git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/MineICA@73179 bc3139a8-67e5-0310-9ffc-ced21a209358
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,86 @@ |
1 |
+\name{clusterSamplesByComp} |
|
2 |
+\alias{clusterSamplesByComp} |
|
3 |
+\title{Cluster samples from an IcaSet} |
|
4 |
+\usage{ |
|
5 |
+ clusterSamplesByComp(icaSet, params, |
|
6 |
+ funClus = c("Mclust", "kmeans", "pam", "pamk", "hclust", "agnes"), |
|
7 |
+ filename, clusterOn = c("A", "S"), |
|
8 |
+ level = c("genes", "features"), nbClus, |
|
9 |
+ metric = "euclidean", method = "ward", ...) |
|
10 |
+} |
|
11 |
+\arguments{ |
|
12 |
+ \item{icaSet}{An \code{IcaSet} object} |
|
13 |
+ |
|
14 |
+ \item{params}{A \code{MineICAParams} object} |
|
15 |
+ |
|
16 |
+ \item{funClus}{The function to be used for clustering, |
|
17 |
+ must be one of |
|
18 |
+ \code{c("Mclust","kmeans","pam","pamk","hclust","agnes")}} |
|
19 |
+ |
|
20 |
+ \item{filename}{A file name to write the results of the |
|
21 |
+ clustering in} |
|
22 |
+ |
|
23 |
+ \item{clusterOn}{Specifies the matrix used to apply |
|
24 |
+ clustering: \describe{ \item{\code{"A"}:}{the clustering |
|
25 |
+ is performed in one dimension, on the vector of sample |
|
26 |
+ contributions,} \item{"S":}{the clustering is performed |
|
27 |
+ on the original data restricted to the contributing |
|
28 |
+ individuals.}}} |
|
29 |
+ |
|
30 |
+ \item{level}{The level of projections to be used when |
|
31 |
+ \code{clusterOn="S"}, either \code{"features"} or |
|
32 |
+ \code{"genes"}.} |
|
33 |
+ |
|
34 |
+ \item{nbClus}{The number of clusters to be computed, |
|
35 |
+ either a single number or a numeric vector whose length |
|
36 |
+ equals the number of components. If missing (only allowed |
|
37 |
+ if \code{funClus} is one of \code{c("Mclust","pamk")})} |
|
38 |
+ |
|
39 |
+ \item{metric}{Metric used in \code{pam} and |
|
40 |
+ \code{hclust}, default is \code{"euclidean"}} |
|
41 |
+ |
|
42 |
+ \item{method}{Method of hierarchical clustering, used in |
|
43 |
+ \code{hclust} and \code{agnes}} |
|
44 |
+ |
|
45 |
+ \item{...}{Additional parameters required by the |
|
46 |
+ clustering function \code{funClus}.res <- |
|
47 |
+ clusterSamplesByComp(icaSet=icaSetCarbayo, params=params, |
|
48 |
+ funClus="kmeans",} |
|
49 |
+} |
|
50 |
+\value{ |
|
51 |
+ A list consisting of three elements |
|
52 |
+ \describe{\item{clus:}{a list specifying the sample |
|
53 |
+ clustering for each component,}\item{resClus:}{the |
|
54 |
+ complete output of the clustering |
|
55 |
+ function,}\item{funClus:}{the function used to perform |
|
56 |
+ the clustering.}}. When \code{clusterOn="S"}, if some |
|
57 |
+ components were not used because no contributing elements |
|
58 |
+ is selected using the cutoff, the icaSet with the |
|
59 |
+ corresponding component deleted is also returned. |
|
60 |
+} |
|
61 |
+\description{ |
|
62 |
+ This function allows to cluster samples according to the |
|
63 |
+ results of an ICA decomposition. One clustering is run |
|
64 |
+ independently for each component. |
|
65 |
+} |
|
66 |
+\examples{ |
|
67 |
+data(icaSetCarbayo) |
|
68 |
+params <- buildMineICAParams(resPath="carbayo/", selCutoff=4) |
|
69 |
+ |
|
70 |
+## cluster samples according to their contributions |
|
71 |
+# using Mclust without a number of clusters |
|
72 |
+res <- clusterSamplesByComp(icaSet=icaSetCarbayo, params=params, funClus="Mclust", |
|
73 |
+ clusterOn="A", filename="clusA") |
|
74 |
+ |
|
75 |
+# using kmeans |
|
76 |
+res <- clusterSamplesByComp(icaSet=icaSetCarbayo, params=params, funClus="kmeans", |
|
77 |
+ clusterOn="A", nbClus=2, filename="clusA") |
|
78 |
+} |
|
79 |
+\author{ |
|
80 |
+ Anne Biton |
|
81 |
+} |
|
82 |
+\seealso{ |
|
83 |
+ \code{Mclust}, \code{kmeans}, \code{pam}, \code{pamk}, |
|
84 |
+ \code{hclust}, \code{agnes}, \code{cutree} |
|
85 |
+} |
|
86 |
+ |