if
23
+\item{expand.complexes}{Split protein complexes into individual gene nodes. Ignored if 
23 24
 \code{parse.as="metabolic"}, or when \code{gene.attr} is not provided.}
24 25
 
25 26
 \item{verbose}{Whether to display the progress of the function.}
... ...
@@ -40,7 +41,7 @@ to their corresponding substrates and products (\code{ListOfSpecies}). Each reac
40 41
 listing all \code{modifiers} of this reaction. As a general rule, reactions inherit all annotation
41 42
 attributes of its catalyzig genes.
42 43
 
43
-Signaling network have genes as vertices and edges represent interactions. Since SBML format may
44
+Signaling network have genes as vertices and edges represent interactions. Since SBML format may 
44 45
 represent singling events as \code{reaction}, all species are assumed to be genes (rather than small
45 46
 molecules). For a simple path \code{S0 -> R1 -> S1}, in signaling network, the path will be
46 47
 \code{S0 -> M(R1) -> S1} where \code{M(R1)} is R1 modifier(s). To ditiguish gene species from small
... ...
@@ -54,21 +55,21 @@ by specifying \code{miriam.attr}.
54 55
 To generate a genome scale network, simply provide a list of files to be parsed, or put all
55 56
 file in a directory, as pass the directory path as \code{filename}
56 57
 
57
-Note: This function requires libSBML installed (Please see the installation instructions in the Vignette).
58
-Some SBML level-3 files may requires additional libraries also (An infomative error will be displayed when
59
-parsing such files). Please visit \url{http://sbml.org/Documents/Specifications/SBML_Level_3/Packages} for
58
+Note: This function requires libSBML installed (Please see the installation instructions in the Vignette). 
59
+Some SBML level-3 files may requires additional libraries also (An infomative error will be displayed when 
60
+parsing such files). Please visit \url{http://sbml.org/Documents/Specifications/SBML_Level_3/Packages} for 
60 61
 more information.
61 62
 }
62 63
 \examples{
63 64
 if(is.loaded("readsbmlfile")){ # This is false if libSBML wasn't available at installation.
64
-    filename <- system.file("extdata", "porphyrin.sbml", package="NetPathMiner")
65
+    filename <- system.file("extdata", "porphyrin.sbml", package="NetPathMiner") 
65 66
 
66
-    # Process SBML file as a metabolic network
67
+    # Process SBML file as a metabolic network 
67 68
     g <- SBML2igraph(filename)
68 69
     plotNetwork(g)
69 70
 
70 71
     # Process SBML file as a signaling network
71
-    g <- SBML2igraph(filename, parse.as="signaling",
72
+    g <- SBML2igraph(filename, parse.as="signaling", 
72 73
                     gene.attr="miriam.uniprot",expand.complexes=TRUE)
73 74
     dev.new()
74 75
     plotNetwork(g)
... ...
@@ -78,7 +79,7 @@ if(is.loaded("readsbmlfile")){ # This is false if libSBML wasn't available at in
78 79
 Ahmed Mohamed
79 80
 }
80 81
 \seealso{
81
-Other Database extraction methods: \code{\link{KGML2igraph}};
82
+Other Database extraction methods: \code{\link{KGML2igraph}},
82 83
   \code{\link{biopax2igraph}}
83 84
 }
84 85
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netWeight.R
2 3
 \name{assignEdgeWeights}
3 4
 \alias{assignEdgeWeights}
4 5
 \title{Assigning weights to network edges}
... ...
@@ -12,25 +13,25 @@ assignEdgeWeights(microarray, graph, use.attr, y, weight.method = "cor",
12 13
 
13 14
 \item{graph}{An annotated igraph object.}
14 15
 
15
-\item{use.attr}{An attribute name to map \code{microarray} rows (genes) to graph vertices. The attribute must
16
-be annotated in \code{graph}, and the values correspond to \code{rownames} of \code{microarray}. You can check the coverage and
16
+\item{use.attr}{An attribute name to map \code{microarray} rows (genes) to graph vertices. The attribute must 
17
+be annotated in \code{graph}, and the values correspond to \code{rownames} of \code{microarray}. You can check the coverage and 
17 18
 if there are complex vertices using \code{\link{getAttrStatus}}. You can eliminate complexes using \code{\link{expandComplexes}}.}
18 19
 
19 20
 \item{y}{Sample labels, given as a factor or a character vector. This must be the same size as the columns of \code{microarray}}
20 21
 
21
-\item{weight.method}{A function, or a string indicating the name of the function to be used to compute the edge weights.
22
-The function is provided with 2 numerical verctors (2 rows from \code{microarray}), and it should return a single numerical
22
+\item{weight.method}{A function, or a string indicating the name of the function to be used to compute the edge weights. 
23
+The function is provided with 2 numerical verctors (2 rows from \code{microarray}), and it should return a single numerical 
23 24
 value (or \code{NA}). The default computes Pearson's correlation.}
24 25
 
25 26
 \item{complex.method}{A function, or a string indicating the name of the function to be used in weighting edges connecting complexes.
26
-If a vertex has >1 attribute value, all possible pairwise weights are first computed, and given to \code{complex.method}. The default
27
+If a vertex has >1 attribute value, all possible pairwise weights are first computed, and given to \code{complex.method}. The default 
27 28
 function is \code{\link[base]{max}}.}
28 29
 
29 30
 \item{missing.method}{A function, or a string indicating the name of the function to be used in weighting edges when one of the vertices
30 31
 lack expression data. The function is passed all edge weights on the graph. Default is \code{\link[stats]{median}}.}
31 32
 
32
-\item{same.gene.penalty}{A numerical value to be assigned when 2 adjacent vertices have the same attribute value, since correlation and
33
-similarity measure will give perfect scores. Alternatively, \code{same.gene.penalty} can be a function, computing the penalty from all
33
+\item{same.gene.penalty}{A numerical value to be assigned when 2 adjacent vertices have the same attribute value, since correlation and 
34
+similarity measure will give perfect scores. Alternatively, \code{same.gene.penalty} can be a function, computing the penalty from all 
34 35
 edge weights on the graph (excluding same-gene and missing values). The default is to take the \code{\link[stats]{median}}}
35 36
 
36 37
 \item{bootstrap}{An integer \code{n}, where the \code{weight.method} is perfomed on \code{n} permutations of the gene profiles, and taking
... ...
@@ -39,14 +40,14 @@ the median value. Set it to \code{NA} to disable bootstrapping.}
39 40
 \item{verbose}{Print the progress of the function.}
40 41
 }
41 42
 \value{
42
-The input graph with \code{edge.weight} as an edge attribute. The attribute can be a list of weights if \code{y} labels
43
+The input graph with \code{edge.weight} as an edge attribute. The attribute can be a list of weights if \code{y} labels 
43 44
 were provided.
44 45
 }
45 46
 \description{
46 47
 This function computes edge weights based on a gene expression profile.
47 48
 }
48 49
 \examples{
49
-## Conver a metabolic network to a reaction network.
50
+	## Convert a metabolic network to a reaction network.
50 51
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
51 52
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
52 53
 
