Browse code

geom_jitter was used to superimpose points on boxplots (when 'addPoints = TRUE' in function qualVarAnalysis)

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/MineICA@79893 bc3139a8-67e5-0310-9ffc-ced21a209358

Anne Biton authored on 28/08/2013 18:26:23
Showing 6 changed files

... ...
@@ -5,12 +5,13 @@ Version: 1.1.0
5 5
 Date: 2012-03-16
6 6
 Author: Anne Biton
7 7
 Maintainer: Anne Biton <anne.biton@gmail.com>
8
-Description: The goal of MineICA is to make easier the interpretation of the
9
-    interpretation of a decomposition obtained by Independent Component
10
-    Analysis on transcriptomic data. It helps the biological interpretation of
11
-    the components by studying their association with variables (e.g sample
12
-    annotations) and gene sets, and enables the comparison of components from
13
-    different datasets using correlation-based graph.
8
+Description: The goal of MineICA is to perform Independent Component Analysis
9
+    (ICA) on multiple transcriptome datasets, integrating additional data (e.g
10
+    molecular, clinical and pathological). This Integrative ICA helps the
11
+    biological interpretation of the components by studying their association
12
+    with variables (e.g sample annotations) and gene sets, and enables the
13
+    comparison of components from different datasets using correlation-based
14
+    graph.
14 15
 License: GPL-2
15 16
 LazyLoad: yes
16 17
 BiocViews: Bioinformatics, Visualizations, MultipleComparisons
... ...
@@ -648,9 +648,9 @@ plotDens2classInComp_plotOnly <- function (annot,
648 648
                     else if (typePlot == "boxplot") {
649 649
                         g <- g + geom_boxplot(aes(x=interest, y = comp, fill = interest),
650 650
                                               position = "identity", data = annot,
651
-                                              colour = "black") + scale_x_discrete(colAnnot) + scale_y_continuous(if (is.null(ylab)) "Sample contributions" else ylab)
651
+                                              colour = "black", outlier.shape = if (addPoints) NA else 16) + scale_x_discrete(colAnnot) + scale_y_continuous(if (is.null(ylab)) "Sample contributions" else ylab)                        
652 652
                         if (addPoints)
653
-                            g <- g + geom_point(aes(x=interest, y = comp, fill = interest),data = annot,color="#1A1A1A99")   #  + coord_flip()+
653
+                            g <- g + geom_jitter(aes(x=interest, y = comp, fill = interest), data = annot, color="#1A1A1A99", size=1.9, position=position_jitter(width=.2)) #+ theme_bw()#  + coord_flip()+position="jitter", 
654 654
                     }
655 655
 
656 656
                 }
... ...
@@ -662,8 +662,11 @@ plotDens2classInComp_plotOnly <- function (annot,
662 662
 			data_ref$y <- rep(x = -0.02,times = nrow(data_ref))
663 663
 			g <- g + geom_point(aes(x=comp,y=y),data = data_ref,  fill = "green", shape = 24, size = 1.7)
664 664
                     }
665
-                    else {
666
-			data_ref$x <- rep(x = 0.1,times = nrow(data_ref))
665
+                    else {                        
666
+                        if (!is.null(geneExpr))
667
+                            data_ref$x <- rep(x = 0.1,times = nrow(data_ref))
668
+                        else
669
+                            data_ref$x <- rep(x = 0.5,times = nrow(data_ref))
667 670
 
668 671
 			g <- g + geom_point(aes(y=comp,x=x),data = data_ref,  fill = "green", shape = 23, size = 3)
669 672
                         
... ...
@@ -315,7 +315,7 @@ runAn <- function(params,
315 315
             qualVar <- qualVar[-indDel]
316 316
         
317 317
         if (length(annot2col(params))==0)
318
-            colours <- annot2Color(pData(icaSet)[,qualVar])
318
+            colours <- annot2Color(pData(icaSet)[,qualVar,drop=FALSE])
319 319
         else
320 320
             colours <- annot2col(params)
321 321
 
... ...
@@ -48,7 +48,7 @@
48 48
   \code{\link{annotReciprocal}}.}
49 49
 
50 50
   \item{tkplot}{If TRUE, performs interactive plot with
51
-  function \code{tkplot}, else uses \code{plot.igraph}}
51
+  function \code{tkplot}, else uses \code{plot.igraph}.}
52 52
 
53 53
   \item{\dots}{Additional parameters as required by
54 54
   \code{tkplot}.}
... ...
@@ -177,8 +177,9 @@ icaSettoy2 <- buildIcaSet(params=params, A=data.frame(resJade2$A), S=data.frame(
177 177
                           dat=dat2, alreadyAnnot=TRUE)$icaSet
178 178
 
179 179
 ## compare IcaSet objects
180
+## use tkplot=TRUE to get an interactive graph
180 181
 rescomp <- runCompareIcaSets(icaSets=list(icaSettoy1, icaSettoy2), labAn=c("toy1","toy2"),
181
-                             type.corr="pearson", level="genes")
182
+                             type.corr="pearson", level="genes", tkplot=FALSE)
182 183
 
183 184
 
184 185
 \dontrun{
... ...
@@ -42,13 +42,13 @@
42 42
 
43 43
 \maketitle
44 44
 \begin{abstract}
45
-  \Rpackage{MineICA} supplies a framework for the storage and the study of a decomposition resulting from the application of independent component analysis (ICA) to transcriptomic data.
45
+  \Rpackage{MineICA} supplies a framework for the storage and the study of a decomposition resulting from the application of independent component analysis (ICA) to transcriptomic data. It allows to integrate additional data associated with the samples (other molecular data, as well as clinical and pathological data) and data associated with the genes.
46 46
   It defines a new class \Rpackage{IcaSet} extending the class \Rpackage{eSet} of the package \Rpackage{Biobase}, which allows to store the inputs (genomic dataset and sample information) and outputs (mixing and source matrix) of ICA.
47 47
   %\Rpackage{MineICA} helps to interpret the ICA outputs and to compare ICA decompositions obtained on different data through correlation graphs. 
48 48
   \Rpackage{MineICA} helps the biological interpretation of the components by studying their association with variables (e.g sample annotations) and biological processes, and enables the comparison of components from different datasets using correlation-based graph.
49 49
   %the mixing matrix $A$, containing the sample contributions on the components. \Rpackage{MineICA} also helps the interpretation of the source matrix $S$, containing the contributions of the features (e.g genes) to component, by annotating the contributing features and study their association with known biological processes.
50 50
   In practice, by creating interactive summarization of the results and comprehensive plots, \Rpackage{MineICA} makes much easier the
51
-  interpretation of the numerous data resulting from the application of ICA to transcriptomic data. 
51
+  interpretation of the numerous data resulting from the application of ICA to transcriptomic data.   
52 52
 \end{abstract}
53 53
 
54 54
 \section{Introduction}