Browse code

Docs update 1.19

Ahmed Mohamed authored on 01/03/2019 06:31:42
Showing 44 changed files

... ...
@@ -30,4 +30,5 @@ SystemRequirements: libxml2, libSBML (>= 5.5)
30 30
 Biarch: TRUE
31 31
 biocViews: GraphAndNetwork, Pathways, Network, Clustering,
32 32
     Classification
33
-RoxygenNote: 5.0.1
33
+RoxygenNote: 6.1.1
34
+Encoding: UTF-8
... ...
@@ -17,6 +17,7 @@ export(getGeneSets)
17 17
 export(getPathsAsEIDs)
18 18
 export(layoutVertexByAttr)
19 19
 export(makeGeneNetwork)
20
+export(makeMetaboliteNetwork)
20 21
 export(makeReactionNetwork)
21 22
 export(pathClassifier)
22 23
 export(pathCluster)
... ...
@@ -35,6 +36,7 @@ export(plotPaths)
35 36
 export(predictPathClassifier)
36 37
 export(predictPathCluster)
37 38
 export(registerMemoryErr)
39
+export(reindexNetwork)
38 40
 export(rmAttribute)
39 41
 export(rmSmallCompounds)
40 42
 export(samplePaths)
... ...
@@ -8,12 +8,12 @@ KGML2igraph(filename, parse.as = c("metabolic", "signaling"),
8 8
   expand.complexes = FALSE, verbose = TRUE)
9 9
 }
10 10
 \arguments{
11
-\item{filename}{A character vector containing the KGML files to be processed. 
11
+\item{filename}{A character vector containing the KGML files to be processed.
12 12
 If a directory path is provided, all *.xml files in it and its subdirectories are included.}
13 13
 
14 14
 \item{parse.as}{Whether to process file into a metabolic or a signaling network.}
15 15
 
16
-\item{expand.complexes}{Split protein complexes into individual gene nodes. This argument is 
16
+\item{expand.complexes}{Split protein complexes into individual gene nodes. This argument is
17 17
 ignored if \code{parse.as="metabolic"}}
18 18
 
19 19
 \item{verbose}{Whether to display the progress of the function.}
... ...
@@ -34,8 +34,8 @@ to their corresponding substrates and products. Each reaction vertex has \code{g
34 34
 listing all genes associated with the reaction. As a general rule, reactions inherit all annotation
35 35
 attributes of its catalyzig genes.
36 36
 
37
-Signaling network have genes as vertices and edges represent interactions, such as activiation / inhibition. 
38
-Genes participating in successive reactions are also connected. Signaling parsing method processes <ECrel>, <PPrel> 
37
+Signaling network have genes as vertices and edges represent interactions, such as activiation / inhibition.
38
+Genes participating in successive reactions are also connected. Signaling parsing method processes <ECrel>, <PPrel>
39 39
 and <PCrel> interactions from KGML files.
40 40
 
41 41
 To generate a genome scale network, simply provide a list of files to be parsed, or put all
... ...
@@ -43,9 +43,9 @@ file in a directory, as pass the directory path as \code{filename}
43 43
 }
44 44
 \examples{
45 45
 if(is.loaded("readkgmlfile")){ # This is false if libxml2 wasn't available at installation.
46
-    filename <- system.file("extdata", "hsa00860.xml", package="NetPathMiner") 
46
+    filename <- system.file("extdata", "hsa00860.xml", package="NetPathMiner")
47 47
 
48
-    # Process KGML file as a metabolic network 
48
+    # Process KGML file as a metabolic network
49 49
     g <- KGML2igraph(filename)
50 50
     plotNetwork(g)
51 51
 
... ...
@@ -54,12 +54,12 @@ if(is.loaded("readkgmlfile")){ # This is false if libxml2 wasn't available at in
54 54
     plotNetwork(g)
55 55
 }
56 56
 
57
-}
58
-\author{
59
-Ahmed Mohamed
60 57
 }
61 58
 \seealso{
62 59
 Other Database extraction methods: \code{\link{SBML2igraph}},
63 60
   \code{\link{biopax2igraph}}
64 61
 }
65
-
62
+\author{
63
+Ahmed Mohamed
64
+}
65
+\concept{Database extraction methods}
... ...
@@ -1,19 +1,19 @@
1 1
 % Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/netWeight.R
3 3
 \name{stdAttrNames}
4
-\alias{fetchAttribute}
5 4
 \alias{stdAttrNames}
5
+\alias{fetchAttribute}
6 6
 \title{MIRIAM annotation attributes}
7 7
 \usage{
8 8
 stdAttrNames(graph, return.value = c("matches", "graph"))
9 9
 
10
-fetchAttribute(graph, organism = "Homo sapiens", target.attr, source.attr,
11
-  bridge.web = NPMdefaults("bridge.web"))
10
+fetchAttribute(graph, organism = "Homo sapiens", target.attr,
11
+  source.attr, bridge.web = NPMdefaults("bridge.web"))
12 12
 }
13 13
 \arguments{
14 14
 \item{graph}{An annotated igraph object.}
15 15
 
16
-\item{return.value}{Specify whether to return the names of matched standard annotations, or modify the 
16
+\item{return.value}{Specify whether to return the names of matched standard annotations, or modify the
17 17
 graph attribute names to match the standards.}
18 18
 
19 19
 \item{organism}{The latin name of the organism (Case-sensitive).}
... ...
@@ -26,7 +26,7 @@ graph attribute names to match the standards.}
26 26
 }
27 27
 \value{
28 28
 For \code{stdAttrNames}, \code{matches} gives the original attribute names and their MIRIAM version.
29
-Since this is done by simple text matching, mismatches may occur for ambiguous annotations (such as GO, EC number). 
29
+Since this is done by simple text matching, mismatches may occur for ambiguous annotations (such as GO, EC number).
30 30
 \code{graph} returns the input graph with attribute names standardized.
31 31
 
32 32
 For \code{fetchAttribute}, the input \code{graph} with the fetched attribute mapped to vertices.
... ...
@@ -35,21 +35,21 @@ For \code{fetchAttribute}, the input \code{graph} with the fetched attribute map
35 35
 These functions deals with conforming with MIRIAM annotation guidelines, conversion and mapping between MIRIAM identifiers.
36 36
 }
37 37
 \examples{
38
- data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human	
38
+ data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
39 39
  ## Modify attribute names to match MIRIAM standard annotations.
40 40
  graph <- stdAttrNames(ex_kgml_sig, "graph")
41
- 
41
+
42 42
  # Use Attribute fetcher to get affymetrix probeset IDs for network vertices.
43 43
  \dontrun{
44
-   graph <- fetchAttribute(graph, organism="Homo sapiens", 
44
+   graph <- fetchAttribute(graph, organism="Homo sapiens",
45 45
                    target.attr="miriam.affy.probeset")
46 46
  }
47 47
 
48
-}
49
-\author{
50
-Ahmed Mohamed
51 48
 }
52 49
 \seealso{
53 50
 Other Attribute handling methods: \code{\link{getAttrStatus}}
54 51
 }
55
-
52
+\author{
53
+Ahmed Mohamed
54
+}
55
+\concept{Attribute handling methods}
... ...
@@ -18,7 +18,7 @@ This function gets a NetPathMiner default value for a variable.
18 18
 \details{
19 19
 NetPathMiner defines the following defaults:
20 20
 \itemize{
21
-  \item small.comp.ls Dataframe of ubiquitous metabolites. Used by \code{\link{rmSmallCompounds}}.    
21
+  \item small.comp.ls Dataframe of ubiquitous metabolites. Used by \code{\link{rmSmallCompounds}}.
22 22
   \item bridge Dataframe of attributes supported by Brigde Database. Used by \code{\link{fetchAttribute}}.
23 23
   \item bridge.organisms A list of bridge supported organisms. Used by \code{\link{fetchAttribute}}.
24 24
   \item bridge.web The base URL for Brigde Database webservices. Used by \code{\link{fetchAttribute}}.
... ...
@@ -27,9 +27,8 @@ NetPathMiner defines the following defaults:
27 27
 \examples{
28 28
  # Get the default list of small compounds (uniquitous metabolites).
29 29
  NPMdefaults("small.comp.ls")
30
- 
30
+
31 31
 }
32 32
 \author{
33 33
 Ahmed Mohamed
34 34
 }
35
-
... ...
@@ -2,19 +2,18 @@
2 2
 % Please edit documentation in R/NPM-package.R
3 3
 \docType{package}
4 4
 \name{NetPathMiner-package}
5
-\alias{NPM}
6
-\alias{NetPathMiner}
7 5
 \alias{NetPathMiner-package}
6
+\alias{NetPathMiner}
7
+\alias{NPM}
8 8
 \title{General framework for network extraction, path mining.}
9 9
 \description{
10 10
 NetPathMiner implements a flexible module-based process flow for network path mining and visualization,
11
-which can be fully inte-grated with user-customized functions. 
11
+which can be fully inte-grated with user-customized functions.
12 12
 NetPathMiner supports construction of various types of genome scale networks from KGML, SBML and BioPAX
13
-formats, enabling its utility to most common pathway databases. 
14
-NetPathMiner also provides different visualization techniques to facilitate the analysis of even 
13
+formats, enabling its utility to most common pathway databases.
14
+NetPathMiner also provides different visualization techniques to facilitate the analysis of even
15 15
 thousands of output paths.
16 16
 }
17 17
 \author{
18 18
 Ahmed Mohamed \email{mohamed@kuicr.kyoto-u.ac.jp}
19 19
 }
20
-
... ...
@@ -8,7 +8,7 @@ SBML2igraph(filename, parse.as = c("metabolic", "signaling"),
8 8
   miriam.attr = "all", gene.attr, expand.complexes, verbose = TRUE)
9 9
 }
10 10
 \arguments{
11
-\item{filename}{A character vector containing the SBML files to be processed. If a directory path 
11
+\item{filename}{A character vector containing the SBML files to be processed. If a directory path
12 12
 is provided, all *.xml and *.sbml files in it and its subdirectories are included.}
13 13
 
