\name{clusterSamplesByComp} \alias{clusterSamplesByComp} \title{Cluster samples from an IcaSet} \usage{ clusterSamplesByComp(icaSet, params, funClus = c("Mclust", "kmeans", "pam", "pamk", "hclust", "agnes"), filename, clusterOn = c("A", "S"), level = c("genes", "features"), nbClus, metric = "euclidean", method = "ward", ...) } \arguments{ \item{icaSet}{An \code{IcaSet} object} \item{params}{A \code{MineICAParams} object} \item{funClus}{The function to be used for clustering, must be one of \code{c("Mclust","kmeans","pam","pamk","hclust","agnes")}} \item{filename}{A file name to write the results of the clustering in} \item{clusterOn}{Specifies the matrix used to apply clustering: \describe{ \item{\code{"A"}:}{the clustering is performed in one dimension, on the vector of sample contributions,} \item{"S":}{the clustering is performed on the original data restricted to the contributing individuals.}}} \item{level}{The level of projections to be used when \code{clusterOn="S"}, either \code{"features"} or \code{"genes"}.} \item{nbClus}{The number of clusters to be computed, either a single number or a numeric vector whose length equals the number of components. If missing (only allowed if \code{funClus} is one of \code{c("Mclust","pamk")})} \item{metric}{Metric used in \code{pam} and \code{hclust}, default is \code{"euclidean"}} \item{method}{Method of hierarchical clustering, used in \code{hclust} and \code{agnes}} \item{...}{Additional parameters required by the clustering function \code{funClus}.res <- clusterSamplesByComp(icaSet=icaSetCarbayo, params=params, funClus="kmeans",} } \value{ A list consisting of three elements \describe{\item{clus:}{a list specifying the sample clustering for each component,}\item{resClus:}{the complete output of the clustering function,}\item{funClus:}{the function used to perform the clustering.}}. When \code{clusterOn="S"}, if some components were not used because no contributing elements is selected using the cutoff, the icaSet with the corresponding component deleted is also returned. } \description{ This function allows to cluster samples according to the results of an ICA decomposition. One clustering is run independently for each component. } \examples{ data(icaSetCarbayo) params <- buildMineICAParams(resPath="carbayo/", selCutoff=4) ## cluster samples according to their contributions # using Mclust without a number of clusters res <- clusterSamplesByComp(icaSet=icaSetCarbayo, params=params, funClus="Mclust", clusterOn="A", filename="clusA") # using kmeans res <- clusterSamplesByComp(icaSet=icaSetCarbayo, params=params, funClus="kmeans", clusterOn="A", nbClus=2, filename="clusA") } \author{ Anne Biton } \seealso{ \code{Mclust}, \code{kmeans}, \code{pam}, \code{pamk}, \code{hclust}, \code{agnes}, \code{cutree} }