# stamlab/import.R #------------------------------------------------------------------------------------------------------------------------ library (org.Hs.eg.db) library (org.Mm.eg.db) #------------------------------------------------------------------------------------------------------------------------ printf <- function(...) print(noquote(sprintf(...))) #------------------------------------------------------------------------------------------------------------------------ run = function (dataDir) { dataDir <- file.path(dataDir, "stamlab") rawMatrixList <- readRawMatrices (dataDir) novels <- readNovelStatus (dataDir) matrices <- extractAndNormalizeMatrices (rawMatrixList) tbl.md <- createMetadataTable (matrices, novels) matrices <- renameMatrices (matrices, tbl.md) serializedFile <- "stamlab.RData" save (matrices, tbl.md, file=serializedFile) printf("saved %d matrices to %s", length(matrices), serializedFile) printf("next step: copy %s to <packageRoot>/MotifDb/inst/extdata, rebuild package", serializedFile) } # run #------------------------------------------------------------------------------------------------------------------------ readRawMatrices = function (dataDir) { filename <- file.path(dataDir, "de.novo.pwm") all.lines = scan (filename, what=character(0), sep='\n', quiet=TRUE) title.lines = grep ('UW.Motif', all.lines) title.line.count <<- length (title.lines) max = title.line.count - 1 pwms = list () for (i in 1:max) { start.line = title.lines [i] end.line = title.lines [i+1] - 1 new.pwm = parsePwm (all.lines [start.line:end.line]) pwms = c (pwms, list (new.pwm)) } # for i invisible (pwms) } # readRawMatrices #------------------------------------------------------------------------------------------------------------------------ readNovelStatus = function (dataDir) { filename <- file.path(dataDir, "novels.txt") novels = scan (filename, what=character(0), sep='\n', quiet=TRUE) all.names = sprintf ('UW.Motif.%04d', 1:683) status = rep (FALSE, length (all.names)) true.novels = match (novels, all.names) status [true.novels] = TRUE names (status) = all.names return (status) } # readNovelStatus #------------------------------------------------------------------------------------------------------------------------ extractAndNormalizeMatrices = function (pwm.list) { ms = sapply (pwm.list, function (element) element$matrix) nms = normalizeMatrices (ms) names (nms) = sapply (pwm.list, function (element) element$title) return (nms) } # extractAndNormalizeMatrices #------------------------------------------------------------------------------------------------------------------------ # matrices = sapply (list.pwms, function (pwm) pwm$matrix) # matrix.names = sapply (list.pwms, function (pwm) pwm$title) # names (matrices) = matrix.names convertRawMatricesToStandard = function (tbl.rmat) { matrix.ids = unique (tbl.rmat$id) result = vector ('list', length (matrix.ids)) i = 1 for (matrix.id in matrix.ids) { tbl.sub = subset (tbl.rmat, id == matrix.id) # sanity check this rather unusual representation of a position count matrix base.count = as.data.frame (table (tbl.sub$base)) stopifnot (base.count$Var1 == c ('A', 'C', 'G', 'T')) # conservative length check. actually expect sequence lengths of 6 - 20 bases if (base.count$Freq [1] < 4 && base.count$Freq [1] > 30) { printf ('matrix.id %s has sequence of length %d', matrix.id, base.count$Freq [1]) } stopifnot (all (base.count$Freq == base.count$Freq [1])) nucleotide.counts = tbl.sub$count row.names = c('A', 'C', 'G', 'T'); col.names = 1:(nrow (tbl.sub) / 4) m = matrix (nucleotide.counts, byrow=TRUE, nrow=4, dimnames=list(row.names, col.names)) result [[i]] = m i = i + 1 } # for matrix.id names (result) = matrix.ids return (result) } # convertRawMatricesToStandard #------------------------------------------------------------------------------------------------------------------------ createAnnotationTable = function () { tbl.matrix = read.table ('MATRIX.txt', sep='\t', header=F, as.is=TRUE) colnames (tbl.matrix) = c ('id', 'category', 'mID', 'version', 