... ...
@@ -54,16 +55,17 @@ This function computes edge weights based on a gene expression profile.
54 55
  # Calculate Pearson's correlation.
55 56
 	data(ex_microarray)	# Part of ALL dataset.
56 57
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
57
-		weight.method = "cor", use.attr="miriam.uniprot",
58
+		weight.method = "cor", use.attr="miriam.uniprot", 
58 59
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
59
-
60
- # Using Spearman correlation, assigning missing edges to -1
60
+ 
61
+ # Using Spearman correlation, assigning missing edges to -1 
61 62
  \dontrun{
62
-        assignEdgeWeights(microarray, graph, use.attr="miriam.affy.probeset",
63
-                y=factor(colnames(microarray)),
64
-                weight.method = function(x1,x2) cor(x1,x2, method="spearman),
65
-                missing.method = -1)
63
+   assignEdgeWeights(microarray, graph, use.attr="miriam.affy.probeset", 
64
+       y=factor(colnames(microarray)), 
65
+       weight.method = function(x1,x2) cor(x1,x2, method="spearman"),
66
+       missing.method = -1)
66 67
  }
68
+
67 69
 }
68 70
 \author{
69 71
 Ahmed Mohamed
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/dbExtract.R
2 3
 \name{biopax2igraph}
3 4
 \alias{biopax2igraph}
4 5
 \title{Processes BioPAX objects into igraph objects}
... ...
@@ -11,10 +12,10 @@ biopax2igraph(biopax, parse.as = c("metabolic", "signaling"),
11 12
 
12 13
 \item{parse.as}{Whether to process file into a metabolic or a signaling network.}
13 14
 
14
-\item{expand.complexes}{Split protein complexes into individual gene nodes. Ignored if
15
+\item{expand.complexes}{Split protein complexes into individual gene nodes. Ignored if 
15 16
 \code{parse.as="metabolic"}.}
16 17
 
17
-\item{inc.sm.molecules}{Include small molecules that are participating in signaling events. Ignored if
18
+\item{inc.sm.molecules}{Include small molecules that are participating in signaling events. Ignored if 
18 19
 \code{parse.as="metabolic"}.}
19 20
 
20 21
 \item{verbose}{Whether to display the progress of the function.}
... ...
@@ -37,7 +38,7 @@ to their corresponding \code{Left}s and \code{Right}s. Each reaction vertex has
37 38
 listing all \code{Catalysis} relationships of this reaction. As a general rule, reactions inherit all annotation
38 39
 attributes of its catalyzig genes.
39 40
 
40
-Signaling network have genes as vertices and edges represent interactions, such as activiation / inhibition.
41
+Signaling network have genes as vertices and edges represent interactions, such as activiation / inhibition. 
41 42
 Genes participating in successive reactions are also connected. Signaling interactions are constructed from
42 43
 \code{Control} classes, where edges are drawn from \code{controller} to \code{controlled}.
43 44
 
... ...
@@ -47,7 +48,7 @@ MIRIAM guidelines (\code{miraim.db}, where db is the database name).
47 48
 \examples{
48 49
 if(require(rBiopaxParser)){
49 50
     data(ex_biopax)
50
-    # Process biopax as a metabolic network
51
+    # Process biopax as a metabolic network 
51 52
     g <- biopax2igraph(ex_biopax)
52 53
     plotNetwork(g)
53 54
 
... ...
@@ -59,7 +60,7 @@ if(require(rBiopaxParser)){
59 60
 Ahmed Mohamed
60 61
 }
61 62
 \seealso{
62
-Other Database extraction methods: \code{\link{KGML2igraph}};
63
+Other Database extraction methods: \code{\link{KGML2igraph}},
63 64
   \code{\link{SBML2igraph}}
64 65
 }
65 66
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/plotPath.R
2 3
 \name{colorVertexByAttr}
3 4
 \alias{colorVertexByAttr}
4 5
 \title{Computes colors for vertices according to their attributes.}
... ...
@@ -8,7 +9,7 @@ colorVertexByAttr(graph, attr.name, col.palette = palette())
8 9
 \arguments{
9 10
 \item{graph}{An annotated igraph object.}
10 11
 
11
-\item{attr.name}{The attribute name (ex: "pathway") by which vertices will be colored.
12
+\item{attr.name}{The attribute name (ex: "pathway") by which vertices will be colored. 
12 13
 Complex attributes, where a vertex belongs to more than one group, are supported.}
13 14
 
14 15
 \item{col.palette}{A color palette, or a palette generating function (ex: \preformatted{col.palette=rainbow}).}
... ...
@@ -21,22 +22,21 @@ This function returns a list of colors for vertices, assigned similar colors if
21 22
 (ex: in the same pathway, etc).
22 23
 }
23 24
 \examples{
24
-data("ex_kgml_sig")
25
-  v.colors <- colorVertexByAttr(ex_kgml_sig, "pathway")
25
+  data("ex_kgml_sig")
26
+  v.colors <- colorVertexByAttr(ex_kgml_sig, "pathway") 
26 27
   plotNetwork(ex_kgml_sig, vertex.color=v.colors)
28
+
27 29
 }
28 30
 \author{
29 31
 Ahmed Mohamed
30 32
 }
31 33
 \seealso{
32
-Other Plotting methods: \code{\link{layoutVertexByAttr}};
33
-  \code{\link{plotAllNetworks}};
34
-  \code{\link{plotClassifierROC}};
34
+Other Plotting methods: \code{\link{layoutVertexByAttr}},
35
+  \code{\link{plotAllNetworks}},
36
+  \code{\link{plotClassifierROC}},
35 37
   \code{\link{plotClusterMatrix}},
36
-  \code{\link{plotClusterProbs}},
37
-  \code{\link{plotClusters}}; \code{\link{plotCytoscape}},
38
-  \code{\link{plotCytoscapeGML}};
39
-  \code{\link{plotNetwork}};
40
-  \code{\link{plotPathClassifier}}; \code{\link{plotPaths}}
38
+  \code{\link{plotCytoscapeGML}},
39
+  \code{\link{plotNetwork}},
40
+  \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
41 41
 }
42 42
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/NPM-package.R
2 3
 \docType{data}
3 4
 \name{ex_biopax}
4 5
 \alias{ex_biopax}
... ...
@@ -10,5 +11,6 @@ A dataset containing Porphyrin metabolism pathway in Biopax Level 3 and parsed w
10 11
 \examples{
11 12
 data(ex_biopax)
12 13
 ex_biopax
14
+
13 15
 }
14 16
 
... ...
@@ -1,14 +1,16 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/NPM-package.R
2 3
 \docType{data}
3 4
 \name{ex_kgml_sig}
4 5
 \alias{ex_kgml_sig}
5 6
 \title{Singaling network from KGML example}
6 7
 \description{
7
-An example igraph object representing Ras and chemokine signaling pathways in human
8
+An example igraph object representing Ras and chemokine signaling pathways in human 
8 9
 extracted from KGML files.
9 10
 }
10 11
 \examples{
11 12
 data(ex_kgml_sig)
12 13
 plotNetwork(ex_kgml_sig, vertex.color="pathway")
14
+
13 15
 }
14 16
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/NPM-package.R
2 3
 \docType{data}
3 4
 \name{ex_microarray}
4 5
 \alias{ex_microarray}
... ...
@@ -8,5 +9,6 @@ An microarray data example. This is part of the ALL dataset, for demonstration p
8 9
 }
9 10
 \examples{
10 11
 data(ex_microarray)
12
+
11 13
 }
12 14
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/NPM-package.R
2 3
 \docType{data}
3 4
 \name{ex_sbml}
4 5
 \alias{ex_sbml}
... ...
@@ -10,5 +11,6 @@ metabolism extracted from SBML file from Reactome database.
10 11
 \examples{
11 12
 data(ex_sbml)
12 13
 plotNetwork(ex_sbml, vertex.color="compartment.name")
14
+
13 15
 }
14 16
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/pathRank.R
2 3
 \name{extractPathNetwork}
3 4
 \alias{extractPathNetwork}
4 5
 \title{Creates a subnetwork from a ranked path list}
... ...
@@ -18,7 +19,7 @@ labels (sample categories), a subnetwork is returned for each label.
18 19
 Creates a subnetwork from a ranked path list generated by \code{\link{pathRanker}}.
19 20
 }
20 21
 \examples{
21
-## Prepare a weighted reaction network.
22
+	## Prepare a weighted reaction network.
22 23
 	## Conver a metabolic network to a reaction network.
23 24
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
24 25
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
... ...
@@ -27,11 +28,11 @@ Creates a subnetwork from a ranked path list generated by \code{\link{pathRanker
27 28
  # Calculate Pearson's correlation.
28 29
 	data(ex_microarray)	# Part of ALL dataset.
29 30
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
30
-		weight.method = "cor", use.attr="miriam.uniprot",
31
+		weight.method = "cor", use.attr="miriam.uniprot", 
31 32
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
32 33
 
