2aadfaf5 |
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/pathRank.R
|
96e22bfc |
\name{samplePaths}
\alias{samplePaths}
\title{Creates a set of sample path p-values for each length given a weighted network}
\usage{
|
087265c8 |
samplePaths(graph, max.path.length, num.samples = 1000,
num.warmup = 10, verbose = TRUE)
|
96e22bfc |
}
\arguments{
|
a6b3c979 |
\item{graph}{A weighted igraph object. Weights must be in \code{edge.weights} or \code{weight}
edge attributes.}
|
96e22bfc |
|
a6b3c979 |
\item{max.path.length}{The maxmimum path length.}
|
96e22bfc |
|
a6b3c979 |
\item{num.samples}{The numner of paths to sample}
|
96e22bfc |
|
a6b3c979 |
\item{num.warmup}{The number of warm up paths to sample.}
|
96e22bfc |
|
a6b3c979 |
\item{verbose}{Whether to display the progress of the function.}
|
96e22bfc |
}
\value{
|
a6b3c979 |
A matrix where each row is a path length and each column is the number of paths sampled.
|
96e22bfc |
}
\description{
|
087265c8 |
Randomly traverses paths of increasing lengths within a set network to create an
|
a6b3c979 |
empirical pathway distribution for more accurate determination of path significance.
|
96e22bfc |
}
\details{
Can take a bit of time.
}
\examples{
|
2aadfaf5 |
## Prepare a weighted reaction network.
|
96e22bfc |
## Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
## Assign edge weights based on Affymetrix attributes and microarray dataset.
# Calculate Pearson's correlation.
data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
|
087265c8 |
weight.method = "cor", use.attr="miriam.uniprot",
|
96e22bfc |
y=factor(colnames(ex_microarray)), bootstrap = FALSE)
|
087265c8 |
|
96e22bfc |
## Get significantly correlated paths using "p-valvue" method.
|
087265c8 |
## First, establish path score distribution by calling "samplePaths"
|
96e22bfc |
pathsample <- samplePaths(rgraph, max.path.length=10,
num.samples=100, num.warmup=10)
|
087265c8 |
## Get all significant paths with p<0.1
significant.p <- pathRanker(rgraph, method = "pvalue",
|
96e22bfc |
sampledpaths = pathsample ,alpha=0.1)
|
2aadfaf5 |
|
96e22bfc |
}
\seealso{
|
2aadfaf5 |
Other Path ranking methods: \code{\link{extractPathNetwork}},
\code{\link{getPathsAsEIDs}}, \code{\link{pathRanker}}
|
96e22bfc |
}
|
087265c8 |
\author{
Timothy Hancock
|
96e22bfc |
|
087265c8 |
Ahmed Mohamed
}
\concept{Path ranking methods}
|