14 14
 \item{parse.as}{Whether to process file into a metabolic or a signaling network.}
... ...
@@ -17,10 +17,10 @@ is provided, all *.xml and *.sbml files in it and its subdirectories are include
17 17
 written in MIRIAM guidelines (see Details) are extracted (Default). If \code{"none"}, then no attributes
18 18
 are extracted. Otherwise, only attributes matching those specified are extracted.}
19 19
 
20
-\item{gene.attr}{An attribute to distinguish \code{species} representing genes from those 
20
+\item{gene.attr}{An attribute to distinguish \code{species} representing genes from those
21 21
 representing small molecules (see Details). Ignored if \code{parse.as="metabolic"}.}
22 22
 
23
-\item{expand.complexes}{Split protein complexes into individual gene nodes. Ignored if 
23
+\item{expand.complexes}{Split protein complexes into individual gene nodes. Ignored if
24 24
 \code{parse.as="metabolic"}, or when \code{gene.attr} is not provided.}
25 25
 
26 26
 \item{verbose}{Whether to display the progress of the function.}
... ...
@@ -41,7 +41,7 @@ to their corresponding substrates and products (\code{ListOfSpecies}). Each reac
41 41
 listing all \code{modifiers} of this reaction. As a general rule, reactions inherit all annotation
42 42
 attributes of its catalyzig genes.
43 43
 
44
-Signaling network have genes as vertices and edges represent interactions. Since SBML format may 
44
+Signaling network have genes as vertices and edges represent interactions. Since SBML format may
45 45
 represent singling events as \code{reaction}, all species are assumed to be genes (rather than small
46 46
 molecules). For a simple path \code{S0 -> R1 -> S1}, in signaling network, the path will be
47 47
 \code{S0 -> M(R1) -> S1} where \code{M(R1)} is R1 modifier(s). To ditiguish gene species from small
... ...
@@ -55,31 +55,31 @@ by specifying \code{miriam.attr}.
55 55
 To generate a genome scale network, simply provide a list of files to be parsed, or put all
56 56
 file in a directory, as pass the directory path as \code{filename}
57 57
 
58
-Note: This function requires libSBML installed (Please see the installation instructions in the Vignette). 
59
-Some SBML level-3 files may requires additional libraries also (An infomative error will be displayed when 
60
-parsing such files). Please visit \url{http://sbml.org/Documents/Specifications/SBML_Level_3/Packages} for 
58
+Note: This function requires libSBML installed (Please see the installation instructions in the Vignette).
59
+Some SBML level-3 files may requires additional libraries also (An infomative error will be displayed when
60
+parsing such files). Please visit \url{http://sbml.org/Documents/Specifications/SBML_Level_3/Packages} for
61 61
 more information.
62 62
 }
63 63
 \examples{
64 64
 if(is.loaded("readsbmlfile")){ # This is false if libSBML wasn't available at installation.
65
-    filename <- system.file("extdata", "porphyrin.sbml", package="NetPathMiner") 
65
+    filename <- system.file("extdata", "porphyrin.sbml", package="NetPathMiner")
66 66
 
67
-    # Process SBML file as a metabolic network 
67
+    # Process SBML file as a metabolic network
68 68
     g <- SBML2igraph(filename)
69 69
     plotNetwork(g)
70 70
 
71 71
     # Process SBML file as a signaling network
72
-    g <- SBML2igraph(filename, parse.as="signaling", 
72
+    g <- SBML2igraph(filename, parse.as="signaling",
73 73
                     gene.attr="miriam.uniprot",expand.complexes=TRUE)
74 74
     dev.new()
75 75
     plotNetwork(g)
76 76
 }
77 77
 }
78
-\author{
79
-Ahmed Mohamed
80
-}
81 78
 \seealso{
82 79
 Other Database extraction methods: \code{\link{KGML2igraph}},
83 80
   \code{\link{biopax2igraph}}
84 81
 }
85
-
82
+\author{
83
+Ahmed Mohamed
84
+}
85
+\concept{Database extraction methods}
... ...
@@ -13,25 +13,25 @@ assignEdgeWeights(microarray, graph, use.attr, y, weight.method = "cor",
13 13
 
14 14
 \item{graph}{An annotated igraph object.}
15 15
 
16
-\item{use.attr}{An attribute name to map \code{microarray} rows (genes) to graph vertices. The attribute must 
17
-be annotated in \code{graph}, and the values correspond to \code{rownames} of \code{microarray}. You can check the coverage and 
16
+\item{use.attr}{An attribute name to map \code{microarray} rows (genes) to graph vertices. The attribute must
17
+be annotated in \code{graph}, and the values correspond to \code{rownames} of \code{microarray}. You can check the coverage and
18 18
 if there are complex vertices using \code{\link{getAttrStatus}}. You can eliminate complexes using \code{\link{expandComplexes}}.}
19 19
 
20 20
 \item{y}{Sample labels, given as a factor or a character vector. This must be the same size as the columns of \code{microarray}}
21 21
 
22
-\item{weight.method}{A function, or a string indicating the name of the function to be used to compute the edge weights. 
23
-The function is provided with 2 numerical verctors (2 rows from \code{microarray}), and it should return a single numerical 
22
+\item{weight.method}{A function, or a string indicating the name of the function to be used to compute the edge weights.
23
+The function is provided with 2 numerical verctors (2 rows from \code{microarray}), and it should return a single numerical
24 24
 value (or \code{NA}). The default computes Pearson's correlation.}
25 25
 
26 26
 \item{complex.method}{A function, or a string indicating the name of the function to be used in weighting edges connecting complexes.
27
-If a vertex has >1 attribute value, all possible pairwise weights are first computed, and given to \code{complex.method}. The default 
27
+If a vertex has >1 attribute value, all possible pairwise weights are first computed, and given to \code{complex.method}. The default
28 28
 function is \code{\link[base]{max}}.}
29 29
 
30 30
 \item{missing.method}{A function, or a string indicating the name of the function to be used in weighting edges when one of the vertices
31 31
 lack expression data. The function is passed all edge weights on the graph. Default is \code{\link[stats]{median}}.}
32 32
 
33
-\item{same.gene.penalty}{A numerical value to be assigned when 2 adjacent vertices have the same attribute value, since correlation and 
34
-similarity measure will give perfect scores. Alternatively, \code{same.gene.penalty} can be a function, computing the penalty from all 
33
+\item{same.gene.penalty}{A numerical value to be assigned when 2 adjacent vertices have the same attribute value, since correlation and
34
+similarity measure will give perfect scores. Alternatively, \code{same.gene.penalty} can be a function, computing the penalty from all
35 35
 edge weights on the graph (excluding same-gene and missing values). The default is to take the \code{\link[stats]{median}}}
36 36
 