33 34
 	## Get ranked paths using probabilistic shortest paths.
34
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
35
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
35 36
 					K=20, minPathSize=6)
36 37
 
37 38
 	## Get the subnetwork of paths in reaction graph.
... ...
@@ -39,12 +40,13 @@ Creates a subnetwork from a ranked path list generated by \code{\link{pathRanker
39 40
 
40 41
 	## Get the subnetwork of paths in the original metabolic graph.
41 42
 	metabolic.sub <- getPathsAsEIDs(ranked.p, ex_sbml)
43
+
42 44
 }
43 45
 \author{
44 46
 Ahmed Mohamed
45 47
 }
46 48
 \seealso{
47
-Other Path ranking methods: \code{\link{getPathsAsEIDs}};
48
-  \code{\link{pathRanker}}; \code{\link{samplePaths}}
49
+Other Path ranking methods: \code{\link{getPathsAsEIDs}},
50
+  \code{\link{pathRanker}}, \code{\link{samplePaths}}
49 51
 }
50 52
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netWeight.R
2 3
 \name{getAttrStatus}
3 4
 \alias{getAttrNames}
4 5
 \alias{getAttrStatus}
... ...
@@ -27,7 +28,7 @@ rmAttribute(graph, attr.name)
27 28
 \item{attr.value}{A list of attribute values. This must be the same size as the number of vertices.}
28 29
 }
29 30
 \value{
30
-For \code{getAttrStatus}, a dataframe summarizing the number of vertices with no (\code{missing}), one (\code{single})
31
+For \code{getAttrStatus}, a dataframe summarizing the number of vertices with no (\code{missing}), one (\code{single}) 
31 32
 or more than one (\code{complex}) attribute value. The coverage% is also reported to each attribute.
32 33
 
33 34
 For \code{getAttrNames}, a character vector of attribute names matching the pattern.
... ...
@@ -48,25 +49,26 @@ a single \code{attr}. This is not to interfer with \code{\link[igraph]{attribute
48 49
 All functions here target NetPathMiner annotations only.
49 50
 }
50 51
 \examples{
51
-data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
52
+ data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
52 53
 
53 54
  # Get status of attribute "pathway" only
54 55
  getAttrStatus(ex_kgml_sig, "^pathway$")
55
-
56
+ 
56 57
  # Get status of all attributes  starting with "pathway" and "miriam" keywords
57 58
  getAttrStatus(ex_kgml_sig, "(^miriam)|(^pathway)")
58
-# Get all attribute names containing "miriam"
59
+
60
+ # Get all attribute names containing "miriam"
59 61
  getAttrNames(ex_kgml_sig, "miriam")
60
-# Get all attribute names containing "miriam"
62
+ # Get all attribute names containing "miriam"
61 63
  getAttribute(ex_kgml_sig, "miriam.ncbigene")
62
-# Remove an attribute from graph
64
+
65
+ # Remove an attribute from graph
63 66
  graph <- rmAttribute(ex_kgml_sig, "miriam.ncbigene")
64 67
 }
65 68
 \author{
66 69
 Ahmed Mohamed
67 70
 }
68 71
 \seealso{
69
-Other Attribute handling methods: \code{\link{fetchAttribute}},
70
-  \code{\link{stdAttrNames}}
72
+Other Attribute handling methods: \code{\link{stdAttrNames}}
71 73
 }
72 74
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netWeight.R
2 3
 \name{getGeneSetNetworks}
3 4
 \alias{getGeneSetNetworks}
4 5
 \title{Generate geneset networks from an annotated network.}
... ...
@@ -11,7 +12,7 @@ getGeneSetNetworks(graph, use.attr = "pathway", format = c("list",
11 12
 
12 13
 \item{use.attr}{The attribute by which vertices are grouped (tepically pathway, or GO)}
13 14
 
14
-\item{format}{The output format. If "list" is specified, a list of subgraphs are returned (default).
15
+\item{format}{The output format. If "list" is specified, a list of subgraphs are returned (default). 
15 16
 If "pathway-class" is specified, a list of pathway-class objects are returned. Pathway-class
16 17
 is used by graphite package to run several methods of topology-based enrichment analyses.}
17 18
 }
... ...
@@ -23,25 +24,26 @@ This function generates geneset networks based on a given netowrk, by grouping v
23 24
 common attributes (in the same pathway or compartment).
24 25
 }
25 26
 \examples{
26
-data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
27
+ data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
27 28
  genesetnets <- getGeneSetNetworks(ex_kgml_sig, use.attr="pathway")
28 29
 
29 30
  # Integration with graphite package
30 31
  \dontrun{
31 32
  if(require(graphite) & require(clipper) & require(ALL)){
32
-		genesetnets <- getGeneSetNetworks(ex_kgml_sig,
33
+	genesetnets <- getGeneSetNetworks(ex_kgml_sig, 
33 34
 						use.attr="pathway", format="pathway-class")
34
-		path <- convertIdentifiers(genesetnets$`Chemokine signaling pathway`,
35
+	path <- convertIdentifiers(genesetnets$`Chemokine signaling pathway`, 
35 36
 						"entrez")
36
-		genes <- nodes(path)
37
-		data(ALL)
38
-		all <- as.matrix(exprs(ALL[1:length(genes),1:20]))
39
-		classes <- c(rep(1,10), rep(2,10))
40
-		rownames(all) <- genes
41
-
42
-		runClipper(path, all, classes, "mean", pathThr=0.1)
37
+	genes <- nodes(path)
38
+	data(ALL)
39
+	all <- as.matrix(exprs(ALL[1:length(genes),1:20]))
40
+	classes <- c(rep(1,10), rep(2,10))
41
+	rownames(all) <- genes
42
+	
43
+	runClipper(path, all, classes, "mean", pathThr=0.1)
43 44
  }
44 45
  }
46
+
45 47
 }
46 48
 \author{
47 49
 Ahmed Mohamed
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netWeight.R
2 3
 \name{getGeneSets}
3 4
 \alias{getGeneSets}
4 5
 \title{Generate genesets from an annotated network.}
... ...
@@ -24,7 +25,7 @@ common attributes (in the same pathway or compartment). Genes associated with ea
24 25
 can be specified through \code{gene.attr} argument.
25 26
 }
26 27
 \examples{
27
-data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
28
+ data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
28 29
  genesets <- getGeneSets(ex_kgml_sig, use.attr="pathway", gene.attr="miriam.ncbigene")
29 30
 
