\name{clusterSamplesByComp_multiple} \alias{clusterSamplesByComp_multiple} \title{Cluster samples from an IcaSet} \usage{ clusterSamplesByComp_multiple(icaSet, params, funClus = c("Mclust", "kmeans", "pam", "pamk", "hclust", "agnes"), filename, clusterOn = c("A", "S"), level = c("genes", "features"), nbClus, metric = "euclidean", method = "ward", ...) } \arguments{ \item{icaSet}{An \code{IcaSet} object} \item{params}{A \code{MineICAParams} object} \item{funClus}{The function to be used for clustering, must be several of \code{c("Mclust","kmeans","pam","pamk","hclust","agnes")}} \item{filename}{A file name to write the results of the clustering in} \item{clusterOn}{Specifies the matrix used to apply clustering, can be several of: \describe{ \item{\code{"A"}:}{the clustering is performed in one dimension, on the vector of sample contributions,} \item{\code{"S"}:}{the clustering is performed on the original data restricted to the contributing individuals.}}} \item{level}{The level of projections to be used when \code{clusterOn="S"}, either \code{"features"} or \code{"genes"}.} \item{nbClus}{The number of clusters to be computed, either a single number or a numeric vector whose length equals the number of components. If missing (only allowed if \code{funClus} is one of \code{c("Mclust","pamk")})} \item{metric}{Metric used in \code{pam} and \code{hclust}, default is \code{"euclidean"}} \item{method}{Method of hierarchical clustering, used in \code{hclust} and \code{agnes}} \item{...}{Additional parameters required by the clustering function \code{funClus}.} } \value{ A list consisting of three elements \describe{\item{clus:}{a data.frame specifying the sample clustering for each component using the different ways of clustering,}\item{resClus:}{the complete output of the clustering function(s),}\item{comparClus:}{the adjusted Rand indices, used to compare the clusterings obtained for a same component.}} } \description{ This function allows to cluster samples according to the results of an ICA decomposition. Several clustering functions and several levels of data for clustering can be performed by the function. } \details{ One clustering is run independently for each component. } \examples{ data(icaSetCarbayo) params <- buildMineICAParams(resPath="carbayo/", selCutoff=3) ## compare kmeans clustering applied to A and data restricted to the contributing genes ## on components 1 to 3 res <- clusterSamplesByComp_multiple(icaSet=icaSetCarbayo[,,1:3], params=params, funClus="kmeans", nbClus=2, clusterOn=c("A","S"), level="features") head(res$clus) } \author{ Anne } \seealso{ \code{Mclust}, \code{adjustedRandIndex}, \code{kmeans}, \code{pam}, \code{pamk}, \code{hclust}, \code{agnes}, \code{cutree} }