Browse code

resolve Windows warnings occuring in the build 'file link 'MineICAParams-class' in package 'MineICA' does not exist and so has been treated as a topic'

Anne Biton authored on 23/04/2020 18:30:14
Showing 1 changed files
... ...
@@ -19,11 +19,11 @@
19 19
 }
20 20
 \arguments{
21 21
   \item{params}{An object of class
22
-  \code{\link[MineICA:MineICAParams-class]{MineICAParams}}
22
+  \code{\link[MineICA:class-MineICAParams]{MineICAParams}}
23 23
   containing the parameters of the analysis.}
24 24
 
25 25
   \item{icaSet}{An object of class
26
-  \code{\link[MineICA:IcaSet-class]{IcaSet}}.}
26
+  \code{\link[MineICA:class-IcaSet]{IcaSet}}.}
27 27
 
28 28
   \item{keepVar}{The variable labels to be considered, i.e
29 29
   a subset of the annotation variables available in
... ...
@@ -68,12 +68,12 @@
68 68
 
69 69
   \item{ontoGOstats}{A string specifying the GO ontology to
70 70
   use. Must be one of 'BP', 'CC', or 'MF', see
71
-  \code{\link[Category:GOHyperGParams-class]{GOHyperGParams}}.
71
+  \code{\link[Category:class-GOHyperGParams]{GOHyperGParams}}.
72 72
   Only used when argument \code{dbGOstats} is 'GO'.}
73 73
 
74 74
   \item{condGOstats}{A logical indicating whether the
75 75
   calculation should conditioned on the GO structure, see
76
-  \code{\link[Category:GOHyperGParams-class]{GOHyperGParams}}.}
76
+  \code{\link[Category:class-GOHyperGParams]{GOHyperGParams}}.}
77 77
 
78 78
   \item{cutoffGOstats}{The p-value threshold used for
79 79
   selecting enriched gene sets, default is
Browse code

Adds MineICA, SomatiCA and lpNet to the repos.

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/MineICA@73179 bc3139a8-67e5-0310-9ffc-ced21a209358