30 31
 
... ...
@@ -38,6 +39,7 @@ data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
38 39
 	# Create genesets using compartment information
39 40
 	data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
40 41
 	genesets <- getGeneSets(ex_sbml, use.attr="compartment.name", gene.attr="miriam.uniprot")
42
+
41 43
 }
42 44
 \author{
43 45
 Ahmed Mohamed
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/pathRank.R
2 3
 \name{getPathsAsEIDs}
3 4
 \alias{getPathsAsEIDs}
4 5
 \title{Convert a ranked path list to edge ids of a graph}
... ...
@@ -19,7 +20,7 @@ a different representation (for example matching path from a reaction network to
19 20
 edges on a metabolic network).
20 21
 }
21 22
 \examples{
22
-## Prepare a weighted reaction network.
23
+	## Prepare a weighted reaction network.
23 24
 	## Conver a metabolic network to a reaction network.
24 25
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
25 26
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
... ...
@@ -28,24 +29,25 @@ edges on a metabolic network).
28 29
  # Calculate Pearson's correlation.
29 30
 	data(ex_microarray)	# Part of ALL dataset.
30 31
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
31
-		weight.method = "cor", use.attr="miriam.uniprot",
32
+		weight.method = "cor", use.attr="miriam.uniprot", 
32 33
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
33 34
 
34 35
 	## Get ranked paths using probabilistic shortest paths.
35
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
36
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
36 37
 					K=20, minPathSize=6)
37
-
38
+ 
38 39
 	## Get the edge ids along paths in the reaction graph.
39 40
 	path.eids <- getPathsAsEIDs(ranked.p, rgraph)
40 41
 
41 42
 	## Get the edge ids along paths in the original metabolic graph.
42 43
 	path.eids <- getPathsAsEIDs(ranked.p, ex_sbml)
44
+
43 45
 }
44 46
 \author{
45 47
 Ahmed Mohamed
46 48
 }
47 49
 \seealso{
48
-Other Path ranking methods: \code{\link{extractPathNetwork}};
49
-  \code{\link{pathRanker}}; \code{\link{samplePaths}}
50
+Other Path ranking methods: \code{\link{extractPathNetwork}},
51
+  \code{\link{pathRanker}}, \code{\link{samplePaths}}
50 52
 }
51 53
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/plotPath.R
2 3
 \name{layoutVertexByAttr}
3 4
 \alias{layoutVertexByAttr}
4 5
 \title{A graph layout function, which groups vertices by attribute.}
... ...
@@ -11,10 +12,10 @@ layoutVertexByAttr(graph, attr.name, cluster.strength = 1,
11 12
 
12 13
 \item{attr.name}{The attribute name by which vertices are laid out.}
13 14
 
14
-\item{cluster.strength}{A number indicating tie strengths between vertices with the same attribute.
15
+\item{cluster.strength}{A number indicating tie strengths between vertices with the same attribute. 
15 16
 The larger it is, the closer the vertices will be.}
16 17
 
17
-\item{layout}{A layout function, ideally a force-directed layout fuction, such as
18
+\item{layout}{A layout function, ideally a force-directed layout fuction, such as 
18 19
 \code{\link[igraph]{layout.fruchterman.reingold}} and \code{\link[igraph]{layout.kamada.kawai}}.}
19 20
 }
20 21
 \value{
... ...
@@ -25,25 +26,24 @@ This function generates a layout for igraph objects, keeping vertices with the s
25 26
 (ex: in the same pathway, etc) close to each other.
26 27
 }
27 28
 \examples{
28
-data("ex_kgml_sig")
29
-  v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway")
29
+  data("ex_kgml_sig")
30
+  v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway") 
30 31
   plotNetwork(ex_kgml_sig, vertex.color="pathway", layout=v.layout)
31 32
 
32 33
   v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway", cluster.strength=5)
33 34
   plotNetwork(ex_kgml_sig, vertex.color="pathway", layout=v.layout)
35
+
34 36
 }
35 37
 \author{
36 38
 Ahmed Mohamed
37 39
 }
38 40
 \seealso{
39
-Other Plotting methods: \code{\link{colorVertexByAttr}};
40
-  \code{\link{plotAllNetworks}};
41
-  \code{\link{plotClassifierROC}};
41
+Other Plotting methods: \code{\link{colorVertexByAttr}},
42
+  \code{\link{plotAllNetworks}},
43
+  \code{\link{plotClassifierROC}},
42 44
   \code{\link{plotClusterMatrix}},
43
-  \code{\link{plotClusterProbs}},
44
-  \code{\link{plotClusters}}; \code{\link{plotCytoscape}},
45
-  \code{\link{plotCytoscapeGML}};
46
-  \code{\link{plotNetwork}};
47
-  \code{\link{plotPathClassifier}}; \code{\link{plotPaths}}
45
+  \code{\link{plotCytoscapeGML}},
46
+  \code{\link{plotNetwork}},
47
+  \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
48 48
 }
49 49
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netProcess.R
2 3
 \name{expandComplexes}
3 4
 \alias{expandComplexes}
4 5
 \alias{makeGeneNetwork}
... ...
@@ -19,7 +20,7 @@ makeGeneNetwork(graph, v.attr = "genes", keep.parent.attr = "^pathway",
19 20
 \item{keep.parent.attr}{A (List of) \code{\link{regex}} experssions representing attributes to be
20 21
 inherited by daughter vertices. If \code{"all"} is passed, all parent attributes are inherited.}
21 22
 
22
-\item{expansion.method}{If \code{"duplicate"}, attribute values sharing more than one parent vertex
23
+\item{expansion.method}{If \code{"duplicate"}, attribute values sharing more than one parent vertex 
23 24
 are duplicated for each vertex they participate in. For exmaple, if one gene G1 catalyzes reactions
24 25
 R1, R2; then G1##R1, and G1##R2 vertices are created. If \code{"normal"} only one vertex (G1) is created,
25 26
 and inherit all R1 and R2 connections and attributes.}
... ...
@@ -44,32 +45,33 @@ For example, to match a network created from Reactome to a KEGG network, you can
44 45
 vertices by "miriam.kegg.compound" attribute.
45 46
 }
46 47
 \examples{
47
-## Make a gene network from a reaction network.
48
+ ## Make a gene network from a reaction network. 
48 49
  data(ex_sbml)	# A bipartite metbaolic network.
49 50
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
50 51
  ggraph <- makeGeneNetwork(rgraph)
51 52
 
52 53
  ## Expand vertices into their contituent genes.
53 54
  data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
54
-	ggraph <- expandComplexes(ex_kgml_sig, v.attr = "miriam.ncbigene",
55
+	ggraph <- expandComplexes(ex_kgml_sig, v.attr = "miriam.ncbigene", 
55 56
 						keep.parent.attr= c("^pathway", "^compartment"))
56 57
 