'binder') tbl.protein = read.table ('MATRIX_PROTEIN.txt', sep='\t', header=F, as.is=TRUE) colnames (tbl.protein) = c ('id', 'proteinID') tbl.species = read.table ('MATRIX_SPECIES.txt', sep='\t', header=F, as.is=TRUE) colnames (tbl.species) = c ('id', 'speciesID') tbl.anno = read.table ('MATRIX_ANNOTATION.txt', sep='\t', header=F, as.is=TRUE, quote="") colnames (tbl.anno) = c ('id', 'attribute', 'value') tbl.family = subset (tbl.anno, attribute=='family') [, -2]; colnames (tbl.family) = c ('id', 'family') tbl.tax = subset (tbl.anno, attribute=='tax_group') [,-2]; colnames (tbl.tax) = c ('id', 'tax') tbl.class = subset (tbl.anno, attribute=='class') [,-2]; colnames (tbl.class) = c ('id', 'class') tbl.comment = subset (tbl.anno, attribute=='comment')[,-2]; colnames (tbl.comment) = c ('id', 'comment') tbl.pubmed = subset (tbl.anno, attribute=='medline')[,-2]; colnames (tbl.pubmed) = c ('id', 'pubmed') tbl.type = subset (tbl.anno, attribute=='type')[,-2]; colnames (tbl.type) = c ('id', 'type') tbl.md = merge (tbl.matrix, tbl.species, all.x=TRUE) tbl.md = merge (tbl.md, tbl.protein, all.x=TRUE) tbl.md = merge (tbl.md, tbl.family, all.x=TRUE) tbl.md = merge (tbl.md, tbl.tax, all.x=TRUE) tbl.md = merge (tbl.md, tbl.class, all.x=TRUE) tbl.md = merge (tbl.md, tbl.pubmed, all.x=TRUE) tbl.md = merge (tbl.md, tbl.type, all.x=TRUE) fullID = paste (tbl.md$mID, tbl.md$version, sep='.') tbl.md = cbind (fullID, tbl.md, stringsAsFactors=FALSE) invisible (tbl.md) } # createAnnotationTable #------------------------------------------------------------------------------------------------------------------------ # assemble these columns: # names=character(), # species-source-gene: stamlab-Hsapiens-UW.Motif.0001 # nativeNames=character(), # UW.Motif.0001 # geneSymbols=character(), # NA # sequenceCounts=integer(), # NA # organisms=character(), # Hsapiens # bindingMolecules=character(), # NA # bindingMoleculeIdTypes=character(), # NA # bindingDomainTypes=character(), # NA # dataSources=character(), # stamlab # experimentTypes=character(), # digital genomic footprinting # pubmedIDs=character(), # 22959076 # tfFamilies=character()) # NA # # from these # createMetadataTable = function (matrices, novels) { options (stringsAsFactors=FALSE) tbl.md = data.frame () matrix.ids = names (matrices) for (matrix.id in matrix.ids) { matrix = matrices [[matrix.id]] taxon.code = 'Hsapiens' geneId.info = NA new.row = list (providerName=matrix.id, providerId=matrix.id, dataSource='stamlab', geneSymbol=NA, geneId=NA, geneIdType=NA, proteinId=NA, proteinIdType=NA, organism='Hsapiens', sequenceCount=NA, bindingSequence=NA_character_, bindingDomain=NA, tfFamily=NA, experimentType='digital genomic footprinting', pubmedID="22955618") tbl.md = rbind (tbl.md, data.frame (new.row, stringsAsFactors=FALSE)) full.name = sprintf ('%s-%s-%s', 'Hsapiens', 'stamlab', matrix.id) rownames (tbl.md) [nrow (tbl.md)] = full.name } # for i novelPFM = rep ('knownMotif', nrow (tbl.md)) novels.ordered = novels [tbl.md$providerName] # make sure we follow the order in the tbl novelPFM [which (novels.ordered)] = 'novelMotif' tbl.md$geneId = novelPFM tbl.md$geneIdType = rep (NA_character_, nrow (tbl.md)) invisible (tbl.md) } # createMetadataTable #------------------------------------------------------------------------------------------------------------------------ renameMatrices = function (matrices, tbl.md) { stopifnot (length (matrices) == nrow (tbl.md)) names (matrices) = rownames (tbl.md) invisible (matrices) } # renameMatrices #------------------------------------------------------------------------------------------------------------------------ convertTaxonCode = function (ncbi.code) { #if (is.na (ncbi.code)) # return (NA_character_) ncbi.code = as.character (ncbi.code) if (ncbi.code %in% c ('-', NA_character_, 'NA')) return ('Vertebrata') tbl = data.frame (code= c('10090', '10116', '10117', '3702', '3888', '4094', '4102', '4151', '4513', '4565', '4577', '4932', '6239', '7227', '7729', '7742', '8022', '8355', '8364', '9031', '9606', '9913', '9986'), name=c ('Mmusculus', 'Rnorvegicus', 'Rrattus', 'Athaliana', 'Psativum', 'Nsylvestris', 'Phybrida', 'Amajus', 'Hvulgare', 'Taestivam', 'Zmays', 'Scerevisiae', 'Celegans', 'Dmelanogaster', 'Hroretzi', 'Vertebrata', 'Omykiss', 'Xlaevis', 'Xtropicalis', 'Gallus', 'Hsapiens', 'Btaurus', 'Ocuniculus'), stringsAsFactors=FALSE) ncbi.code = as.character (ncbi.code) index = which (tbl$code == ncbi.code) if (length (index) == 1) return (tbl$name [index]) else { write (sprintf (" unable to map organism code |%s|", ncbi.code), stderr ()) return (NA_character_) } } # convertTaxonCode #------------------------------------------------------------------------------------------------------------------------ # an empirical and not altogether trustworthy solution to identifying identifier types. guessProteinIdentifierType = function (moleculeName) { if (nchar (moleculeName) == 0) return (NA_character_) if (is.na (moleculeName)) return (NA_character_) first.char = substr (moleculeName, 1, 1) if (first.char == 'Y') return ('SGD') if (first.char %in% c ('P', 'Q', 'O', 'A', 'C')) return ('UNIPROT') if (length (grep ('^EAW', moleculeName)) == 1) return ('NCBI') if (length (grep ('^EAX', moleculeName)) == 1) return ('NCBI') if (length (grep ('^NP_', moleculeName)) == 1) return ('REFSEQ') if (length (grep ('^BAD', moleculeName)) == 1) return ('EMBL') return (NA_character_) } # guessProteinIdentifierType #------------------------------------------------------------------------------------------------------------------------ normalizeMatrices = function (matrices) { mtx.normalized = sapply (matrices, function (mtx) apply (mtx, 2, function (colvector) colvector / sum (colvector))) invisible (mtx.normalized) } # normalizeMatrices #------------------------------------------------------------------------------------------------------------------------ assignGeneId = function (proteinId) { if (!exists ('id.uniprot.human')) { tbl = toTable (org.Hs.egUNIPROT) id.uniprot.human <<- as.character (tbl$gene_id) names (id.uniprot.human) <<- tbl$uniprot_id tbl = toTable (org.Hs.egREFSEQ) tbl = tbl [grep ('^NP_', tbl$accession),] id.refseq.human <<- as.character (tbl$gene_id) names (id.refseq.human) <<- tbl$accession tbl = toTable (org.Mm.egUNIPROT) id.uniprot.mouse <<- as.character (tbl$gene_id) names (id.uniprot.mouse) <<- tbl$uniprot_id tbl = toTable (org.Mm.egREFSEQ) tbl = tbl [grep ('^NP_', tbl$accession),] id.refseq.mouse <<- as.character (tbl$gene_id) names (id.refseq.mouse) <<- tbl$accession } proteinId = strsplit (proteinId, '\\.')[[1]][1] # remove any trailing '.*' if (proteinId %in% names (id.uniprot.human)) return (list (geneId=as.character (id.uniprot.human [proteinId]), type='ENTREZ')) if (proteinId %in% names (id.uniprot.mouse)) return (list (geneId=as.character (id.uniprot.mouse [proteinId]), type='ENTREZ')) if (proteinId %in% names (id.refseq.human)) return (list (geneId=as.character (id.refseq.human [proteinId]), type='ENTREZ')) if (proteinId %in% names (id.refseq.mouse)) return (list (geneId=as.character (id.refseq.mouse [proteinId]), type='ENTREZ')) found.leading.Y = length (grep ("^Y", proteinId, perl=TRUE)) if (found.leading.Y == 1) return (list (geneId=proteinId, type='SGD')) return (list (geneId=NA_character_, type=NA_character_)) } # assignGeneId #------------------------------------------------------------------------------------------------------------------------ parsePwm = function (text) { #printf ('parsing pwm %s', text [1]) lines = strsplit (text, '\t') title = lines [[1]][1] consensus.sequence = lines [[1]][2] line.count = length (lines) #printf ('%s: %s', title, consensus.sequence) result = matrix (nrow=line.count-1, ncol=4, dimnames=list(1:(line.count-1), c ('A','C','G','T'))) row = 1 for (line in lines [2:line.count]) { result [row,] = as.numeric (line) row = row + 1 } # for line result = t (result) return (list (title=title, consensus.sequence=consensus.sequence, matrix=result)) } # parsePwm #------------------------------------------------------------------------------------------------------------------------