Marc Carlson authored on 05/02/2013 22:15:53
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,218 @@
1
+\name{runAn}
2
+\alias{runAn}
3
+\title{Run analysis of an IcaSet object}
4
+\usage{
5
+  runAn(params, icaSet, keepVar,
6
+    heatmapCutoff = params["selCutoff"],
7
+    funClus = c("Mclust", "kmeans"), nbClus,
8
+    clusterOn = "A", keepComp, keepSamples,
9
+    adjustBy = c("none", "component", "variable"),
10
+    typePlot = c("boxplot", "density"),
11
+    mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl"),
12
+    dbGOstats = c("KEGG", "GO"), ontoGOstats = "BP",
13
+    condGOstats = TRUE,
14
+    cutoffGOstats = params["pvalCutoff"],
15
+    writeGenesByComp = TRUE, writeFeaturesByComp = FALSE,
16
+    selCutoffWrite = 2.5, runVarAnalysis = TRUE,
17
+    onlySign = T, runClustering = FALSE, runGOstats = TRUE,
18
+    plotHist = TRUE, plotHeatmap = TRUE)
19
+}
20
+\arguments{
21
+  \item{params}{An object of class
22
+  \code{\link[MineICA:MineICAParams-class]{MineICAParams}}
23
+  containing the parameters of the analysis.}
24
+
25
+  \item{icaSet}{An object of class
26
+  \code{\link[MineICA:IcaSet-class]{IcaSet}}.}
27
+
28
+  \item{keepVar}{The variable labels to be considered, i.e
29
+  a subset of the annotation variables available in
30
+  (\code{varLabels(icaSet)}).}
31
+
32
+  \item{keepSamples}{The samples to be considered, i.e a
33
+  subset of (\code{sampleNames(icaSet)}).}
34
+
35
+  \item{heatmapCutoff}{The cutoff (applied to the scaled
36
+  feature/gene projections contained in S/SByGene) used to
37
+  select the contributing features/genes.}
38
+
39
+  \item{funClus}{The function to be used to cluster the
40
+  samples, must be one of
41
+  \code{c("Mclust","kmeans","pam","pamk","hclust","agnes")}.
42
+  Default is \code{"Mclust"}.}
43
+
44
+  \item{nbClus}{The number of clusters to be computed when
45
+  applying \code{funClus}. Can be missing (default) if
46
+  \code{funClus="Mclust"} or \code{funClus="pamk"}.}
47
+
48
+  \item{keepComp}{The indices of the components to be
49
+  analyzed, must be included in \code{indComp(icaSet)}. If
50
+  missing, all components are treated.}
51
+
52
+  \item{adjustBy}{The way the p-values of the Wilcoxon and
53
+  Kruskal-Wallis tests should be corrected for multiple
54
+  testing: \code{"none"} if no p-value correction has to be
55
+  done, \code{"component"} if the p-values have to be
56
+  corrected by component, \code{"annotation"} if the
57
+  p-values have to be corrected by variable}
58
+
59
+  \item{typePlot}{The type of plot used to show
60
+  distribution of sample-groups contributions, either
61
+  "density" or "boxplot"}
62
+
63
+  \item{mart}{A mart object used for annotation, see
64
+  function \code{\link[biomaRt]{useMart}}}
65
+
66
+  \item{dbGOstats}{The used database to use ('GO' and/or
67
+  'KEGG'), default is both.}
68
+
69
+  \item{ontoGOstats}{A string specifying the GO ontology to
70
+  use. Must be one of 'BP', 'CC', or 'MF', see
71
+  \code{\link[Category:GOHyperGParams-class]{GOHyperGParams}}.
72
+  Only used when argument \code{dbGOstats} is 'GO'.}
73
+
74
+  \item{condGOstats}{A logical indicating whether the
75
+  calculation should conditioned on the GO structure, see
76
+  \code{\link[Category:GOHyperGParams-class]{GOHyperGParams}}.}
77
+
78
+  \item{cutoffGOstats}{The p-value threshold used for
79
+  selecting enriched gene sets, default is
80
+  params["pvalCutoff"]}
81
+
82
+  \item{writeGenesByComp}{If TRUE (default) the gene
83
+  projections (\code{SByGene(icaSet)}) are written in an
84
+  html file and annotated using \code{biomaRt} for each
85
+  component.}
86
+
87
+  \item{writeFeaturesByComp}{If TRUE (default) the feature
88
+  projections (\code{S(icaSet)}) are written in an html
89
+  file and annotated using \code{biomaRt} for each
90
+  component.}
91
+
92
+  \item{runGOstats}{If TRUE the enrichment analysis of the
93
+  contributing genes is run for each component using
94
+  package \code{GOstats} (default is TRUE).}
95
+
96
+  \item{plotHist}{If TRUE the position of the sample
97
+  annotations within the histograms of the sample
98
+  contributions are plotted.}
99
+
100
+  \item{plotHeatmap}{If TRUE the heatmap of the
101
+  contributing features/genes are plotted for each
102
+  component.}
103
+
104
+  \item{runClustering}{If TRUE the potential associations
105
+  between a clustering of the samples (performed according
106
+  to the components), and the sample annotations, are
107
+  tested using chi-squared tests.}
108
+
109
+  \item{runVarAnalysis}{If TRUE the potential associations
110
+  between sample contributions (contained in
111
+  \code{A(icaSet)}) are tested using Wilcoxon or
112
