... | ... |
@@ -19,11 +19,11 @@ |
19 | 19 |
} |
20 | 20 |
\arguments{ |
21 | 21 |
\item{params}{An object of class |
22 |
- \code{\link[MineICA:MineICAParams-class]{MineICAParams}} |
|
22 |
+ \code{\link[MineICA:class-MineICAParams]{MineICAParams}} |
|
23 | 23 |
containing the parameters of the analysis.} |
24 | 24 |
|
25 | 25 |
\item{icaSet}{An object of class |
26 |
- \code{\link[MineICA:IcaSet-class]{IcaSet}}.} |
|
26 |
+ \code{\link[MineICA:class-IcaSet]{IcaSet}}.} |
|
27 | 27 |
|
28 | 28 |
\item{keepVar}{The variable labels to be considered, i.e |
29 | 29 |
a subset of the annotation variables available in |
... | ... |
@@ -68,12 +68,12 @@ |
68 | 68 |
|
69 | 69 |
\item{ontoGOstats}{A string specifying the GO ontology to |
70 | 70 |
use. Must be one of 'BP', 'CC', or 'MF', see |
71 |
- \code{\link[Category:GOHyperGParams-class]{GOHyperGParams}}. |
|
71 |
+ \code{\link[Category:class-GOHyperGParams]{GOHyperGParams}}. |
|
72 | 72 |
Only used when argument \code{dbGOstats} is 'GO'.} |
73 | 73 |
|
74 | 74 |
\item{condGOstats}{A logical indicating whether the |
75 | 75 |
calculation should conditioned on the GO structure, see |
76 |
- \code{\link[Category:GOHyperGParams-class]{GOHyperGParams}}.} |
|
76 |
+ \code{\link[Category:class-GOHyperGParams]{GOHyperGParams}}.} |
|
77 | 77 |
|
78 | 78 |
\item{cutoffGOstats}{The p-value threshold used for |
79 | 79 |
selecting enriched gene sets, default is |
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/MineICA@73179 bc3139a8-67e5-0310-9ffc-ced21a209358
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,218 @@ |
1 |
+\name{runAn} |
|
2 |
+\alias{runAn} |
|
3 |
+\title{Run analysis of an IcaSet object} |
|
4 |
+\usage{ |
|
5 |
+ runAn(params, icaSet, keepVar, |
|
6 |
+ heatmapCutoff = params["selCutoff"], |
|
7 |
+ funClus = c("Mclust", "kmeans"), nbClus, |
|
8 |
+ clusterOn = "A", keepComp, keepSamples, |
|
9 |
+ adjustBy = c("none", "component", "variable"), |
|
10 |
+ typePlot = c("boxplot", "density"), |
|
11 |
+ mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl"), |
|
12 |
+ dbGOstats = c("KEGG", "GO"), ontoGOstats = "BP", |
|
13 |
+ condGOstats = TRUE, |
|
14 |
+ cutoffGOstats = params["pvalCutoff"], |
|
15 |
+ writeGenesByComp = TRUE, writeFeaturesByComp = FALSE, |
|
16 |
+ selCutoffWrite = 2.5, runVarAnalysis = TRUE, |
|
17 |
+ onlySign = T, runClustering = FALSE, runGOstats = TRUE, |
|
18 |
+ plotHist = TRUE, plotHeatmap = TRUE) |
|
19 |
+} |
|
20 |
+\arguments{ |
|
21 |
+ \item{params}{An object of class |
|
22 |
+ \code{\link[MineICA:MineICAParams-class]{MineICAParams}} |
|
23 |
+ containing the parameters of the analysis.} |
|
24 |
+ |
|
25 |
+ \item{icaSet}{An object of class |
|
26 |
+ \code{\link[MineICA:IcaSet-class]{IcaSet}}.} |
|
27 |
+ |
|
28 |
+ \item{keepVar}{The variable labels to be considered, i.e |
|
29 |
+ a subset of the annotation variables available in |
|
30 |
+ (\code{varLabels(icaSet)}).} |
|
31 |
+ |
|
32 |
+ \item{keepSamples}{The samples to be considered, i.e a |
|
33 |
+ subset of (\code{sampleNames(icaSet)}).} |
|
34 |
+ |
|
35 |
+ \item{heatmapCutoff}{The cutoff (applied to the scaled |
|
36 |
+ feature/gene projections contained in S/SByGene) used to |
|
37 |
+ select the contributing features/genes.} |
|
38 |
+ |
|
39 |
+ \item{funClus}{The function to be used to cluster the |
|
40 |
+ samples, must be one of |
|
41 |
+ \code{c("Mclust","kmeans","pam","pamk","hclust","agnes")}. |
|
42 |
+ Default is \code{"Mclust"}.} |
|
43 |
+ |
|
44 |
+ \item{nbClus}{The number of clusters to be computed when |
|
45 |
+ applying \code{funClus}. Can be missing (default) if |
|
46 |
+ \code{funClus="Mclust"} or \code{funClus="pamk"}.} |
|
47 |
+ |
|
48 |
+ \item{keepComp}{The indices of the components to be |
|
49 |
+ analyzed, must be included in \code{indComp(icaSet)}. If |
|
50 |
+ missing, all components are treated.} |
|
51 |
+ |
|
52 |
+ \item{adjustBy}{The way the p-values of the Wilcoxon and |
|
53 |
+ Kruskal-Wallis tests should be corrected for multiple |
