# jaspar/test.R # notes: 3 matrices come w/o speciesID, tax = 'vertebrates'. not our problem to fix, at least not yet. # TBP, HNF4A and CEBPA (MA0108.2, MA0114.1, MA0102.2) #------------------------------------------------------------------------------------------------------------------------ library (RUnit) source("import.R") #------------------------------------------------------------------------------------------------------------------------ run.tests = function (dataDir) { dataDir <- file.path(dataDir, "jaspar") x.tbl.rmat <<- test.readRawMatrices (dataDir) x.matrices <<- test.convertRawMatricesToStandard (x.tbl.rmat) x.tbl.anno <<- test.createAnnotationTable (dataDir) test.assignGeneId (dataDir) x.tbl.md <<- test.createMetadataTable (x.tbl.anno, x.matrices) x.matrices.renamed <<- test.renameMatrices (x.matrices, x.tbl.md, x.tbl.anno) x.matrices.normalized <<- test.normalizeMatrices (x.matrices.renamed) } # run.tests #------------------------------------------------------------------------------------------------------------------------ test.readRawMatrices = function (dataDir) { print ('--- test.readMatrices') tbl.rmat = readRawMatrices (dataDir) checkEquals (ncol (tbl.rmat), 4) checkEquals (colnames (tbl.rmat), c ('id', 'base', 'pos', 'count')) checkEquals (class (tbl.rmat$id), 'character') checkEquals (class (tbl.rmat$base), 'character') checkEquals (class (tbl.rmat$pos), 'numeric') checkEquals (class (tbl.rmat$count), 'numeric') checkTrue (nrow (tbl.rmat) > 18000) # about 450 motifs, each represeted by 4 rows (ACGT) and about 10 positions checkTrue (length (unique (tbl.rmat$id)) > 450) invisible (tbl.rmat) } # test.readRawMatrices #------------------------------------------------------------------------------------------------------------------------ test.convertRawMatricesToStandard = function (tbl.rmat) { print ('--- test.convertRawMatricesToStandard') # get just the first two raw matrices first.two.ids = head (unique (tbl.rmat$id), n=2) rows = nrow (subset (tbl.rmat, id %in% first.two.ids)) matrices = convertRawMatricesToStandard (tbl.rmat [1:rows,]) checkEquals (length (matrices), 2) checkEquals (names (matrices), first.two.ids) # it will not always be true, but IS true for the first two matrices, currently "9229" and "9231", that there # are an equal number of nucleotides at each position. checkTrue (all (colSums (matrices [[1]]) == 97)) checkTrue (all (colSums (matrices [[2]]) == 185)) # now run all the matrices through matrices = convertRawMatricesToStandard (tbl.rmat) checkEquals (length (matrices), 459) checkEquals (names (matrices)[1:2], first.two.ids) invisible (matrices) } # test.convertRawMatricesToStandard #------------------------------------------------------------------------------------------------------------------------ test.createAnnotationTable = function (dataDir) { print ('--- test.createAnnotationTable') tbl.anno = createAnnotationTable (dataDir) checkEquals (dim (tbl.anno), c (513, 13)) expected = c ("fullID", "id", "category", "mID", "version", "binder", "speciesID", "proteinID", "family", "tax", "class", "pubmed", "type") checkEquals (colnames (tbl.anno), expected) checkEquals (head (tbl.anno$fullID), c ("MA0001.1", "MA0003.1", "MA0004.1", "MA0005.1", "MA0006.1", "MA0006.1")) invisible (tbl.anno) } # test.createAnnotationTable #------------------------------------------------------------------------------------------------------------------------ test.createMetadataTable = function (tbl.anno, matrices) { print ('--- test.createMetadataTable') # try it first with just two matrices tbl.md = createMetadataTable (tbl.anno, matrices [1:2]) checkEquals (dim (tbl.md), c (2, 15)) checkEquals (colnames (tbl.md), c ("providerName", "providerId", "dataSource", "geneSymbol", "geneId", "geneIdType", "proteinId", "proteinIdType", "organism", "sequenceCount", "bindingSequence", "bindingDomain", "tfFamily", "experimentType", "pubmedID")) checkEquals (tbl.md$proteinId, c ('P29383', 'P05549')) checkEquals (tbl.md$proteinIdType, c ('UNIPROT', 'UNIPROT')) # now use the whole table tbl.md = createMetadataTable (tbl.anno, matrices) checkEquals (dim (tbl.md), c (length (matrices), 15)) # test for proper conversion of speciesID = NA or '-' to Vertebrata checkEquals (which (is.na (tbl.md$organism)), integer (0)) checkEquals (grep ('-', tbl.md$organism), integer (0)) # Mmusculus-JASPAR_CORE-NF-kappaB-MA0061.1 had 'NA' for proteinID, not <NA>. fixed? checkEquals (grep ('NA', tbl.md$proteinId), integer (0)) invisible (tbl.md) } # test.createMetadataTable #------------------------------------------------------------------------------------------------------------------------ test.renameMatrices = function (matrices, tbl.md, tbl.anno) { # try it with just the first two matrices matrix.pair = matrices [1:2] tbl.md = createMetadataTable (tbl.anno, matrix.pair) checkEquals (dim (tbl.md), c (2, 15)) old.matrix.names = names (matrix.pair) matrices.renamed = renameMatrices (matrix.pair, tbl.md) # test: the old name is an id, '9229'. find, in tbl.anno, the fullID, 'MA0001.1'. then make sure 'MA000.1' is # in the new name of that same matrix for (i in 1:length (matrix.pair)) { fullID = subset (x.tbl.anno, id==old.matrix.names [i])$fullID checkTrue (length (grep (fullID, names (matrices.renamed) [i])) == 1) } # for i # now try it for the whole set, with selective focused tests tbl.md = createMetadataTable (tbl.anno, matrices) checkEquals (nrow (tbl.md), length (matrices)) old.matrix.names = names (matrices) matrices.renamed = renameMatrices (matrices, tbl.md) checkEquals (nrow (tbl.md), length (matrices.renamed)) checkEquals (length (grep ('-MA0', names (matrices.renamed))), length (matrices.renamed)) invisible (matrices.renamed) } # test.renameMatrices #------------------------------------------------------------------------------------------------------------------------ test.convertTaxonCode = function () { print ('--- test.convertTaxonCode') checkEquals (convertTaxonCode ('9606'), 'Hsapiens') checkEquals (convertTaxonCode (9606), 'Hsapiens') # anomalous codes, which an examination of the jaspar website reveals as 'vertebrates' checkEquals (convertTaxonCode (NA), 'Vertebrata') checkEquals (convertTaxonCode ('NA'), 'Vertebrata') checkEquals (convertTaxonCode (NA_character_), 'Vertebrata') checkEquals (convertTaxonCode ('-'), 'Vertebrata') } # test.convertTaxonCode #------------------------------------------------------------------------------------------------------------------------ test.guessProteinIdentifierType = function (moleculeName) { print ('--- test.guessProteinIdentifierType') checkEquals (guessProteinIdentifierType ('P29383'), 'UNIPROT') all.types = sapply (x.tbl.anno$proteinID, guessProteinIdentifierType) checkTrue (length (which (is.na (all.types))) < 12) # got most of them. } # test.guessProteinIdentifierType #------------------------------------------------------------------------------------------------------------------------ test.normalizeMatrices = function (matrices) { print ('--- test.normalizeMatrices') colsums = as.integer (sapply (matrices, function (mtx) as.integer (mean (round (colSums (mtx)))))) #checkTrue (all (colsums > 1)) matrices.norm = normalizeMatrices (matrices) colsums = as.integer (sapply (matrices.norm, function (mtx) as.integer (mean (round (colSums (mtx)))))) checkTrue (all (colsums == 1)) invisible (matrices.norm) } # test.normalizeMatrices #------------------------------------------------------------------------------------------------------------------------ test.assignGeneId = function (dataDir, proteinId) { print ('--- test.assignGeneId') uniprot.ids = c ('Q9GRA5', 'P31314', 'AAC18941', 'O49397') refseq.ids = c ('NP_995315.1', 'NP_032840', 'NP_599022') yeast.ids = c ('YKL112W', 'YMR072W', 'YLR131C') checkEquals (assignGeneId ('NP_995315.1'), list (geneId='4782', type='ENTREZ')) checkEquals (assignGeneId ('NP_599022'), list (geneId='6095', type='ENTREZ')) checkEquals (assignGeneId ('P31314'), list (geneId='3195', type='ENTREZ')) checkEquals (assignGeneId ('YKL112W'), list (geneId='YKL112W', type='SGD')) # see how successful this is over all 513 proteinIds tbl.anno = createAnnotationTable (dataDir) mtx.geneId = as.data.frame (t (sapply (tbl.anno$proteinID, assignGeneId))) tbl.types = as.data.frame (table (as.character (mtx.geneId$type), useNA='always'), stringsAsFactors=FALSE) checkEquals (tbl.types$Var1, c ("ENTREZ", "SGD", NA)) checkEquals (tbl.types$Freq, c (142, 177, 194)) } # test.assignGeneId #------------------------------------------------------------------------------------------------------------------------