37 37
 \item{bootstrap}{An integer \code{n}, where the \code{weight.method} is perfomed on \code{n} permutations of the gene profiles, and taking
... ...
@@ -40,7 +40,7 @@ the median value. Set it to \code{NA} to disable bootstrapping.}
40 40
 \item{verbose}{Print the progress of the function.}
41 41
 }
42 42
 \value{
43
-The input graph with \code{edge.weight} as an edge attribute. The attribute can be a list of weights if \code{y} labels 
43
+The input graph with \code{edge.weight} as an edge attribute. The attribute can be a list of weights if \code{y} labels
44 44
 were provided.
45 45
 }
46 46
 \description{
... ...
@@ -55,13 +55,13 @@ This function computes edge weights based on a gene expression profile.
55 55
  # Calculate Pearson's correlation.
56 56
 	data(ex_microarray)	# Part of ALL dataset.
57 57
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
58
-		weight.method = "cor", use.attr="miriam.uniprot", 
58
+		weight.method = "cor", use.attr="miriam.uniprot",
59 59
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
60
- 
61
- # Using Spearman correlation, assigning missing edges to -1 
60
+
61
+ # Using Spearman correlation, assigning missing edges to -1
62 62
  \dontrun{
63
-   assignEdgeWeights(microarray, graph, use.attr="miriam.affy.probeset", 
64
-       y=factor(colnames(microarray)), 
63
+   assignEdgeWeights(microarray, graph, use.attr="miriam.affy.probeset",
64
+       y=factor(colnames(microarray)),
65 65
        weight.method = function(x1,x2) cor(x1,x2, method="spearman"),
66 66
        missing.method = -1)
67 67
  }
... ...
@@ -70,4 +70,3 @@ This function computes edge weights based on a gene expression profile.
70 70
 \author{
71 71
 Ahmed Mohamed
72 72
 }
73
-
... ...
@@ -12,10 +12,10 @@ biopax2igraph(biopax, parse.as = c("metabolic", "signaling"),
12 12
 
13 13
 \item{parse.as}{Whether to process file into a metabolic or a signaling network.}
14 14
 
15
-\item{expand.complexes}{Split protein complexes into individual gene nodes. Ignored if 
15
+\item{expand.complexes}{Split protein complexes into individual gene nodes. Ignored if
16 16
 \code{parse.as="metabolic"}.}
17 17
 
18
-\item{inc.sm.molecules}{Include small molecules that are participating in signaling events. Ignored if 
18
+\item{inc.sm.molecules}{Include small molecules that are participating in signaling events. Ignored if
19 19
 \code{parse.as="metabolic"}.}
20 20
 
21 21
 \item{verbose}{Whether to display the progress of the function.}
... ...
@@ -38,7 +38,7 @@ to their corresponding \code{Left}s and \code{Right}s. Each reaction vertex has
38 38
 listing all \code{Catalysis} relationships of this reaction. As a general rule, reactions inherit all annotation
39 39
 attributes of its catalyzig genes.
40 40
 
41
-Signaling network have genes as vertices and edges represent interactions, such as activiation / inhibition. 
41
+Signaling network have genes as vertices and edges represent interactions, such as activiation / inhibition.
42 42
 Genes participating in successive reactions are also connected. Signaling interactions are constructed from
43 43
 \code{Control} classes, where edges are drawn from \code{controller} to \code{controlled}.
44 44
 
... ...
@@ -48,7 +48,7 @@ MIRIAM guidelines (\code{miraim.db}, where db is the database name).
48 48
 \examples{
49 49
 if(require(rBiopaxParser)){
50 50
     data(ex_biopax)
51
-    # Process biopax as a metabolic network 
51
+    # Process biopax as a metabolic network
52 52
     g <- biopax2igraph(ex_biopax)
53 53
     plotNetwork(g)
54 54
 
... ...
@@ -56,11 +56,11 @@ if(require(rBiopaxParser)){
56 56
     g <- biopax2igraph(ex_biopax, parse.as="signaling", expand.complexes=TRUE)
57 57
 }
58 58
 }
59
-\author{
60
-Ahmed Mohamed
61
-}
62 59
 \seealso{
63 60
 Other Database extraction methods: \code{\link{KGML2igraph}},
64 61
   \code{\link{SBML2igraph}}
65 62
 }
66
-
63
+\author{
64
+Ahmed Mohamed
65
+}
66
+\concept{Database extraction methods}
... ...
@@ -9,7 +9,7 @@ colorVertexByAttr(graph, attr.name, col.palette = palette())
9 9
 \arguments{
10 10
 \item{graph}{An annotated igraph object.}
11 11
 
12
-\item{attr.name}{The attribute name (ex: "pathway") by which vertices will be colored. 
12
+\item{attr.name}{The attribute name (ex: "pathway") by which vertices will be colored.
13 13
 Complex attributes, where a vertex belongs to more than one group, are supported.}
14 14
 
15 15
 \item{col.palette}{A color palette, or a palette generating function (ex: \preformatted{col.palette=rainbow}).}
... ...
@@ -23,12 +23,9 @@ This function returns a list of colors for vertices, assigned similar colors if
23 23
 }
24 24
 \examples{
25 25
   data("ex_kgml_sig")
26
-  v.colors <- colorVertexByAttr(ex_kgml_sig, "pathway") 
26
+  v.colors <- colorVertexByAttr(ex_kgml_sig, "pathway")
27 27
   plotNetwork(ex_kgml_sig, vertex.color=v.colors)
28 28
 
29
-}
30
-\author{
31
-Ahmed Mohamed
32 29
 }
33 30
 \seealso{
34 31
 Other Plotting methods: \code{\link{layoutVertexByAttr}},
... ...
@@ -39,4 +36,7 @@ Other Plotting methods: \code{\link{layoutVertexByAttr}},
39 36
   \code{\link{plotNetwork}},
40 37
   \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
41 38
 }
42
-
39
+\author{
40
+Ahmed Mohamed
41
+}
42
+\concept{Plotting methods}
... ...
@@ -13,4 +13,3 @@ data(ex_biopax)
13 13
 ex_biopax
14 14
 
15 15
 }
16
-
... ...
@@ -5,7 +5,7 @@
5 5
 \alias{ex_kgml_sig}
6 6
 \title{Singaling network from KGML example}
7 7
 \description{
8
-An example igraph object representing Ras and chemokine signaling pathways in human 
8
+An example igraph object representing Ras and chemokine signaling pathways in human
9 9
 extracted from KGML files.
10 10
 }
11 11
 \examples{
... ...
@@ -13,4 +13,3 @@ data(ex_kgml_sig)
13 13
 plotNetwork(ex_kgml_sig, vertex.color="pathway")
14 14
 
15 15
 }
16
-
... ...
@@ -11,4 +11,3 @@ An microarray data example. This is part of the ALL dataset, for demonstration p
11 11
 data(ex_microarray)
12 12
 
13 13
 }
14
-
... ...
@@ -13,4 +13,3 @@ data(ex_sbml)
13 13
 plotNetwork(ex_sbml, vertex.color="compartment.name")
14 14
 
15 15
 }
16
-
... ...
@@ -28,11 +28,11 @@ Creates a subnetwork from a ranked path list generated by \code{\link{pathRanker
28 28
  # Calculate Pearson's correlation.
29 29
 	data(ex_microarray)	# Part of ALL dataset.
30 30
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
31
-		weight.method = "cor", use.attr="miriam.uniprot", 
31
+		weight.method = "cor", use.attr="miriam.uniprot",
32 32
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
33 33
 
34 34
 	## Get ranked paths using probabilistic shortest paths.
35
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
35
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
36 36
 					K=20, minPathSize=6)
37 37
 
38 38
 	## Get the subnetwork of paths in reaction graph.
... ...
@@ -41,12 +41,12 @@ Creates a subnetwork from a ranked path list generated by \code{\link{pathRanker
41 41
 	## Get the subnetwork of paths in the original metabolic graph.
42 42
 	metabolic.sub <- getPathsAsEIDs(ranked.p, ex_sbml)
43 43
 
44
-}
45
-\author{
46
-Ahmed Mohamed
47 44
 }
48 45
 \seealso{
49 46
 Other Path ranking methods: \code{\link{getPathsAsEIDs}},
50 47
   \code{\link{pathRanker}}, \code{\link{samplePaths}}
51 48
 }
52
-
49
+\author{
50
+Ahmed Mohamed
51
+}
52
+\concept{Path ranking methods}
... ...
@@ -1,11 +1,11 @@
1 1
 % Generated by roxygen2: do not edit by hand
2 2
 % Please edit documentation in R/netWeight.R
3 3
 \name{getAttrStatus}
4
-\alias{getAttrNames}
5 4
 \alias{getAttrStatus}
5
+\alias{getAttrNames}
6 6
 \alias{getAttribute}
7
-\alias{rmAttribute}
8 7
 \alias{setAttribute}
8
+\alias{rmAttribute}
9 9
 \title{Get / Set vertex attribute names and coverage}
10 10
 \usage{
11 11
 getAttrStatus(graph, pattern = "^miriam.")
... ...
@@ -28,7 +28,7 @@ rmAttribute(graph, attr.name)
28 28
 \item{attr.value}{A list of attribute values. This must be the same size as the number of vertices.}
29 29
 }
30 30
 \value{
31
-For \code{getAttrStatus}, a dataframe summarizing the number of vertices with no (\code{missing}), one (\code{single}) 
31
+For \code{getAttrStatus}, a dataframe summarizing the number of vertices with no (\code{missing}), one (\code{single})
32 32
 or more than one (\code{complex}) attribute value. The coverage% is also reported to each attribute.
33 33
 
34 34
 For \code{getAttrNames}, a character vector of attribute names matching the pattern.
... ...
@@ -53,7 +53,7 @@ All functions here target NetPathMiner annotations only.
53 53
 
