14753e6b |
\name{clusterSamplesByComp_multiple}
\alias{clusterSamplesByComp_multiple}
\title{Cluster samples from an IcaSet}
\usage{
clusterSamplesByComp_multiple(icaSet, params,
funClus = c("Mclust", "kmeans", "pam", "pamk", "hclust", "agnes"),
filename, clusterOn = c("A", "S"),
level = c("genes", "features"), nbClus,
metric = "euclidean", method = "ward", ...)
}
\arguments{
\item{icaSet}{An \code{IcaSet} object}
\item{params}{A \code{MineICAParams} object}
\item{funClus}{The function to be used for clustering,
must be several of
\code{c("Mclust","kmeans","pam","pamk","hclust","agnes")}}
\item{filename}{A file name to write the results of the
clustering in}
\item{clusterOn}{Specifies the matrix used to apply
clustering, can be several of: \describe{
\item{\code{"A"}:}{the clustering is performed in one
dimension, on the vector of sample contributions,}
\item{\code{"S"}:}{the clustering is performed on the
original data restricted to the contributing
individuals.}}}
\item{level}{The level of projections to be used when
\code{clusterOn="S"}, either \code{"features"} or
\code{"genes"}.}
\item{nbClus}{The number of clusters to be computed,
either a single number or a numeric vector whose length
equals the number of components. If missing (only allowed
if \code{funClus} is one of \code{c("Mclust","pamk")})}
\item{metric}{Metric used in \code{pam} and
\code{hclust}, default is \code{"euclidean"}}
\item{method}{Method of hierarchical clustering, used in
\code{hclust} and \code{agnes}}
\item{...}{Additional parameters required by the
clustering function \code{funClus}.}
}
\value{
A list consisting of three elements
\describe{\item{clus:}{a data.frame specifying the sample
clustering for each component using the different ways of
clustering,}\item{resClus:}{the complete output of the
clustering function(s),}\item{comparClus:}{the adjusted
Rand indices, used to compare the clusterings obtained
for a same component.}}
}
\description{
This function allows to cluster samples according to the
results of an ICA decomposition. Several clustering
functions and several levels of data for clustering can
be performed by the function.
}
\details{
One clustering is run independently for each component.
}
\examples{
data(icaSetCarbayo)
params <- buildMineICAParams(resPath="carbayo/", selCutoff=3)
## compare kmeans clustering applied to A and data restricted to the contributing genes
## on components 1 to 3
res <- clusterSamplesByComp_multiple(icaSet=icaSetCarbayo[,,1:3], params=params, funClus="kmeans",
nbClus=2, clusterOn=c("A","S"), level="features")
head(res$clus)
}
\author{
Anne
}
\seealso{
\code{Mclust}, \code{adjustedRandIndex}, \code{kmeans},
\code{pam}, \code{pamk}, \code{hclust}, \code{agnes},
\code{cutree}
}
|