|
54 |
+ testing: \code{"none"} if no p-value correction has to be |
|
55 |
+ done, \code{"component"} if the p-values have to be |
|
56 |
+ corrected by component, \code{"annotation"} if the |
|
57 |
+ p-values have to be corrected by variable} |
|
58 |
+ |
|
59 |
+ \item{typePlot}{The type of plot used to show |
|
60 |
+ distribution of sample-groups contributions, either |
|
61 |
+ "density" or "boxplot"} |
|
62 |
+ |
|
63 |
+ \item{mart}{A mart object used for annotation, see |
|
64 |
+ function \code{\link[biomaRt]{useMart}}} |
|
65 |
+ |
|
66 |
+ \item{dbGOstats}{The used database to use ('GO' and/or |
|
67 |
+ 'KEGG'), default is both.} |
|
68 |
+ |
|
69 |
+ \item{ontoGOstats}{A string specifying the GO ontology to |
|
70 |
+ use. Must be one of 'BP', 'CC', or 'MF', see |
|
71 |
+ \code{\link[Category:GOHyperGParams-class]{GOHyperGParams}}. |
|
72 |
+ Only used when argument \code{dbGOstats} is 'GO'.} |
|
73 |
+ |
|
74 |
+ \item{condGOstats}{A logical indicating whether the |
|
75 |
+ calculation should conditioned on the GO structure, see |
|
76 |
+ \code{\link[Category:GOHyperGParams-class]{GOHyperGParams}}.} |
|
77 |
+ |
|
78 |
+ \item{cutoffGOstats}{The p-value threshold used for |
|
79 |
+ selecting enriched gene sets, default is |
|
80 |
+ params["pvalCutoff"]} |
|
81 |
+ |
|
82 |
+ \item{writeGenesByComp}{If TRUE (default) the gene |
|
83 |
+ projections (\code{SByGene(icaSet)}) are written in an |
|
84 |
+ html file and annotated using \code{biomaRt} for each |
|
85 |
+ component.} |
|
86 |
+ |
|
87 |
+ \item{writeFeaturesByComp}{If TRUE (default) the feature |
|
88 |
+ projections (\code{S(icaSet)}) are written in an html |
|
89 |
+ file and annotated using \code{biomaRt} for each |
|
90 |
+ component.} |
|
91 |
+ |
|
92 |
+ \item{runGOstats}{If TRUE the enrichment analysis of the |
|
93 |
+ contributing genes is run for each component using |
|
94 |
+ package \code{GOstats} (default is TRUE).} |
|
95 |
+ |
|
96 |
+ \item{plotHist}{If TRUE the position of the sample |
|
97 |
+ annotations within the histograms of the sample |
|
98 |
+ contributions are plotted.} |
|
99 |
+ |
|
100 |
+ \item{plotHeatmap}{If TRUE the heatmap of the |
|
101 |
+ contributing features/genes are plotted for each |
|
102 |
+ component.} |
|
103 |
+ |
|
104 |
+ \item{runClustering}{If TRUE the potential associations |
|
105 |
+ between a clustering of the samples (performed according |
|
106 |
+ to the components), and the sample annotations, are |
|
107 |
+ tested using chi-squared tests.} |
|
108 |
+ |
|
109 |
+ \item{runVarAnalysis}{If TRUE the potential associations |
|
110 |
+ between sample contributions (contained in |
|
111 |
+ \code{A(icaSet)}) are tested using Wilcoxon or |
|
112 |
+ Kruskal-Wallis tests.} |
|
113 |
+ |
|
114 |
+ \item{onlySign}{If TRUE (default), only the significant |
|
115 |
+ results are plotted in functions \code{qualVarAnalysis, |
|
116 |
+ quantVarAnalysis, clusVarAnalysis}, else all plots are |
|
117 |
+ done.} |
|
118 |
+ |
|
119 |
+ \item{selCutoffWrite}{The cutoff applied to the absolute |
|
120 |
+ feature/gene projection values to select the |
|
121 |
+ features/genes that will be annotated using package |
|
122 |
+ \code{biomaRt}, default is 2.5.} |
|
123 |
+ |
|
124 |
+ \item{clusterOn}{Specifies the matrix used to apply |
|
125 |
+ clustering if \code{runClustering=TRUE}: \describe{ |
|
126 |
+ \item{\code{"A"}:}{the clustering is performed in one |
|
127 |
+ dimension, on the vector of sample contributions,} |
|
128 |
+ \item{"S":}{the clustering is performed on the original |
|
129 |
+ data restricted to the contributing individuals,} |
|
130 |
+ \item{"AS":}{the clustering is performed on the matrix |
|
131 |
+ formed by the product of the column of A and the row of |
|
132 |
+ S.}}} |
|
133 |
+} |
|
134 |
+\value{ |
|
135 |
+ NULL |
|
136 |
+} |
|
137 |
+\description{ |
|
138 |
+ This function runs the analysis of an ICA decomposition |
|
139 |
+ contained in an IcaSet object, according to the |
|