54 54
  # Get status of attribute "pathway" only
55 55
  getAttrStatus(ex_kgml_sig, "^pathway$")
56
- 
56
+
57 57
  # Get status of all attributes  starting with "pathway" and "miriam" keywords
58 58
  getAttrStatus(ex_kgml_sig, "(^miriam)|(^pathway)")
59 59
 
... ...
@@ -65,10 +65,10 @@ All functions here target NetPathMiner annotations only.
65 65
  # Remove an attribute from graph
66 66
  graph <- rmAttribute(ex_kgml_sig, "miriam.ncbigene")
67 67
 }
68
-\author{
69
-Ahmed Mohamed
70
-}
71 68
 \seealso{
72 69
 Other Attribute handling methods: \code{\link{stdAttrNames}}
73 70
 }
74
-
71
+\author{
72
+Ahmed Mohamed
73
+}
74
+\concept{Attribute handling methods}
... ...
@@ -12,7 +12,7 @@ getGeneSetNetworks(graph, use.attr = "pathway", format = c("list",
12 12
 
13 13
 \item{use.attr}{The attribute by which vertices are grouped (tepically pathway, or GO)}
14 14
 
15
-\item{format}{The output format. If "list" is specified, a list of subgraphs are returned (default). 
15
+\item{format}{The output format. If "list" is specified, a list of subgraphs are returned (default).
16 16
 If "pathway-class" is specified, a list of pathway-class objects are returned. Pathway-class
17 17
 is used by graphite package to run several methods of topology-based enrichment analyses.}
18 18
 }
... ...
@@ -30,25 +30,24 @@ common attributes (in the same pathway or compartment).
30 30
  # Integration with graphite package
31 31
  \dontrun{
32 32
  if(require(graphite) & require(clipper) & require(ALL)){
33
-	genesetnets <- getGeneSetNetworks(ex_kgml_sig, 
33
+	genesetnets <- getGeneSetNetworks(ex_kgml_sig,
34 34
 						use.attr="pathway", format="pathway-class")
35
-	path <- convertIdentifiers(genesetnets$`Chemokine signaling pathway`, 
35
+	path <- convertIdentifiers(genesetnets$`Chemokine signaling pathway`,
36 36
 						"entrez")
37 37
 	genes <- nodes(path)
38 38
 	data(ALL)
39 39
 	all <- as.matrix(exprs(ALL[1:length(genes),1:20]))
40 40
 	classes <- c(rep(1,10), rep(2,10))
41 41
 	rownames(all) <- genes
42
-	
42
+
43 43
 	runClipper(path, all, classes, "mean", pathThr=0.1)
44 44
  }
45 45
  }
46 46
 
47
-}
48
-\author{
49
-Ahmed Mohamed
50 47
 }
51 48
 \seealso{
52 49
 \code{\link{getGeneSets}}
53 50
 }
54
-
51
+\author{
52
+Ahmed Mohamed
53
+}
... ...
@@ -40,11 +40,10 @@ can be specified through \code{gene.attr} argument.
40 40
 	data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
41 41
 	genesets <- getGeneSets(ex_sbml, use.attr="compartment.name", gene.attr="miriam.uniprot")
42 42
 
43
-}
44
-\author{
45
-Ahmed Mohamed
46 43
 }
47 44
 \seealso{
48 45
 \code{\link{getGeneSetNetworks}}
49 46
 }
50
-
47
+\author{
48
+Ahmed Mohamed
49
+}
... ...
@@ -29,25 +29,25 @@ edges on a metabolic network).
29 29
  # Calculate Pearson's correlation.
30 30
 	data(ex_microarray)	# Part of ALL dataset.
31 31
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
32
-		weight.method = "cor", use.attr="miriam.uniprot", 
32
+		weight.method = "cor", use.attr="miriam.uniprot",
33 33
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
34 34
 
35 35
 	## Get ranked paths using probabilistic shortest paths.
36
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
36
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
37 37
 					K=20, minPathSize=6)
38
- 
38
+
39 39
 	## Get the edge ids along paths in the reaction graph.
40 40
 	path.eids <- getPathsAsEIDs(ranked.p, rgraph)
41 41
 
42 42
 	## Get the edge ids along paths in the original metabolic graph.
43 43
 	path.eids <- getPathsAsEIDs(ranked.p, ex_sbml)
44 44
 
45
-}
46
-\author{
47
-Ahmed Mohamed
48 45
 }
49 46
 \seealso{
50 47
 Other Path ranking methods: \code{\link{extractPathNetwork}},
51 48
   \code{\link{pathRanker}}, \code{\link{samplePaths}}
52 49
 }
53
-
50
+\author{
51
+Ahmed Mohamed
52
+}
53
+\concept{Path ranking methods}
... ...
@@ -12,10 +12,10 @@ layoutVertexByAttr(graph, attr.name, cluster.strength = 1,
12 12
 
13 13
 \item{attr.name}{The attribute name by which vertices are laid out.}
14 14
 
15
-\item{cluster.strength}{A number indicating tie strengths between vertices with the same attribute. 
15
+\item{cluster.strength}{A number indicating tie strengths between vertices with the same attribute.
16 16
 The larger it is, the closer the vertices will be.}
17 17
 
18
-\item{layout}{A layout function, ideally a force-directed layout fuction, such as 
18
+\item{layout}{A layout function, ideally a force-directed layout fuction, such as
19 19
 \code{\link[igraph]{layout.fruchterman.reingold}} and \code{\link[igraph]{layout.kamada.kawai}}.}
20 20
 }
21 21
 \value{
... ...
@@ -27,15 +27,12 @@ This function generates a layout for igraph objects, keeping vertices with the s
27 27
 }
28 28
 \examples{
29 29
   data("ex_kgml_sig")
30
-  v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway") 
30
+  v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway")
31 31
   plotNetwork(ex_kgml_sig, vertex.color="pathway", layout=v.layout)
32 32
 
33 33
   v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway", cluster.strength=5)
34 34
   plotNetwork(ex_kgml_sig, vertex.color="pathway", layout=v.layout)
35 35
 
36
-}
37
-\author{
38
-Ahmed Mohamed
39 36
 }
40 37
 \seealso{
41 38
 Other Plotting methods: \code{\link{colorVertexByAttr}},
... ...
@@ -46,4 +43,7 @@ Other Plotting methods: \code{\link{colorVertexByAttr}},
46 43
   \code{\link{plotNetwork}},
47 44
   \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
48 45
 }
49
-
46
+\author{
47
+Ahmed Mohamed
48
+}
49
+\concept{Plotting methods}
... ...
@@ -6,8 +6,8 @@
6 6
 \title{Expand reactions / complexes into their gene constituents.}
7 7
 \usage{
8 8
 expandComplexes(graph, v.attr, keep.parent.attr = "^pathway",
9
-  expansion.method = c("normal", "duplicate"), missing.method = c("keep",
10
-  "remove", "reconnect"))
9
+  expansion.method = c("normal", "duplicate"),
10
+  missing.method = c("keep", "remove", "reconnect"))
11 11
 
12 12
 makeGeneNetwork(graph, v.attr = "genes", keep.parent.attr = "^pathway",
13 13
   expansion.method = "duplicate", missing.method = "remove")
... ...
@@ -20,7 +20,7 @@ makeGeneNetwork(graph, v.attr = "genes", keep.parent.attr = "^pathway",
20 20
 \item{keep.parent.attr}{A (List of) \code{\link{regex}} experssions representing attributes to be
21 21
 inherited by daughter vertices. If \code{"all"} is passed, all parent attributes are inherited.}
22 22
 
23
-\item{expansion.method}{If \code{"duplicate"}, attribute values sharing more than one parent vertex 
23
+\item{expansion.method}{If \code{"duplicate"}, attribute values sharing more than one parent vertex
24 24
 are duplicated for each vertex they participate in. For exmaple, if one gene G1 catalyzes reactions
25 25
 R1, R2; then G1##R1, and G1##R2 vertices are created. If \code{"normal"} only one vertex (G1) is created,
26 26
 and inherit all R1 and R2 connections and attributes.}
... ...
@@ -45,33 +45,35 @@ For example, to match a network created from Reactome to a KEGG network, you can
45 45
 vertices by "miriam.kegg.compound" attribute.
46 46
 }
47 47
 \examples{
48
- ## Make a gene network from a reaction network. 
48
+ ## Make a gene network from a reaction network.
49 49
  data(ex_sbml)	# A bipartite metbaolic network.
50 50
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
51 51
  ggraph <- makeGeneNetwork(rgraph)
52 52
 
53 53
  ## Expand vertices into their contituent genes.
54 54
  data(ex_kgml_sig)	# Ras and chemokine signaling pathways in human
55
-	ggraph <- expandComplexes(ex_kgml_sig, v.attr = "miriam.ncbigene", 
55
+	ggraph <- expandComplexes(ex_kgml_sig, v.attr = "miriam.ncbigene",
56 56
 						keep.parent.attr= c("^pathway", "^compartment"))
57 57
 