57 58
  ## Create a separate vertex for each compartment. This is useful in duplicating
58 59
 	##  metabolite vertices in a network.
59 60
 \dontrun{
60
- graph <- expandComplexes(graph, v.attr = "compartment",
61
+ graph <- expandComplexes(graph, v.attr = "compartment", 
61 62
         keep.parent.attr = "all",
62 63
         expansion.method = "duplicate",
63 64
         missing.method = "keep")
64 65
 }
66
+
65 67
 }
66 68
 \author{
67 69
 Ahmed Mohamed
68 70
 }
69 71
 \seealso{
70
-Other Network processing methods: \code{\link{makeReactionNetwork}};
71
-  \code{\link{rmSmallCompounds}};
72
-  \code{\link{simplifyReactionNetwork}};
72
+Other Network processing methods: \code{\link{makeReactionNetwork}},
73
+  \code{\link{rmSmallCompounds}},
74
+  \code{\link{simplifyReactionNetwork}},
73 75
   \code{\link{vertexDeleteReconnect}}
74 76
 }
75 77
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netProcess.R
2 3
 \name{makeReactionNetwork}
3 4
 \alias{makeReactionNetwork}
4 5
 \title{Convert metabolic network to reaction network.}
... ...
@@ -21,18 +22,18 @@ network contains reaction nodes only, where edges indicate that a metabolite pro
21 22
 by one reaction is consumed by the other.
22 23
 }
23 24
 \examples{
24
-## Conver a metabolic network to a reaction network.
25
+	## Conver a metabolic network to a reaction network.
25 26
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
26 27
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
28
+
27 29
 }
28 30
 \author{
29 31
 Ahmed Mohamed
30 32
 }
31 33
 \seealso{
32 34
 Other Network processing methods: \code{\link{expandComplexes}},
33
-  \code{\link{makeGeneNetwork}};
34
-  \code{\link{rmSmallCompounds}};
35
-  \code{\link{simplifyReactionNetwork}};
35
+  \code{\link{rmSmallCompounds}},
36
+  \code{\link{simplifyReactionNetwork}},
36 37
   \code{\link{vertexDeleteReconnect}}
37 38
 }
38 39
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/pathClassifier.R
2 3
 \name{pathClassifier}
3 4
 \alias{pathClassifier}
4 5
 \title{HME3M Markov pathway classifier.}
... ...
@@ -9,7 +10,7 @@ pathClassifier(paths, target.class, M, alpha = 1, lambda = 2,
9 10
 \arguments{
10 11
 \item{paths}{The training paths computed by \code{\link{pathsToBinary}}}
11 12
 
12
-\item{target.class}{he label of the targe class to be classified.  This label must be present
13
+\item{target.class}{he label of the targe class to be classified.  This label must be present 
13 14
 as a label within the \code{paths\$y} object}
14 15
 
15 16
 \item{M}{Number of components within the paths to be extracted.}
... ...
@@ -45,11 +46,11 @@ A list with the following values
45 46
 HME3M Markov pathway classifier.
46 47
 }
47 48
 \details{
48
-Take care with selection of lambda and alpha - make sure you check that the likelihood
49
+Take care with selection of lambda and alpha - make sure you check that the likelihood 
49 50
 is always increasing.
50 51
 }
51 52
 \examples{
52
-## Prepare a weighted reaction network.
53
+	## Prepare a weighted reaction network.
53 54
 	## Conver a metabolic network to a reaction network.
54 55
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
55 56
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
... ...
@@ -58,14 +59,14 @@ is always increasing.
58 59
  # Calculate Pearson's correlation.
59 60
 	data(ex_microarray)	# Part of ALL dataset.
60 61
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
61
-		weight.method = "cor", use.attr="miriam.uniprot",
62
+		weight.method = "cor", use.attr="miriam.uniprot", 
62 63
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
63 64
 
64 65
 	## Get ranked paths using probabilistic shortest paths.
65
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
66
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
66 67
 					K=20, minPathSize=6)
67
-
68
-	## Convert paths to binary matrix.
68
+	
69
+	## Convert paths to binary matrix. 
69 70
 	ybinpaths <- pathsToBinary(ranked.p)
70 71
 	p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)
71 72
 
... ...
@@ -75,6 +76,7 @@ is always increasing.
75 76
 	## Plotting the classifier results.
76 77
 	plotClassifierROC(p.class)
77 78
 	plotClusters(ybinpaths, p.class)
79
+
78 80
 }
79 81
 \author{
80 82
 Timothy Hancock and Ichigaku Takigawa
... ...
@@ -85,15 +87,13 @@ Hancock, Timothy, and Mamitsuka, Hiroshi: A Markov Classification Model for Meta
85 87
 Hancock, Timothy, and Mamitsuka, Hiroshi: A Markov Classification Model for Metabolic Pathways, Algorithms for Molecular Biology 2010
86 88
 }
87 89
 \seealso{
88
-Other Path clustering & classification methods: \code{\link{pathCluster}};
89
-  \code{\link{pathsToBinary}};
90
-  \code{\link{plotClassifierROC}};
90
+Other Path clustering & classification methods: \code{\link{pathCluster}},
91
+  \code{\link{pathsToBinary}},
92
+  \code{\link{plotClassifierROC}},
91 93
   \code{\link{plotClusterMatrix}},
92
-  \code{\link{plotClusterProbs}},
93
-  \code{\link{plotClusters}};
94
-  \code{\link{plotPathClassifier}};
95
-  \code{\link{plotPathCluster}};
96
-  \code{\link{predictPathClassifier}};
94
+  \code{\link{plotPathClassifier}},
95
+  \code{\link{plotPathCluster}},
96
+  \code{\link{predictPathClassifier}},
97 97
   \code{\link{predictPathCluster}}
98 98
 }
99 99
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/pathCluster.R
2 3
 \name{pathCluster}
3 4
 \alias{pathCluster}
4 5
 \title{3M Markov mixture model for clustering pathways}
... ...
@@ -25,7 +26,7 @@ A list with the following items:
25 26
 3M Markov mixture model for clustering pathways
26 27
 }
27 28
 \examples{
28
-## Prepare a weighted reaction network.
29
+	## Prepare a weighted reaction network.
29 30
 	## Conver a metabolic network to a reaction network.
30 31
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
31 32
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
... ...
@@ -37,13 +38,14 @@ A list with the following items:
37 38
 		weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE)
38 39
 
39 40
 	## Get ranked paths using probabilistic shortest paths.
40
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
41
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
41 42
 					K=20, minPathSize=8)
42
-
43
-	## Convert paths to binary matrix.
43
+	
44
+	## Convert paths to binary matrix. 
44 45
 	ybinpaths <- pathsToBinary(ranked.p)
45 46
 	p.cluster <- pathCluster(ybinpaths, M=2)
46 47
 	plotClusters(ybinpaths, p.cluster)
48
+ 
47 49
 }
48 50
 \author{
49 51
 Ichigaku Takigawa
... ...
@@ -51,19 +53,17 @@ Ichigaku Takigawa
51 53
 Timothy Hancock
52 54
 }
53 55
 \references{
54
-Mamitsuka, H., Okuno, Y., and Yamaguchi, A. 2003. Mining biologically active patterns in
56
+Mamitsuka, H., Okuno, Y., and Yamaguchi, A. 2003. Mining biologically active patterns in 
55 57
 metabolic pathways using microarray expression profiles. SIGKDD Explor. News l. 5, 2 (Dec. 2003), 113-121.
56 58
 }
57 59
 \seealso{
58
-Other Path clustering & classification methods: \code{\link{pathClassifier}};
59
-  \code{\link{pathsToBinary}};
60
-  \code{\link{plotClassifierROC}};
60
+Other Path clustering & classification methods: \code{\link{pathClassifier}},
61
+  \code{\link{pathsToBinary}},
62
+  \code{\link{plotClassifierROC}},
61 63
   \code{\link{plotClusterMatrix}},
62
-  \code{\link{plotClusterProbs}},
63
-  \code{\link{plotClusters}};
64
-  \code{\link{plotPathClassifier}};
65
-  \code{\link{plotPathCluster}};
66
-  \code{\link{predictPathClassifier}};
64
+  \code{\link{plotPathClassifier}},
65
+  \code{\link{plotPathCluster}},
66
+  \code{\link{predictPathClassifier}},
67 67
   \code{\link{predictPathCluster}}
68 68
 }
69 69
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/pathRank.R
2 3
 \name{pathRanker}
3 4
 \alias{pathRanker}
4 5
 \title{Extracting and ranking paths from a network}
... ...
@@ -28,25 +29,25 @@ A list of paths where each path has the following items:
28 29
 \item{distance}{The sum of the log(ECDF edge weights) along each path.  (a sum of logs is a product)}
29 30
 }
30 31
 \description{
31
-Given a weighted igraph object, path ranking finds a set of node/edge sequences (paths) to
32
+Given a weighted igraph object, path ranking finds a set of node/edge sequences (paths) to 
32 33
 maximize the sum of edge weights.
33
-\code{pathRanker(method="prob.shortest.path")} extracts the K most probable paths within
34
+\code{pathRanker(method="prob.shortest.path")} extracts the K most probable paths within 
34 35
 a weighted network.
35
-\code{pathRanker(method="pvalue")} extracts a list of paths whose sum of edge weights are
36
+\code{pathRanker(method="pvalue")} extracts a list of paths whose sum of edge weights are 
36 37
 significantly higher than random paths of the same length.
37 38
 }
38 39
 \details{
39
-The input here is \code{graph}. A weight must be assigned to each edge. Bootstrapped Pearson correlation edge weights
40
-can be assigned to each edge by \code{\link{assignEdgeWeights}}. However the specification of the edge weight is flexible
40
+The input here is \code{graph}. A weight must be assigned to each edge. Bootstrapped Pearson correlation edge weights 
41
+can be assigned to each edge by \code{\link{assignEdgeWeights}}. However the specification of the edge weight is flexible 
41 42
 with the condition that increasing values indicate stronger relationships between vertices.
42 43
 