140 |
+ parameters entered by the user and contained in a |
|
141 |
+ MineICAParams. |
|
142 |
+} |
|
143 |
+\details{ |
|
144 |
+ This function calls functions of the MineICA package |
|
145 |
+ depending on the arguments: \describe{ |
|
146 |
+ \item{\code{\link{writeProjByComp}} (if |
|
147 |
+ \code{writeGenesByComp=TRUE} or |
|
148 |
+ \code{writeFeaturesByComp})}{which writes in html files |
|
149 |
+ the description of the features/genes contributing to |
|
150 |
+ each component, and their projection values on all the |
|
151 |
+ components.} \item{\code{\link{plot_heatmapsOnSel}} (if |
|
152 |
+ \code{plotHeatmap=TRUE})}{which plots heatmaps of the |
|
153 |
+ data restricted to the contributing features/genes of |
|
154 |
+ each component.} \item{\code{\link{plotPosAnnotInComp}} |
|
155 |
+ (if \code{plotHist=TRUE})}{which plots, within the |
|
156 |
+ histogram of the sample contribution values of every |
|
157 |
+ component, the position of groups of samples formed |
|
158 |
+ according to the sample annotations contained in |
|
159 |
+ \code{pData(icaSet)}.} |
|
160 |
+ \item{\code{\link{clusterSamplesByComp}} (if |
|
161 |
+ \code{runClustering=TRUE})}{which clusters the samples |
|
162 |
+ according to each component.} |
|
163 |
+ \item{\code{\link{clusVarAnalysis}} (if |
|
164 |
+ \code{runClustering=TRUE})}{which computes the |
|
165 |
+ chi-squared test of association between a given |
|
166 |
+ clustering of the samples and each annotation level |
|
167 |
+ contained in \code{pData(icaSet)}, and summarizes the |
|
168 |
+ results in an HTML file. } \item{\code{\link{runEnrich}} |
|
169 |
+ (if \code{runGOstats=TRUE})}{which perforns enrichment |
|
170 |
+ analysis of the contributing genes of the components |
|
171 |
+ using package \link{GOstats}.} |
|
172 |
+ \item{\code{\link{qualVarAnalysis}} and |
|
173 |
+ \code{\link{quantVarAnalysis}} (if |
|
174 |
+ \code{varAnalysis=TRUE})}{which tests if the groups of |
|
175 |
+ samples formed according to sample annotations contained |
|
176 |
+ in \code{pData(icaSet)} are differently distributed on |
|
177 |
+ the components, in terms of contribution value. } } |
|
178 |
+ |
|
179 |
+ Several directories containing the results of each |
|
180 |
+ analysis are created by the function: \describe{ |
|
181 |
+ \item{ProjByComp:}{contains the annotations of the |
|
182 |
+ features or genes, one file per component;} |
|
183 |
+ \item{varAnalysisOnA:}{contains two directories: 'qual/' |
|
184 |
+ and 'quant/' which respectively contain the results of |
|
185 |
+ the association between components qualitative and |
|
186 |
+ quantitative variables;} \item{Heatmaps:}{contains the |
|
187 |
+ heatmaps (one pdf file per component) of contributing |
|
188 |
+ genes by component;} \item{varOnSampleHist:}{contains |
|
189 |
+ athe histograms of sample contributions superimposed with |
|
190 |
+ the histograms of the samples grouped by variable;} |
|
191 |
+ \item{cluster2var:}{contains the association between a |
|
192 |
+ clustering of the samples performed on the mixing matrix |
|
193 |
+ \code{A} and the variables.} } |
|
194 |
+} |
|
195 |
+\examples{ |
|
196 |
+\dontrun{ |
|
197 |
+ |
|
198 |
+## load an example of IcaSet |
|
199 |
+data(icaSetCarbayo) |
|
200 |
+## make sure the 'mart' attribute is correctly defined |
|
201 |
+mart(icaSetCarbayo) <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl") |
|
202 |
+ |
|
203 |
+## creation of an object of class MineICAParams |
|
204 |
+## here we use a low threshold because 'icaSetCarbayo' is already |
|
205 |
+# restricted to the contributing features/genes |
|
206 |
+params <- buildMineICAParams(resPath="~/resMineICACarbayotestRunAn/", selCutoff=2, pvalCutoff=0.05) |
|
207 |
+require(hgu133a.db) |
|
208 |
+ |
|
209 |
+runAn(params=params, icaSet=icaSetCarbayo) |
|
210 |
+} |
|
211 |
+} |
|
212 |
+\author{ |
|
213 |
+ Anne Biton |
|
214 |
+} |
|
215 |
+\seealso{ |
|
216 |
+ \code{\link{writeProjByComp}}, |
|
217 |
+} |
|
218 |
+ |