Name Mode Size
R 040000
data-raw 040000
inst 040000
man 040000
vignettes 040000
.Rbuildignore 100755 0 kb
.gitignore 100755 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100755 34 kb
NAMESPACE 100755 1 kb
README.Rmd 100755 3 kb 100755 3 kb
<!-- is generated from README.Rmd. Please edit that file --> # MBQN Package Mean/Median-balanced quantile normalization for preprocessing omics data ## Description This package contains a modified quantile normalization (QN) for preprocessing and analysis of omics or other matrix-like organized data with intensity values biased by global, columnwise distortions of intensity mean and scale. The modification balances the mean intensity of features (rows) which are rank invariant (RI) or nearly rank invariant (NRI) across samples (columns) before quantile normalization \[1\]. This helps to prevent an over-correction of the intensity profiles of RI and NRI features by classical QN and therefore supports the reduction of systematics in downstream analyses. Additional package functions help to detect, identify, and visualize potential RI or NRI features in the data and demonstrate the use of the modification. ## Installation To install this package, you need R version \>= 3.6. For installation from Bioconductor run in R: ``` r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("MBQN") ``` For installation from Github run in R: ``` r install.packages("devtools") devtools::install_github("arianeschad/MBQN") ``` or ``` r install.packages("githubinstall") githubinstall::githubinstall("MBQN") ``` ## Dependencies The core of the MBQN package uses `normalizeQuantiles()` from the package `limma`\[2\], available at <>, for computation of the quantile normalization. Optionally, `normalize.quantiles()` from the package `preprocessCore`\[3\], available at <>, can be used. <br/> To install these packages in R run: <br/> ``` r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install(pkgs = c("preprocessCore","limma", "SummarizedExperiment")) ``` ## Usage Further information about the package is provided at the wiki <br/> <> ## References \[1\] Brombacher, E., Schad, A., Kreutz, C. (2020). Tail-Robust Quantile Normalization. Proteomics. <br/> \[2\] Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47. <br/> \[3\] Ben Bolstad (2018). preprocessCore: A collection of pre-processing functions. R package version 1.44.0. <>.