58 58
  ## Create a separate vertex for each compartment. This is useful in duplicating
59 59
 	##  metabolite vertices in a network.
60 60
 \dontrun{
61
- graph <- expandComplexes(graph, v.attr = "compartment", 
61
+ graph <- expandComplexes(graph, v.attr = "compartment",
62 62
         keep.parent.attr = "all",
63 63
         expansion.method = "duplicate",
64 64
         missing.method = "keep")
65 65
 }
66 66
 
67
-}
68
-\author{
69
-Ahmed Mohamed
70 67
 }
71 68
 \seealso{
72
-Other Network processing methods: \code{\link{makeReactionNetwork}},
69
+Other Network processing methods: \code{\link{makeMetaboliteNetwork}},
70
+  \code{\link{makeReactionNetwork}},
71
+  \code{\link{reindexNetwork}},
73 72
   \code{\link{rmSmallCompounds}},
74 73
   \code{\link{simplifyReactionNetwork}},
75 74
   \code{\link{vertexDeleteReconnect}}
76 75
 }
77
-
76
+\author{
77
+Ahmed Mohamed
78
+}
79
+\concept{Network processing methods}
78 80
new file mode 100644
... ...
@@ -0,0 +1,36 @@
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/netProcess.R
3
+\name{makeMetaboliteNetwork}
4
+\alias{makeMetaboliteNetwork}
5
+\title{Convert metabolic network to metabolite network.}
6
+\usage{
7
+makeMetaboliteNetwork(graph)
8
+}
9
+\arguments{
10
+\item{graph}{A metabolic network.}
11
+}
12
+\value{
13
+A reaction network.
14
+}
15
+\description{
16
+This function removes reaction nodes keeping them as edge attributes. The resulting
17
+network contains metabolite nodes only, where edges indicate that reaction conversions.
18
+}
19
+\examples{
20
+	## Conver a metabolic network to a metbolite network.
21
+ data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
22
+ mgraph <- makeMetaboliteNetwork(ex_sbml)
23
+
24
+}
25
+\seealso{
26
+Other Network processing methods: \code{\link{expandComplexes}},
27
+  \code{\link{makeReactionNetwork}},
28
+  \code{\link{reindexNetwork}},
29
+  \code{\link{rmSmallCompounds}},
30
+  \code{\link{simplifyReactionNetwork}},
31
+  \code{\link{vertexDeleteReconnect}}
32
+}
33
+\author{
34
+Ahmed Mohamed
35
+}
36
+\concept{Network processing methods}
... ...
@@ -26,14 +26,16 @@ by one reaction is consumed by the other.
26 26
  data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
27 27
  rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
28 28
 
29
-}
30
-\author{
31
-Ahmed Mohamed
32 29
 }
33 30
 \seealso{
34 31
 Other Network processing methods: \code{\link{expandComplexes}},
32
+  \code{\link{makeMetaboliteNetwork}},
33
+  \code{\link{reindexNetwork}},
35 34
   \code{\link{rmSmallCompounds}},
36 35
   \code{\link{simplifyReactionNetwork}},
37 36
   \code{\link{vertexDeleteReconnect}}
38 37
 }
39
-
38
+\author{
39
+Ahmed Mohamed
40
+}
41
+\concept{Network processing methods}
... ...
@@ -10,7 +10,7 @@ pathClassifier(paths, target.class, M, alpha = 1, lambda = 2,
10 10
 \arguments{
11 11
 \item{paths}{The training paths computed by \code{\link{pathsToBinary}}}
12 12
 
13
-\item{target.class}{he label of the targe class to be classified.  This label must be present 
13
+\item{target.class}{he label of the targe class to be classified.  This label must be present
14 14
 as a label within the \code{paths\$y} object}
15 15
 
16 16
 \item{M}{Number of components within the paths to be extracted.}
... ...
@@ -46,7 +46,7 @@ A list with the following values
46 46
 HME3M Markov pathway classifier.
47 47
 }
48 48
 \details{
49
-Take care with selection of lambda and alpha - make sure you check that the likelihood 
49
+Take care with selection of lambda and alpha - make sure you check that the likelihood
50 50
 is always increasing.
51 51
 }
52 52
 \examples{
... ...
@@ -59,14 +59,14 @@ is always increasing.
59 59
  # Calculate Pearson's correlation.
60 60
 	data(ex_microarray)	# Part of ALL dataset.
61 61
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
62
-		weight.method = "cor", use.attr="miriam.uniprot", 
62
+		weight.method = "cor", use.attr="miriam.uniprot",
63 63
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
64 64
 
65 65
 	## Get ranked paths using probabilistic shortest paths.
66
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
66
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
67 67
 					K=20, minPathSize=6)
68
-	
69
-	## Convert paths to binary matrix. 
68
+
69
+	## Convert paths to binary matrix.
70 70
 	ybinpaths <- pathsToBinary(ranked.p)
71 71
 	p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)
72 72
 
... ...
@@ -77,9 +77,6 @@ is always increasing.
77 77
 	plotClassifierROC(p.class)
78 78
 	plotClusters(ybinpaths, p.class)
79 79
 
80
-}
81
-\author{
82
-Timothy Hancock and Ichigaku Takigawa
83 80
 }
84 81
 \references{
85 82
 Hancock, Timothy, and Mamitsuka, Hiroshi: A Markov Classification Model for Metabolic Pathways, Workshop on Algorithms in Bioinformatics (WABI) , 2009
... ...
@@ -96,4 +93,7 @@ Other Path clustering & classification methods: \code{\link{pathCluster}},
96 93
   \code{\link{predictPathClassifier}},
97 94
   \code{\link{predictPathCluster}}
98 95
 }
99
-
96
+\author{
97
+Timothy Hancock and Ichigaku Takigawa
98
+}
99
+\concept{Path clustering & classification methods}
... ...
@@ -38,22 +38,17 @@ A list with the following items:
38 38
 		weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE)
39 39
 
40 40
 	## Get ranked paths using probabilistic shortest paths.
41
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
41
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
42 42
 					K=20, minPathSize=8)
43
-	
44
-	## Convert paths to binary matrix. 
43
+
44
+	## Convert paths to binary matrix.
45 45
 	ybinpaths <- pathsToBinary(ranked.p)
46 46
 	p.cluster <- pathCluster(ybinpaths, M=2)
47 47
 	plotClusters(ybinpaths, p.cluster)
48
- 
49
-}
50
-\author{
51
-Ichigaku Takigawa
52 48
 
53
-Timothy Hancock
54 49
 }
55 50
 \references{
56
-Mamitsuka, H., Okuno, Y., and Yamaguchi, A. 2003. Mining biologically active patterns in 
51
+Mamitsuka, H., Okuno, Y., and Yamaguchi, A. 2003. Mining biologically active patterns in
57 52
 metabolic pathways using microarray expression profiles. SIGKDD Explor. News l. 5, 2 (Dec. 2003), 113-121.
58 53
 }
59 54
 \seealso{
... ...
@@ -66,4 +61,9 @@ Other Path clustering & classification methods: \code{\link{pathClassifier}},
66 61
   \code{\link{predictPathClassifier}},
67 62
   \code{\link{predictPathCluster}}
68 63
 }
64
+\author{
65
+Ichigaku Takigawa
69 66
 
67
+Timothy Hancock
68
+}
69
+\concept{Path clustering & classification methods}
... ...
@@ -29,25 +29,25 @@ A list of paths where each path has the following items:
29 29
 \item{distance}{The sum of the log(ECDF edge weights) along each path.  (a sum of logs is a product)}
30 30
 }
31 31
 \description{
32
-Given a weighted igraph object, path ranking finds a set of node/edge sequences (paths) to 
32
+Given a weighted igraph object, path ranking finds a set of node/edge sequences (paths) to
33 33
 maximize the sum of edge weights.
34
-\code{pathRanker(method="prob.shortest.path")} extracts the K most probable paths within 
34
+\code{pathRanker(method="prob.shortest.path")} extracts the K most probable paths within
35 35
 a weighted network.
36
-\code{pathRanker(method="pvalue")} extracts a list of paths whose sum of edge weights are 
36
+\code{pathRanker(method="pvalue")} extracts a list of paths whose sum of edge weights are
37 37
 significantly higher than random paths of the same length.
38 38
 }
39 39
 \details{
40
-The input here is \code{graph}. A weight must be assigned to each edge. Bootstrapped Pearson correlation edge weights 
41
-can be assigned to each edge by \code{\link{assignEdgeWeights}}. However the specification of the edge weight is flexible 
40
+The input here is \code{graph}. A weight must be assigned to each edge. Bootstrapped Pearson correlation edge weights
41
+can be assigned to each edge by \code{\link{assignEdgeWeights}}. However the specification of the edge weight is flexible
42 42
 with the condition that increasing values indicate stronger relationships between vertices.
43 43
 