43 44
 \subsection{Probabilistic Shortest Paths}{
44
-\code{pathRanker(method="prob.shortest.path")} finds the K most probable loopless paths given a weighted network.
45
-Before the paths are ranked the edge weights are converted into probabilistic edge weights using the Empirical
46
-Cumulative Distribution (ECDF) over all edge weights.  This is called ECDF edge weight. The ECDF edge weight
45
+\code{pathRanker(method="prob.shortest.path")} finds the K most probable loopless paths given a weighted network. 
46
+Before the paths are ranked the edge weights are converted into probabilistic edge weights using the Empirical 
47
+Cumulative Distribution (ECDF) over all edge weights.  This is called ECDF edge weight. The ECDF edge weight 
47 48
 serves as a probabilistic rank of the most important gene-gene interactions.  The probabilistic nature of the ECDF
48
-edge weights allow for a significance test to determine if a path contains any functional structure or is
49
-simply a random walk.  The probability of a path is simily the product of all ECDF weights along the path.
49
+edge weights allow for a significance test to determine if a path contains any functional structure or is 
50
+simply a random walk.  The probability of a path is simily the product of all ECDF weights along the path.  
50 51
 This is computed as a sum of the logs of the ECDF edge weights.
51 52
 
52 53
 The follwing arguments can be passed to \code{pathRanker(method="prob.shortest.path")}:
... ...
@@ -54,17 +55,17 @@ The follwing arguments can be passed to \code{pathRanker(method="prob.shortest.p
54 55
 \item{\code{K}}{Maximum number of paths to extract. Defaults to 10.}
55 56
 \item{\code{minPathSize}}{The minimum number of edges for each extracted path. Defualts to 1.}
56 57
 \item{\code{normalize}}{Specify if you want to normalize the probabilistic edge weights (across different labels)
57
-before extracting the paths. Defaults to TRUE.}
58
+before extracting the paths. Defaults to TRUE.} 
58 59
 }
59 60
 }
60 61
 
61 62
 \subsection{P-value method}{
62
-\code{pathRanker(method="pvalue")} searches all paths between the specified start and end vertices, and if a
63
-significant path is found it returns it. However, It doesn't search for the best path between the start and
64
-terminal vertices,  as there could be many paths which lead to the same terminal vertex, and searching through
63
+\code{pathRanker(method="pvalue")} searches all paths between the specified start and end vertices, and if a 
64
+significant path is found it returns it. However, It doesn't search for the best path between the start and 
65
+terminal vertices,  as there could be many paths which lead to the same terminal vertex, and searching through 
65 66
 all of them is time comsuming.  We just stop when the first significant path is found.
66 67
 
67
-All provided edge weights are recaled from 0-1. Path significance is calculated based on the empirical distribution
68
+All provided edge weights are recaled from 0-1. Path significance is calculated based on the empirical distribution 
68 69
 of random paths of the same length. This can be estimated using \code{\link{samplePaths}} and passed as an argument.
69 70
 
70 71
 The follwing arguments can be passed to \code{pathRanker(method="pvalue")}:
... ...
@@ -75,7 +76,7 @@ The follwing arguments can be passed to \code{pathRanker(method="pvalue")}:
75 76
 }
76 77
 }
77 78
 \examples{
78
-## Prepare a weighted reaction network.
79
+	## Prepare a weighted reaction network.
79 80
 	## Conver a metabolic network to a reaction network.
80 81
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
81 82
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
... ...
@@ -84,21 +85,22 @@ The follwing arguments can be passed to \code{pathRanker(method="pvalue")}:
84 85
  # Calculate Pearson's correlation.
85 86
 	data(ex_microarray)	# Part of ALL dataset.
86 87
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
87
-		weight.method = "cor", use.attr="miriam.uniprot",
88
+		weight.method = "cor", use.attr="miriam.uniprot", 
88 89
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
89 90
 
90 91
 	## Get ranked paths using probabilistic shortest paths.
91
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
92
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
92 93
 					K=20, minPathSize=6)
93
-
94
+ 
94 95
 	## Get significantly correlated paths using "p-valvue" method.
95
-	##   First, establish path score distribution by calling "samplePaths"
96
+	##   First, establish path score distribution by calling "samplePaths" 
96 97
  pathsample <- samplePaths(rgraph, max.path.length=10,
97 98
                         num.samples=100, num.warmup=10)
98
-
99
-	##   Get all significant paths with p<0.1
100
-	significant.p <- pathRanker(rgraph, method = "pvalue",
99
+	
100
+	##   Get all significant paths with p<0.1 
101
+	significant.p <- pathRanker(rgraph, method = "pvalue", 
101 102
                 sampledpaths = pathsample ,alpha=0.1)
103
+
102 104
 }
103 105
 \author{
104 106
 Timothy Hancock, Ichigaku Takigawa, Nicolas Wicker and Ahmed Mohamed
... ...
@@ -106,7 +108,7 @@ Timothy Hancock, Ichigaku Takigawa, Nicolas Wicker and Ahmed Mohamed
106 108
 \seealso{
107 109
 getPathsAsEIDs, extractPathNetwork
108 110
 
