% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{eval_cluster_performance} \alias{eval_cluster_performance} \title{Evaluate clustering performance} \usage{ eval_cluster_performance(obj, C_true) } \arguments{ \item{obj}{Output of Melissa inference object.} \item{C_true}{True cluster assignemnts.} } \value{ The `melissa` object, with an additional slot named `clustering`, containing the ARI and clustering assignment error performance. } \description{ \code{eval_cluster_performance} is a wrapper function for computing clustering performance in terms of ARI and clustering assignment error. } \examples{ ## Extract synthetic data dt <- melissa_synth_dt # Partition to train and test set dt <- partition_dataset(dt) # Create basis object from BPRMeth package basis_obj <- BPRMeth::create_rbf_object(M = 3) # Run Melissa melissa_obj <- melissa(X = dt$met, K = 2, basis = basis_obj, vb_max_iter = 10, vb_init_nstart = 1, is_parallel = FALSE, is_verbose = FALSE) # Compute cluster performance melissa_obj <- eval_cluster_performance(melissa_obj, dt$opts$C_true) cat("ARI: ", melissa_obj$clustering$ari) } \seealso{ \code{\link{create_melissa_data_obj}}, \code{\link{melissa}}, \code{\link{filter_regions}}, \code{\link{eval_imputation_performance}}, \code{\link{eval_cluster_performance}} } \author{ C.A.Kapourani \email{C.A.Kapourani@ed.ac.uk} }