44 44
 \subsection{Probabilistic Shortest Paths}{
45
-\code{pathRanker(method="prob.shortest.path")} finds the K most probable loopless paths given a weighted network. 
46
-Before the paths are ranked the edge weights are converted into probabilistic edge weights using the Empirical 
47
-Cumulative Distribution (ECDF) over all edge weights.  This is called ECDF edge weight. The ECDF edge weight 
45
+\code{pathRanker(method="prob.shortest.path")} finds the K most probable loopless paths given a weighted network.
46
+Before the paths are ranked the edge weights are converted into probabilistic edge weights using the Empirical
47
+Cumulative Distribution (ECDF) over all edge weights.  This is called ECDF edge weight. The ECDF edge weight
48 48
 serves as a probabilistic rank of the most important gene-gene interactions.  The probabilistic nature of the ECDF
49
-edge weights allow for a significance test to determine if a path contains any functional structure or is 
50
-simply a random walk.  The probability of a path is simily the product of all ECDF weights along the path.  
49
+edge weights allow for a significance test to determine if a path contains any functional structure or is
50
+simply a random walk.  The probability of a path is simily the product of all ECDF weights along the path.
51 51
 This is computed as a sum of the logs of the ECDF edge weights.
52 52
 
53 53
 The follwing arguments can be passed to \code{pathRanker(method="prob.shortest.path")}:
... ...
@@ -55,17 +55,17 @@ The follwing arguments can be passed to \code{pathRanker(method="prob.shortest.p
55 55
 \item{\code{K}}{Maximum number of paths to extract. Defaults to 10.}
56 56
 \item{\code{minPathSize}}{The minimum number of edges for each extracted path. Defualts to 1.}
57 57
 \item{\code{normalize}}{Specify if you want to normalize the probabilistic edge weights (across different labels)
58
-before extracting the paths. Defaults to TRUE.} 
58
+before extracting the paths. Defaults to TRUE.}
59 59
 }
60 60
 }
61 61
 
62 62
 \subsection{P-value method}{
63
-\code{pathRanker(method="pvalue")} searches all paths between the specified start and end vertices, and if a 
64
-significant path is found it returns it. However, It doesn't search for the best path between the start and 
65
-terminal vertices,  as there could be many paths which lead to the same terminal vertex, and searching through 
63
+\code{pathRanker(method="pvalue")} searches all paths between the specified start and end vertices, and if a
64
+significant path is found it returns it. However, It doesn't search for the best path between the start and
65
+terminal vertices,  as there could be many paths which lead to the same terminal vertex, and searching through
66 66
 all of them is time comsuming.  We just stop when the first significant path is found.
67 67
 
68
-All provided edge weights are recaled from 0-1. Path significance is calculated based on the empirical distribution 
68
+All provided edge weights are recaled from 0-1. Path significance is calculated based on the empirical distribution
69 69
 of random paths of the same length. This can be estimated using \code{\link{samplePaths}} and passed as an argument.
70 70
 
71 71
 The follwing arguments can be passed to \code{pathRanker(method="pvalue")}:
... ...
@@ -85,25 +85,22 @@ The follwing arguments can be passed to \code{pathRanker(method="pvalue")}:
85 85
  # Calculate Pearson's correlation.
86 86
 	data(ex_microarray)	# Part of ALL dataset.
87 87
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
88
-		weight.method = "cor", use.attr="miriam.uniprot", 
88
+		weight.method = "cor", use.attr="miriam.uniprot",
89 89
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
90 90
 
91 91
 	## Get ranked paths using probabilistic shortest paths.
92
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
92
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
93 93
 					K=20, minPathSize=6)
94
- 
94
+
95 95
 	## Get significantly correlated paths using "p-valvue" method.
96
-	##   First, establish path score distribution by calling "samplePaths" 
96
+	##   First, establish path score distribution by calling "samplePaths"
97 97
  pathsample <- samplePaths(rgraph, max.path.length=10,
98 98
                         num.samples=100, num.warmup=10)
99
-	
100
-	##   Get all significant paths with p<0.1 
101
-	significant.p <- pathRanker(rgraph, method = "pvalue", 
99
+
100
+	##   Get all significant paths with p<0.1
101
+	significant.p <- pathRanker(rgraph, method = "pvalue",
102 102
                 sampledpaths = pathsample ,alpha=0.1)
103 103
 
104
-}
105
-\author{
106
-Timothy Hancock, Ichigaku Takigawa, Nicolas Wicker and Ahmed Mohamed
107 104
 }
108 105
 \seealso{
109 106
 getPathsAsEIDs, extractPathNetwork
... ...
@@ -111,4 +108,7 @@ getPathsAsEIDs, extractPathNetwork
111 108
 Other Path ranking methods: \code{\link{extractPathNetwork}},
112 109
   \code{\link{getPathsAsEIDs}}, \code{\link{samplePaths}}
113 110
 }
114
-
111
+\author{
112
+Timothy Hancock, Ichigaku Takigawa, Nicolas Wicker and Ahmed Mohamed
113
+}
114
+\concept{Path ranking methods}
... ...
@@ -19,13 +19,13 @@ A list with the following elements.
19 19
 Converts the result from pathRanker into something suitable for pathClassifier or pathCluster.
20 20
 }
21 21
 \details{
22
-Converts a set of pathways from \code{\link{pathRanker}} 
23
-into a list of binary pathway matrices. If the pathways are grouped by a response label then the 
24
-\emph{pathsToBinary} returns a list labeled by response class where each element is the binary 
22
+Converts a set of pathways from \code{\link{pathRanker}}
23
+into a list of binary pathway matrices. If the pathways are grouped by a response label then the
24
+\emph{pathsToBinary} returns a list labeled by response class where each element is the binary
25 25
 pathway matrix for each class. If the pathways are from \code{\link{pathRanker}} then a list wiht
26
-a single element containing the binary pathway matrix is returned. To look up the structure of a 
26
+a single element containing the binary pathway matrix is returned. To look up the structure of a
27 27
 specific binary path in the corresponding \code{ypaths} object simply use matrix index by calling
28
-\code{ypaths[[ybinpaths\$pidx[i,]]]}, where \code{i} is the row in the binary paths object you 
28
+\code{ypaths[[ybinpaths\$pidx[i,]]]}, where \code{i} is the row in the binary paths object you
29 29
 wish to reference.
30 30
 }
31 31
 \examples{
... ...
@@ -38,21 +38,18 @@ wish to reference.
38 38
  # Calculate Pearson's correlation.
39 39
 	data(ex_microarray)	# Part of ALL dataset.
40 40
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
41
-		weight.method = "cor", use.attr="miriam.uniprot", 
41
+		weight.method = "cor", use.attr="miriam.uniprot",
42 42
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
43 43
 
44 44
 	## Get ranked paths using probabilistic shortest paths.
45
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
45
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
46 46
 					K=20, minPathSize=6)
47
-	
48
-	## Convert paths to binary matrix. 
47
+
48
+	## Convert paths to binary matrix.
49 49
 	ybinpaths <- pathsToBinary(ranked.p)
50 50
 	p.cluster <- pathCluster(ybinpaths, M=3)
51 51
 	plotClusters(ybinpaths, p.cluster, col=c("red", "green", "blue") )
52
- 
53
-}
54
-\author{
55
-Timothy Hancock and Ichigaku Takigawa
52
+
56 53
 }
57 54
 \seealso{
58 55
 Other Path clustering & classification methods: \code{\link{pathClassifier}},
... ...
@@ -64,4 +61,7 @@ Other Path clustering & classification methods: \code{\link{pathClassifier}},
64 61
   \code{\link{predictPathClassifier}},
65 62
   \code{\link{predictPathCluster}}
66 63
 }
67
-
64
+\author{
65
+Timothy Hancock and Ichigaku Takigawa
66
+}
67
+\concept{Path clustering & classification methods}
... ...
@@ -44,19 +44,16 @@ gene networks. The functions finds equivalent paths across different networks an
44 44
  # Calculate Pearson's correlation.
45 45
 	data(ex_microarray)	# Part of ALL dataset.
46 46
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
47
-		weight.method = "cor", use.attr="miriam.uniprot", 
47
+		weight.method = "cor", use.attr="miriam.uniprot",
48 48
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
49 49
 
50 50
 	## Get ranked paths using probabilistic shortest paths.
51
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
51
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
52 52
 					K=20, minPathSize=6)
53 53
 
54 54
 plotAllNetworks(ranked.p, metabolic.net = ex_sbml, reaction.net = rgraph,
55 55
 					vertex.label = "", vertex.size = 4)
56 56
 