109
-Other Path ranking methods: \code{\link{extractPathNetwork}};
110
-  \code{\link{getPathsAsEIDs}}; \code{\link{samplePaths}}
111
+Other Path ranking methods: \code{\link{extractPathNetwork}},
112
+  \code{\link{getPathsAsEIDs}}, \code{\link{samplePaths}}
111 113
 }
112 114
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/pathClassifier.R
2 3
 \name{pathsToBinary}
3 4
 \alias{pathsToBinary}
4 5
 \title{Converts the result from pathRanker into something suitable for pathClassifier or pathCluster.}
... ...
@@ -18,17 +19,17 @@ A list with the following elements.
18 19
 Converts the result from pathRanker into something suitable for pathClassifier or pathCluster.
19 20
 }
20 21
 \details{
21
-Converts a set of pathways from \code{\link{pathRanker}}
22
-into a list of binary pathway matrices. If the pathways are grouped by a response label then the
23
-\emph{pathsToBinary} returns a list labeled by response class where each element is the binary
22
+Converts a set of pathways from \code{\link{pathRanker}} 
23
+into a list of binary pathway matrices. If the pathways are grouped by a response label then the 
24
+\emph{pathsToBinary} returns a list labeled by response class where each element is the binary 
24 25
 pathway matrix for each class. If the pathways are from \code{\link{pathRanker}} then a list wiht
25
-a single element containing the binary pathway matrix is returned. To look up the structure of a
26
+a single element containing the binary pathway matrix is returned. To look up the structure of a 
26 27
 specific binary path in the corresponding \code{ypaths} object simply use matrix index by calling
27
-\code{ypaths[[ybinpaths\$pidx[i,]]]}, where \code{i} is the row in the binary paths object you
28
+\code{ypaths[[ybinpaths\$pidx[i,]]]}, where \code{i} is the row in the binary paths object you 
28 29
 wish to reference.
29 30
 }
30 31
 \examples{
31
-## Prepare a weighted reaction network.
32
+	## Prepare a weighted reaction network.
32 33
 	## Conver a metabolic network to a reaction network.
33 34
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
34 35
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
... ...
@@ -37,31 +38,30 @@ wish to reference.
37 38
  # Calculate Pearson's correlation.
38 39
 	data(ex_microarray)	# Part of ALL dataset.
39 40
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
40
-		weight.method = "cor", use.attr="miriam.uniprot",
41
+		weight.method = "cor", use.attr="miriam.uniprot", 
41 42
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
42 43
 
43 44
 	## Get ranked paths using probabilistic shortest paths.
44
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
45
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
45 46
 					K=20, minPathSize=6)
46
-
47
-	## Convert paths to binary matrix.
47
+	
48
+	## Convert paths to binary matrix. 
48 49
 	ybinpaths <- pathsToBinary(ranked.p)
49 50
 	p.cluster <- pathCluster(ybinpaths, M=3)
50 51
 	plotClusters(ybinpaths, p.cluster, col=c("red", "green", "blue") )
52
+ 
51 53
 }
52 54
 \author{
53 55
 Timothy Hancock and Ichigaku Takigawa
54 56
 }
55 57
 \seealso{
56
-Other Path clustering & classification methods: \code{\link{pathClassifier}};
57
-  \code{\link{pathCluster}};
58
-  \code{\link{plotClassifierROC}};
58
+Other Path clustering & classification methods: \code{\link{pathClassifier}},
59
+  \code{\link{pathCluster}},
60
+  \code{\link{plotClassifierROC}},
59 61
   \code{\link{plotClusterMatrix}},
60
-  \code{\link{plotClusterProbs}},
61
-  \code{\link{plotClusters}};
62
-  \code{\link{plotPathClassifier}};
63
-  \code{\link{plotPathCluster}};
64
-  \code{\link{predictPathClassifier}};
62
+  \code{\link{plotPathClassifier}},
63
+  \code{\link{plotPathCluster}},
64
+  \code{\link{predictPathClassifier}},
65 65
   \code{\link{predictPathCluster}}
66 66
 }
67 67
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/plotPath.R
2 3
 \name{plotAllNetworks}
3 4
 \alias{plotAllNetworks}
4 5
 \title{Higlighting ranked paths over multiple network representations.}
... ...
@@ -34,7 +35,7 @@ This function highlighting ranked paths over different network representations,
34 35
 gene networks. The functions finds equivalent paths across different networks and marks them.
35 36
 }
36 37
 \examples{
37
-## Prepare a weighted reaction network.
38
+	## Prepare a weighted reaction network.
38 39
 	## Conver a metabolic network to a reaction network.
39 40
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
40 41
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
... ...
@@ -43,28 +44,27 @@ gene networks. The functions finds equivalent paths across different networks an
43 44
  # Calculate Pearson's correlation.
44 45
 	data(ex_microarray)	# Part of ALL dataset.
45 46
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
46
-		weight.method = "cor", use.attr="miriam.uniprot",
47
+		weight.method = "cor", use.attr="miriam.uniprot", 
47 48
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
48 49
 
49 50
 	## Get ranked paths using probabilistic shortest paths.
50
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
51
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
51 52
 					K=20, minPathSize=6)
52 53
 
53 54
 plotAllNetworks(ranked.p, metabolic.net = ex_sbml, reaction.net = rgraph,
54 55
 					vertex.label = "", vertex.size = 4)
56
+
55 57
 }
56 58
 \author{
57 59
 Ahmed Mohamed
58 60
 }
59 61
 \seealso{
60
-Other Plotting methods: \code{\link{colorVertexByAttr}};
61
-  \code{\link{layoutVertexByAttr}};
62
-  \code{\link{plotClassifierROC}};
62
+Other Plotting methods: \code{\link{colorVertexByAttr}},
63
+  \code{\link{layoutVertexByAttr}},
64
+  \code{\link{plotClassifierROC}},
63 65
   \code{\link{plotClusterMatrix}},
64
-  \code{\link{plotClusterProbs}},
65
-  \code{\link{plotClusters}}; \code{\link{plotCytoscape}},
66
-  \code{\link{plotCytoscapeGML}};
67
-  \code{\link{plotNetwork}};
68
-  \code{\link{plotPathClassifier}}; \code{\link{plotPaths}}
66
+  \code{\link{plotCytoscapeGML}},
67
+  \code{\link{plotNetwork}},
68
+  \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
69 69
 }
70 70
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/pathClassifier.R
2 3
 \name{plotClassifierROC}
3 4
 \alias{plotClassifierROC}
4 5
 \title{Diagnostic plots for pathClassifier.}
... ...
@@ -10,11 +11,11 @@ plotClassifierROC(mix)
10 11
 }
11 12
 \value{
12 13
 Diagnostic plots of the result from pathClassifier.
13
-item{Top}{ROC curves for the posterior probabilities (\code{mix\$posterior.probs})
14
-and for each HME3M component (\code{mix\$h}).  This gives information about what response
15
-label each relates to. A ROC curve with an \code{AUC < 0.5} relates to \code{y = 0}.
14
+item{Top}{ROC curves for the posterior probabilities (\code{mix\$posterior.probs}) 
15
+and for each HME3M component (\code{mix\$h}).  This gives information about what response 
16
+label each relates to. A ROC curve with an \code{AUC < 0.5} relates to \code{y = 0}. 
16 17
 Conversely ROC curves with \code{AUC > 0.5} relate to \code{y = 1}. }
17
-item{Bottom}{The likelihood convergence history for the HME3M model.  If the parameters
18
+item{Bottom}{The likelihood convergence history for the HME3M model.  If the parameters 
18 19
 \code{alpha} or \code{lambda} are set too large then the likelihood may decrease.}
19 20
 }
20 21
 \description{
... ...
@@ -24,24 +25,20 @@ Diagnostic plots for \code{\link{pathClassifier}}.
24 25
 Timothy Hancock and Ichigaku Takigawa
25 26
 }
26 27
 \seealso{
27
-Other Path clustering & classification methods: \code{\link{pathClassifier}};
28
-  \code{\link{pathCluster}}; \code{\link{pathsToBinary}};
28
+Other Path clustering & classification methods: \code{\link{pathClassifier}},
29
+  \code{\link{pathCluster}}, \code{\link{pathsToBinary}},
29 30
   \code{\link{plotClusterMatrix}},
30
-  \code{\link{plotClusterProbs}},
31
-  \code{\link{plotClusters}};
32
-  \code{\link{plotPathClassifier}};
33
-  \code{\link{plotPathCluster}};
34
-  \code{\link{predictPathClassifier}};
31
+  \code{\link{plotPathClassifier}},
32
+  \code{\link{plotPathCluster}},
33
+  \code{\link{predictPathClassifier}},
35 34
   \code{\link{predictPathCluster}}
36 35
 