+  Kruskal-Wallis tests.}
113
+
114
+  \item{onlySign}{If TRUE (default), only the significant
115
+  results are plotted in functions \code{qualVarAnalysis,
116
+  quantVarAnalysis, clusVarAnalysis}, else all plots are
117
+  done.}
118
+
119
+  \item{selCutoffWrite}{The cutoff applied to the absolute
120
+  feature/gene projection values to select the
121
+  features/genes that will be annotated using package
122
+  \code{biomaRt}, default is 2.5.}
123
+
124
+  \item{clusterOn}{Specifies the matrix used to apply
125
+  clustering if \code{runClustering=TRUE}: \describe{
126
+  \item{\code{"A"}:}{the clustering is performed in one
127
+  dimension, on the vector of sample contributions,}
128
+  \item{"S":}{the clustering is performed on the original
129
+  data restricted to the contributing individuals,}
130
+  \item{"AS":}{the clustering is performed on the matrix
131
+  formed by the product of the column of A and the row of
132
+  S.}}}
133
+}
134
+\value{
135
+  NULL
136
+}
137
+\description{
138
+  This function runs the analysis of an ICA decomposition
139
+  contained in an IcaSet object, according to the
140
+  parameters entered by the user and contained in a
141
+  MineICAParams.
142
+}
143
+\details{
144
+  This function calls functions of the MineICA package
145
+  depending on the arguments: \describe{
146
+  \item{\code{\link{writeProjByComp}} (if
147
+  \code{writeGenesByComp=TRUE} or
148
+  \code{writeFeaturesByComp})}{which writes in html files
149
+  the description of the features/genes contributing to
150
+  each component, and their projection values on all the
151
+  components.} \item{\code{\link{plot_heatmapsOnSel}} (if
152
+  \code{plotHeatmap=TRUE})}{which plots heatmaps of the
153
+  data restricted to the contributing features/genes of
154
+  each component.} \item{\code{\link{plotPosAnnotInComp}}
155
+  (if \code{plotHist=TRUE})}{which plots, within the
156
+  histogram of the sample contribution values of every
157
+  component, the position of groups of samples formed
158
+  according to the sample annotations contained in
159
+  \code{pData(icaSet)}.}
160
+  \item{\code{\link{clusterSamplesByComp}} (if
161
+  \code{runClustering=TRUE})}{which clusters the samples
162
+  according to each component.}
163
+  \item{\code{\link{clusVarAnalysis}} (if
164
+  \code{runClustering=TRUE})}{which computes the
165
+  chi-squared test of association between a given
166
+  clustering of the samples and each annotation level
167
+  contained in \code{pData(icaSet)}, and summarizes the
168
+  results in an HTML file. } \item{\code{\link{runEnrich}}
169
+  (if \code{runGOstats=TRUE})}{which perforns enrichment
170
+  analysis of the contributing genes of the components
171
+  using package \link{GOstats}.}
172
+  \item{\code{\link{qualVarAnalysis}} and
173
+  \code{\link{quantVarAnalysis}} (if
174
+  \code{varAnalysis=TRUE})}{which tests if the groups of
175
+  samples formed according to sample annotations contained
176
+  in \code{pData(icaSet)} are differently distributed on
177
+  the components, in terms of contribution value. } }
178
+
179
+  Several directories containing the results of each
180
+  analysis are created by the function: \describe{
181
+  \item{ProjByComp:}{contains the annotations of the
182
+  features or genes, one file per component;}
183
+  \item{varAnalysisOnA:}{contains two directories: 'qual/'
184
+  and 'quant/' which respectively contain the results of
185
+  the association between components qualitative and
186
+  quantitative variables;} \item{Heatmaps:}{contains the
187
+  heatmaps (one pdf file per component) of contributing
188
+  genes by component;} \item{varOnSampleHist:}{contains
189
+  athe histograms of sample contributions superimposed with
190
+  the histograms of the samples grouped by variable;}
191
+  \item{cluster2var:}{contains the association between a
192
+  clustering of the samples performed on the mixing matrix
193
+  \code{A} and the variables.} }
194
+}
195
+\examples{
196
+\dontrun{
197
+
198
+## load an example of IcaSet
199
+data(icaSetCarbayo)
200
+## make sure the 'mart' attribute is correctly defined
201
+mart(icaSetCarbayo) <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")
202
+
203
+## creation of an object of class MineICAParams
204
+## here we use a low threshold because 'icaSetCarbayo' is already
205
+# restricted to the contributing features/genes
206
+params <- buildMineICAParams(resPath="~/resMineICACarbayotestRunAn/", selCutoff=2, pvalCutoff=0.05)
207
+require(hgu133a.db)
208
+
209
+runAn(params=params, icaSet=icaSetCarbayo)
210
+}
211
+}
212
+\author{
213
+  Anne Biton
214
+}
215
+\seealso{
216
+  \code{\link{writeProjByComp}},
217
+}
218
+