57
-}
58
-\author{
59
-Ahmed Mohamed
60 57
 }
61 58
 \seealso{
62 59
 Other Plotting methods: \code{\link{colorVertexByAttr}},
... ...
@@ -67,4 +64,7 @@ Other Plotting methods: \code{\link{colorVertexByAttr}},
67 64
   \code{\link{plotNetwork}},
68 65
   \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
69 66
 }
70
-
67
+\author{
68
+Ahmed Mohamed
69
+}
70
+\concept{Plotting methods}
... ...
@@ -11,19 +11,16 @@ plotClassifierROC(mix)
11 11
 }
12 12
 \value{
13 13
 Diagnostic plots of the result from pathClassifier.
14
-item{Top}{ROC curves for the posterior probabilities (\code{mix\$posterior.probs}) 
15
-and for each HME3M component (\code{mix\$h}).  This gives information about what response 
16
-label each relates to. A ROC curve with an \code{AUC < 0.5} relates to \code{y = 0}. 
14
+item{Top}{ROC curves for the posterior probabilities (\code{mix\$posterior.probs})
15
+and for each HME3M component (\code{mix\$h}).  This gives information about what response
16
+label each relates to. A ROC curve with an \code{AUC < 0.5} relates to \code{y = 0}.
17 17
 Conversely ROC curves with \code{AUC > 0.5} relate to \code{y = 1}. }
18
-item{Bottom}{The likelihood convergence history for the HME3M model.  If the parameters 
18
+item{Bottom}{The likelihood convergence history for the HME3M model.  If the parameters
19 19
 \code{alpha} or \code{lambda} are set too large then the likelihood may decrease.}
20 20
 }
21 21
 \description{
22 22
 Diagnostic plots for \code{\link{pathClassifier}}.
23 23
 }
24
-\author{
25
-Timothy Hancock and Ichigaku Takigawa
26
-}
27 24
 \seealso{
28 25
 Other Path clustering & classification methods: \code{\link{pathClassifier}},
29 26
   \code{\link{pathCluster}}, \code{\link{pathsToBinary}},
... ...
@@ -41,4 +38,8 @@ Other Plotting methods: \code{\link{colorVertexByAttr}},
41 38
   \code{\link{plotNetwork}},
42 39
   \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
43 40
 }
44
-
41
+\author{
42
+Timothy Hancock and Ichigaku Takigawa
43
+}
44
+\concept{Path clustering & classification methods}
45
+\concept{Plotting methods}
... ...
@@ -25,7 +25,7 @@ plotClusters(ybinpaths, clusters, col, ...)
25 25
 \item{...}{Extra paramaters passed to \code{plotClusterMatrix}}
26 26
 }
27 27
 \value{
28
-\code{plotClusterMatrix} 	plots an image of all paths the training dataset. Rows are the paths and columns 
28
+\code{plotClusterMatrix} 	plots an image of all paths the training dataset. Rows are the paths and columns
29 29
 are the genes (features) included within each path. Paths are colored according to cluster membership.
30 30
 
31 31
 \code{plotClusterProbs} 	The training set posterior probabilities for each path belonging to a 3M component. \cr
... ...
@@ -45,21 +45,18 @@ Plots the structure of all path clusters
45 45
  # Calculate Pearson's correlation.
46 46
 	data(ex_microarray)	# Part of ALL dataset.
47 47
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
48
-		weight.method = "cor", use.attr="miriam.uniprot", 
48
+		weight.method = "cor", use.attr="miriam.uniprot",
49 49
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
50 50
 
51 51
 	## Get ranked paths using probabilistic shortest paths.
52
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
52
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
53 53
 					K=20, minPathSize=8)
54
-	
55
-	## Convert paths to binary matrix. 
54
+
55
+	## Convert paths to binary matrix.
56 56
 	ybinpaths <- pathsToBinary(ranked.p)
57 57
 	p.cluster <- pathCluster(ybinpaths, M=2)
58 58
 	plotClusters(ybinpaths, p.cluster, col=c("red", "blue") )
59
- 
60
-}
61
-\author{
62
-Ahmed Mohamed
59
+
63 60
 }
64 61
 \seealso{
65 62
 Other Path clustering & classification methods: \code{\link{pathClassifier}},
... ...
@@ -78,4 +75,8 @@ Other Plotting methods: \code{\link{colorVertexByAttr}},
78 75
   \code{\link{plotNetwork}},
79 76
   \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
80 77
 }
81
-
78
+\author{
79
+Ahmed Mohamed
80
+}
81
+\concept{Path clustering & classification methods}
82
+\concept{Plotting methods}
... ...
@@ -4,8 +4,8 @@
4 4
 \alias{plotCytoscapeGML}
5 5
 \title{Plots an annotated igraph object in Cytoscape.}
6 6
 \usage{
7
-plotCytoscapeGML(graph, file, layout = layout.auto, vertex.size, vertex.label,
8
-  vertex.shape, vertex.color, edge.color)
7
+plotCytoscapeGML(graph, file, layout = layout.auto, vertex.size,
8
+  vertex.label, vertex.shape, vertex.color, edge.color)
9 9
 }
10 10
 \arguments{
11 11
 \item{graph}{An annotated igraph object.}
... ...
@@ -34,23 +34,20 @@ For \code{plotCytoscapeGML}, results are written to file.
34 34
 }
35 35
 \description{
36 36
 \code{plotCytoscape} function has been removed because RCytoscape is no longer prensent in Bioconductor.
37
-Future plans will use RCy3 for Cytoscape plotting, once RCy3 is supported on MacOS and Windows.    
37
+Future plans will use RCy3 for Cytoscape plotting, once RCy3 is supported on MacOS and Windows.
38 38
 \link{plotCytoscapeGML} exports the network plot in GML format, that can be later imported into Cytoscape
39 39
 (using "import network from file" option). This fuction is compatible with all Cytoscape versions.
40 40
 }
41 41
 \examples{
42 42
  data("ex_sbml")
43 43
 	rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
44
- v.layout <- layoutVertexByAttr(rgraph, "compartment") 
44
+ v.layout <- layoutVertexByAttr(rgraph, "compartment")
45 45
 	v.color <- colorVertexByAttr(rgraph, "compartment")
46
- 
46
+
47 47
  # Export network plot to GML file
48
- plotCytoscapeGML(rgraph, file="example.gml", layout=v.layout, 
48
+ plotCytoscapeGML(rgraph, file="example.gml", layout=v.layout,
49 49
 				vertex.color=v.color, vertex.size=10)
50 50
 
51
-}
52
-\author{
53
-Ahmed Mohamed
54 51
 }
55 52
 \seealso{
56 53
 Other Plotting methods: \code{\link{colorVertexByAttr}},
... ...
@@ -61,4 +58,7 @@ Other Plotting methods: \code{\link{colorVertexByAttr}},
61 58
   \code{\link{plotNetwork}},
62 59
   \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
63 60
 }
64
-
61
+\author{
62
+Ahmed Mohamed
63
+}
64
+\concept{Plotting methods}
... ...
@@ -11,7 +11,7 @@ plotNetwork(graph, vertex.color, col.palette = palette(),
11 11
 \item{graph}{An annotated igraph object.}
12 12
 
13 13
 \item{vertex.color}{A list of colors for vertices, or an attribute names (ex: "pathway") by which vertices
14
-will be colored. Complex attributes, where a vertex belongs to more than one group, are supported. This can 
14
+will be colored. Complex attributes, where a vertex belongs to more than one group, are supported. This can
15 15
 also be the output of \code{\link{colorVertexByAttr}}.}
16 16
 
17 17
 \item{col.palette}{A color palette, or a palette generating function (ex: \preformatted{col.palette=rainbow}).}
... ...
@@ -26,7 +26,7 @@ also be the output of \code{\link{colorVertexByAttr}}.}
26 26
 Produces a plot of the network.
27 27
 }
28 28
 \description{
29
-This function is a wrapper function for \code{\link[igraph]{plot.igraph}}, with 2 main additions. 
29
+This function is a wrapper function for \code{\link[igraph]{plot.igraph}}, with 2 main additions.
30 30
 1. Add the ability to color vertices by their attributes (see examples), accompanied by an inofrmative
31 31
 legend. 2. Resize vertex.size, edge.arrow.size, label.cex according to the plot size and the size of the
32 32
 network.
... ...
@@ -35,12 +35,9 @@ network.
35 35
  data("ex_kgml_sig")
36 36
  plotNetwork(ex_kgml_sig, vertex.color="pathway")
37 37
  plotNetwork(ex_kgml_sig, vertex.color="pathway", col.palette=heat.colors)
38
- plotNetwork(ex_kgml_sig, vertex.color="pathway", 
38
+ plotNetwork(ex_kgml_sig, vertex.color="pathway",
39 39
              col.palette=c("red", "green","blue","grey"))
40 40
 