37
-Other Plotting methods: \code{\link{colorVertexByAttr}};
38
-  \code{\link{layoutVertexByAttr}};
39
-  \code{\link{plotAllNetworks}};
36
+Other Plotting methods: \code{\link{colorVertexByAttr}},
37
+  \code{\link{layoutVertexByAttr}},
38
+  \code{\link{plotAllNetworks}},
40 39
   \code{\link{plotClusterMatrix}},
41
-  \code{\link{plotClusterProbs}},
42
-  \code{\link{plotClusters}}; \code{\link{plotCytoscape}},
43
-  \code{\link{plotCytoscapeGML}};
44
-  \code{\link{plotNetwork}};
45
-  \code{\link{plotPathClassifier}}; \code{\link{plotPaths}}
40
+  \code{\link{plotCytoscapeGML}},
41
+  \code{\link{plotNetwork}},
42
+  \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
46 43
 }
47 44
 
... ...
@@ -1,4 +1,5 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/pathCluster.R
2 3
 \name{plotClusterMatrix}
3 4
 \alias{plotClusterMatrix}
4 5
 \alias{plotClusterProbs}
... ...
@@ -24,7 +25,7 @@ plotClusters(ybinpaths, clusters, col, ...)
24 25
 \item{...}{Extra paramaters passed to \code{plotClusterMatrix}}
25 26
 }
26 27
 \value{
27
-\code{plotClusterMatrix} 	plots an image of all paths the training dataset. Rows are the paths and columns
28
+\code{plotClusterMatrix} 	plots an image of all paths the training dataset. Rows are the paths and columns 
28 29
 are the genes (features) included within each path. Paths are colored according to cluster membership.
29 30
 
30 31
 \code{plotClusterProbs} 	The training set posterior probabilities for each path belonging to a 3M component. \cr
... ...
@@ -35,7 +36,7 @@ are the genes (features) included within each path. Paths are colored according
35 36
 Plots the structure of all path clusters
36 37
 }
37 38
 \examples{
38
-## Prepare a weighted reaction network.
39
+	## Prepare a weighted reaction network.
39 40
 	## Conver a metabolic network to a reaction network.
40 41
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
41 42
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
... ...
@@ -44,37 +45,37 @@ Plots the structure of all path clusters
44 45
  # Calculate Pearson's correlation.
45 46
 	data(ex_microarray)	# Part of ALL dataset.
46 47
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
47
-		weight.method = "cor", use.attr="miriam.uniprot",
48
+		weight.method = "cor", use.attr="miriam.uniprot", 
48 49
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
49 50
 
50 51
 	## Get ranked paths using probabilistic shortest paths.
51
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
52
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
52 53
 					K=20, minPathSize=8)
53
-
54
-	## Convert paths to binary matrix.
54
+	
55
+	## Convert paths to binary matrix. 
55 56
 	ybinpaths <- pathsToBinary(ranked.p)
56 57
 	p.cluster <- pathCluster(ybinpaths, M=2)
57 58
 	plotClusters(ybinpaths, p.cluster, col=c("red", "blue") )
59
+ 
58 60
 }
59 61
 \author{
60 62
 Ahmed Mohamed
61 63
 }
62 64
 \seealso{
63
-Other Path clustering & classification methods: \code{\link{pathClassifier}};
64
-  \code{\link{pathCluster}}; \code{\link{pathsToBinary}};
65
-  \code{\link{plotClassifierROC}};
66
-  \code{\link{plotPathClassifier}};
67
-  \code{\link{plotPathCluster}};
68
-  \code{\link{predictPathClassifier}};
65
+Other Path clustering & classification methods: \code{\link{pathClassifier}},
66
+  \code{\link{pathCluster}}, \code{\link{pathsToBinary}},
67
+  \code{\link{plotClassifierROC}},
68
+  \code{\link{plotPathClassifier}},
69
+  \code{\link{plotPathCluster}},
70
+  \code{\link{predictPathClassifier}},
69 71
   \code{\link{predictPathCluster}}
70 72
 
71
-Other Plotting methods: \code{\link{colorVertexByAttr}};
72
-  \code{\link{layoutVertexByAttr}};
73
-  \code{\link{plotAllNetworks}};
74
-  \code{\link{plotClassifierROC}};
75
-  \code{\link{plotCytoscape}},
76
-  \code{\link{plotCytoscapeGML}};
77
-  \code{\link{plotNetwork}};
78
-  \code{\link{plotPathClassifier}}; \code{\link{plotPaths}}
73
+Other Plotting methods: \code{\link{colorVertexByAttr}},
74
+  \code{\link{layoutVertexByAttr}},
75
+  \code{\link{plotAllNetworks}},
76
+  \code{\link{plotClassifierROC}},
77
+  \code{\link{plotCytoscapeGML}},
78
+  \code{\link{plotNetwork}},
79
+  \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
79 80
 }
80 81
 
... ...
@@ -1,20 +1,15 @@
1
-% Generated by roxygen2 (4.0.1): do not edit by hand
2
-\name{plotCytoscape}
3
-\alias{plotCytoscape}
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/plotPath.R
3
+\name{plotCytoscapeGML}
4 4
 \alias{plotCytoscapeGML}
5 5
 \title{Plots an annotated igraph object in Cytoscape.}
6 6
 \usage{
7
-plotCytoscape(graph, title, layout = layout.auto, vertex.size, vertex.label,
8
-  vertex.shape, vertex.color, edge.color)
9
-
10 7
 plotCytoscapeGML(graph, file, layout = layout.auto, vertex.size, vertex.label,
11 8
   vertex.shape, vertex.color, edge.color)
12 9
 }
13 10
 \arguments{
14 11
 \item{graph}{An annotated igraph object.}
15 12
 
16
-\item{title}{Will be set as a window title in Cytoscape.}
17
-
18 13
 \item{file}{Output GML file name to which the network plot is exported.}
19 14
 
20 15
 \item{layout}{Either a graph layout function, or a two-column matrix specifiying vertex coordinates.}
... ...
@@ -35,43 +30,30 @@ supported. If missing, the vertex attribute "color" (\preformatted{V(g)$color)})
35 30
 (\preformatted{E(g)$color)}) will be used.}
36 31
 }
37 32
 \value{
38
-A CytoscapeWindow object constructed by \code{\link[RCytoscape]{new.CytoscapeWindow}}.
39
-
40 33
 For \code{plotCytoscapeGML}, results are written to file.
41 34
 }
42 35
 \description{
43
-Thess functions provide ways to plot igraph object in Cytoscape, enabling
44
-interactive investigation of the network. \link{plotCytoscape} uses RCytoscape
45
-interface to plot graphs in Cytoscape directly form R. The function is compatible with Cytoscape
46
-2.8.3 or lower, and requires an open Cytoscape window, with CytoscapeRPC plugin installed and activated.
36
+\code{plotCytoscape} function has been removed because RCytoscape is no longer prensent in Bioconductor.
37
+Future plans will use RCy3 for Cytoscape plotting, once RCy3 is supported on MacOS and Windows.    
47 38
 \link{plotCytoscapeGML} exports the network plot in GML format, that can be later imported into Cytoscape
48 39
 (using "import network from file" option). This fuction is compatible with all Cytoscape versions.
49 40
 }
50 41
 \examples{
51
-data("ex_sbml")
52
-	rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
53
- v.layout <- layoutVertexByAttr(rgraph, "compartment")
<