41
-}
42
-\author{
43
-Ahmed Mohamed
44 41
 }
45 42
 \seealso{
46 43
 Other Plotting methods: \code{\link{colorVertexByAttr}},
... ...
@@ -51,4 +48,7 @@ Other Plotting methods: \code{\link{colorVertexByAttr}},
51 48
   \code{\link{plotCytoscapeGML}},
52 49
   \code{\link{plotPathClassifier}}, \code{\link{plotPaths}}
53 50
 }
54
-
51
+\author{
52
+Ahmed Mohamed
53
+}
54
+\concept{Plotting methods}
... ...
@@ -18,8 +18,8 @@ If the tolerance is set all edges with a \code{theta} below that tolerance will
18 18
 }
19 19
 \value{
20 20
 Produces a plot of the paths with the path probabilities and prediction probabilities and ROC curve overlayed.
21
-\item{Center Plot}{An image of all paths the training dataset.  Rows are the paths and columns are the genes (vertices) 
22
-included within each pathway.  A colour within image indicates if a particular gene (vertex) is included within a specific path.  
21
+\item{Center Plot}{An image of all paths the training dataset.  Rows are the paths and columns are the genes (vertices)
22
+included within each pathway.  A colour within image indicates if a particular gene (vertex) is included within a specific path.
23 23
 Colours flag whether a path belongs to the current HME3M component (P > 0.5).}
24 24
 \item{Center Right}{The training set posterior probabilities for each path belonging to the current 3M component.}
25 25
 \item{Center Top}{The ROC curve for this HME3M component.}
... ...
@@ -39,14 +39,14 @@ Plots the structure of specified path found by pathClassifier.
39 39
  # Calculate Pearson's correlation.
40 40
 	data(ex_microarray)	# Part of ALL dataset.
41 41
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
42
-		weight.method = "cor", use.attr="miriam.uniprot", 
42
+		weight.method = "cor", use.attr="miriam.uniprot",
43 43
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
44 44
 
45 45
 	## Get ranked paths using probabilistic shortest paths.
46
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
46
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
47 47
 					K=20, minPathSize=6)
48
-	
49
-	## Convert paths to binary matrix. 
48
+
49
+	## Convert paths to binary matrix.
50 50
 	ybinpaths <- pathsToBinary(ranked.p)
51 51
 	p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)
52 52
 
... ...
@@ -54,9 +54,6 @@ Plots the structure of specified path found by pathClassifier.
54 54
 	plotClassifierROC(p.class)
55 55
 	plotClusters(ybinpaths, p.class)
56 56
 
57
-}
58
-\author{
59
-Timothy Hancock and Ichigaku Takigawa
60 57
 }
61 58
 \seealso{
62 59
 Other Path clustering & classification methods: \code{\link{pathClassifier}},
... ...
@@ -75,4 +72,8 @@ Other Plotting methods: \code{\link{colorVertexByAttr}},
75 72
   \code{\link{plotCytoscapeGML}},
76 73
   \code{\link{plotNetwork}}, \code{\link{plotPaths}}
77 74
 }
78
-
75
+\author{
76
+Timothy Hancock and Ichigaku Takigawa
77
+}
78
+\concept{Path clustering & classification methods}
79
+\concept{Plotting methods}
... ...
@@ -13,7 +13,7 @@ plotPathCluster(ybinpaths, clusters, m, tol = NULL)
13 13
 
14 14
 \item{m}{The path cluster to view.}
15 15
 
16
-\item{tol}{A tolerance for 3M parameter \code{theta} which is the probability for 
16
+\item{tol}{A tolerance for 3M parameter \code{theta} which is the probability for
17 17
 each edge within each cluster.  If the tolerance is set all edges with a \code{theta}
18 18
 below that tolerance will be removed from the plot.}
19 19
 }
... ...
@@ -40,17 +40,14 @@ Plots the structure of specified path found by pathCluster.
40 40
 		weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE)
41 41
 
42 42
 	## Get ranked paths using probabilistic shortest paths.
43
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
43
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
44 44
 					K=20, minPathSize=8)
45
-	
46
-	## Convert paths to binary matrix. 
45
+
46
+	## Convert paths to binary matrix.
47 47
 	ybinpaths <- pathsToBinary(ranked.p)
48 48
 	p.cluster <- pathCluster(ybinpaths, M=2)
49 49
 	plotPathCluster(ybinpaths, p.cluster, m=2, tol=0.05)
50
- 
51
-}
52
-\author{
53
-Timothy Hancock and Ichigaku Takigawa
50
+
54 51
 }
55 52
 \seealso{
56 53
 Other Path clustering & classification methods: \code{\link{pathClassifier}},
... ...
@@ -61,4 +58,7 @@ Other Path clustering & classification methods: \code{\link{pathClassifier}},
61 58
   \code{\link{predictPathClassifier}},
62 59
   \code{\link{predictPathCluster}}
63 60
 }
64
-
61
+\author{
62
+Timothy Hancock and Ichigaku Takigawa
63
+}
64
+\concept{Path clustering & classification methods}
... ...
@@ -38,26 +38,23 @@ paths in the same cluster are assigned similar colors.
38 38
  # Calculate Pearson's correlation.
39 39
 	data(ex_microarray)	# Part of ALL dataset.
40 40
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
41
-		weight.method = "cor", use.attr="miriam.uniprot", 
41
+		weight.method = "cor", use.attr="miriam.uniprot",
42 42
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
43 43
 
44 44
 	## Get ranked paths using probabilistic shortest paths.
45
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
45
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
46 46
 					K=20, minPathSize=6)
47 47
 
48 48
 	## Plot paths.
49 49
 	plotPaths(ranked.p, rgraph)
50 50
 
51
-	## Convert paths to binary matrix, build a classifier. 
51
+	## Convert paths to binary matrix, build a classifier.
52 52
 	ybinpaths <- pathsToBinary(ranked.p)
53 53
 	p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)
54
-	
54
+
55 55
  ## Plotting with clusters, on a metabolic graph.
56 56
 	plotPaths(ranked.p, ex_sbml, path.clusters=p.class)
57 57
 
58
-}
59
-\author{
60
-Ahmed Mohamed
61 58
 }
62 59
 \seealso{
63 60
 Other Plotting methods: \code{\link{colorVertexByAttr}},
... ...
@@ -69,4 +66,7 @@ Other Plotting methods: \code{\link{colorVertexByAttr}},
69 66
   \code{\link{plotNetwork}},
70 67
   \code{\link{plotPathClassifier}}
71 68
 }
72
-
69
+\author{
70
+Ahmed Mohamed
71
+}
72
+\concept{Plotting methods}
... ...
@@ -33,23 +33,20 @@ Predicts new paths given a pathClassifier model.
33 33
  # Calculate Pearson's correlation.
34 34
 	data(ex_microarray)	# Part of ALL dataset.
35 35
 	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
36
-		weight.method = "cor", use.attr="miriam.uniprot", 
36
+		weight.method = "cor", use.attr="miriam.uniprot",
37 37
 		y=factor(colnames(ex_microarray)), bootstrap = FALSE)
38 38
 
39 39
 	## Get ranked paths using probabilistic shortest paths.
40
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
40
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
41 41
 					K=20, minPathSize=6)
42
-	
43
-	## Convert paths to binary matrix. 
42
+
43
+	## Convert paths to binary matrix.
44 44
 	ybinpaths <- pathsToBinary(ranked.p)
45 45
 	p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)
46 46
 
47 47
 	## Just an example of how to predict cluster membership
48 48
  pclass.pred <- predictPathCluster(p.class, ybinpaths$paths)
49 49
 
50
-}
51
-\author{
52
-Timothy Hancock and Ichigaku Takigawa
53 50
 }
54 51
 \seealso{
55 52
 Other Path clustering & classification methods: \code{\link{pathClassifier}},
... ...
@@ -60,4 +57,7 @@ Other Path clustering & classification methods: \code{\link{pathClassifier}},
60 57
   \code{\link{plotPathCluster}},
61 58
   \code{\link{predictPathCluster}}
62 59
 }
63
-
60
+\author{
61
+Timothy Hancock and Ichigaku Takigawa
62
+}
63
+\concept{Path clustering & classification methods}
... ...
@@ -34,21 +34,16 @@ Predicts new paths given a pathCluster model.
34 34
 		weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE)
35 35
 
36 36
 	## Get ranked paths using probabilistic shortest paths.
37
- ranked.p <- pathRanker(rgraph, method="prob.shortest.path", 
37
+ ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
38 38
 					K=20, minPathSize=8)
39
-	
40
-	## Convert paths to binary matrix. 
39
+
40
+	## Convert paths to binary matrix.
41 41
 	ybinpaths <- pathsToBinary(ranked.p)
42 42
 	p.cluster <- pathCluster(ybinpaths, M=2)
43 43
 
44 44
 	## just an example of how to predict cluster membership.
45 45
 	pclust.pred <- predictPathCluster(p.cluster,ybinpaths$paths)
46
-	
47
-}
48
-\author{
49
-Ichigaku Takigawa