... | ... |
@@ -72,8 +72,6 @@ |
72 | 72 |
#' package = "ISAnalytics")} |
73 | 73 |
#' * \code{vignette("aggregate_function_usage", |
74 | 74 |
#' package = "ISAnalytics")} |
75 |
-#' * \code{vignette("report_system", |
|
76 |
-#' package = "ISAnalytics")} |
|
77 | 75 |
#' * \code{vignette("sharing_analyses", |
78 | 76 |
#' package = "ISAnalytics")} |
79 | 77 |
#' |
... | ... |
@@ -748,10 +748,10 @@ sample_statistics <- function(x, metadata, |
748 | 748 |
#' ## Genomic annotation file |
749 | 749 |
#' This file is a data base, or more simply a .tsv file to import, with |
750 | 750 |
#' genes annotation for the specific genome. The annotations for the |
751 |
-#' human genome (hg19) and murine genome (mm9 and mm10) are already |
|
751 |
+#' human genome (hg19) and murine genome (mm9) are already |
|
752 | 752 |
#' included in this package: to use one of them just |
753 |
-#' set the argument `genomic_annotation_file` to either `"hg19"`, |
|
754 |
-#' `"mm9"` or `"mm10"`. |
|
753 |
+#' set the argument `genomic_annotation_file` to either `"hg19"` or |
|
754 |
+#' `"mm9"`. |
|
755 | 755 |
#' If for any reason the user is performing an analysis on another genome, |
756 | 756 |
#' this file needs to be changed respecting the USCS Genome Browser |
757 | 757 |
#' format, meaning the input file headers should include: |
... | ... |
@@ -803,7 +803,7 @@ CIS_grubbs <- function(x, |
803 | 803 |
# Check other parameters |
804 | 804 |
stopifnot(is.character(genomic_annotation_file)) |
805 | 805 |
genomic_annotation_file <- genomic_annotation_file[1] |
806 |
- if (genomic_annotation_file %in% c("hg19", "mm9", "mm10")) { |
|
806 |
+ if (genomic_annotation_file %in% c("hg19", "mm9")) { |
|
807 | 807 |
gen_file <- paste0("refGenes_", genomic_annotation_file) |
808 | 808 |
utils::data(list = gen_file, envir = rlang::current_env()) |
809 | 809 |
refgenes <- rlang::eval_tidy(rlang::sym(gen_file)) |
... | ... |
@@ -64,9 +64,6 @@ |
64 | 64 |
#' @describeIn refGenes_hg19 Data frame for murine mm9 genome |
65 | 65 |
#' @usage data("refGenes_mm9") |
66 | 66 |
"refGenes_mm9" |
67 |
-#' @describeIn refGenes_hg19 Data frame for murine mm10 genome |
|
68 |
-#' @usage data("refGenes_mm10") |
|
69 |
-"refGenes_mm10" |
|
70 | 67 |
|
71 | 68 |
#' Data frames for proto-oncogenes (human and mouse) |
72 | 69 |
#' amd tumor-suppressor genes from UniProt. |
... | ... |
@@ -39,8 +39,6 @@ navbar: |
39 | 39 |
href: articles/collision_removal.html |
40 | 40 |
- text: How to use import functions |
41 | 41 |
href: articles/how_to_import_functions.html |
42 |
- - text: ISAnalytics report system |
|
43 |
- href: articles/report_system.html |
|
44 | 42 |
- text: Sharing analyses with ISAnalytics |
45 | 43 |
href: articles/sharing_analyses.html |
46 | 44 |
release-v: |
... | ... |
@@ -131,6 +129,5 @@ reference: |
131 | 129 |
- proto_oncogenes |
132 | 130 |
- refGenes_hg19 |
133 | 131 |
- refGenes_mm9 |
134 |
- - refGenes_mm10 |
|
135 | 132 |
- tumor_suppressors |
136 | 133 |
|
... | ... |
@@ -46,10 +46,10 @@ this paper: |
46 | 46 |
|
47 | 47 |
This file is a data base, or more simply a .tsv file to import, with |
48 | 48 |
genes annotation for the specific genome. The annotations for the |
49 |
-human genome (hg19) and murine genome (mm9 and mm10) are already |
|
49 |
+human genome (hg19) and murine genome (mm9) are already |
|
50 | 50 |
included in this package: to use one of them just |
51 |
-set the argument \code{genomic_annotation_file} to either \code{"hg19"}, |
|
52 |
-\code{"mm9"} or \code{"mm10"}. |
|
51 |
+set the argument \code{genomic_annotation_file} to either \code{"hg19"} or |
|
52 |
+\code{"mm9"}. |
|
53 | 53 |
If for any reason the user is performing an analysis on another genome, |
54 | 54 |
this file needs to be changed respecting the USCS Genome Browser |
55 | 55 |
format, meaning the input file headers should include: |
... | ... |
@@ -81,35 +81,35 @@ For more details on how this files were generated use the help |
81 | 81 |
|
82 | 82 |
The default values are included in this package and |
83 | 83 |
it can be accessed by doing:\if{html}{\out{<div class="r">}}\preformatted{head(known_clinical_oncogenes()) |
84 |
-}\if{html}{\out{</div>}}\preformatted{## # A tibble: 5 × 2 |
|
85 |
-## GeneName KnownClonalExpansion |
|
86 |
-## <chr> <lgl> |
|
87 |
-## 1 MECOM TRUE |
|
88 |
-## 2 CCND2 TRUE |
|
89 |
-## 3 TAL1 TRUE |
|
90 |
-## 4 LMO2 TRUE |
|
91 |
-## 5 HMGA2 TRUE |
|
92 |
-} |
|
84 |
+#> # A tibble: 5 × 2 |
|
85 |
+#> GeneName KnownClonalExpansion |
|
86 |
+#> <chr> <lgl> |
|
87 |
+#> 1 MECOM TRUE |
|
88 |
+#> 2 CCND2 TRUE |
|
89 |
+#> 3 TAL1 TRUE |
|
90 |
+#> 4 LMO2 TRUE |
|
91 |
+#> 5 HMGA2 TRUE |
|
92 |
+}\if{html}{\out{</div>}} |
|
93 | 93 |
|
94 | 94 |
If the user wants to change this parameter the input data frame must |
95 | 95 |
preserve the column structure. The same goes for the \code{suspicious_genes} |
96 | 96 |
parameter (DOIReference column is optional):\if{html}{\out{<div class="r">}}\preformatted{head(clinical_relevant_suspicious_genes()) |
97 |
-}\if{html}{\out{</div>}}\preformatted{## # A tibble: 6 × 3 |
|
98 |
-## GeneName ClinicalRelevance DOIReference |
|
99 |
-## <chr> <lgl> <chr> |
|
100 |
-## 1 DNMT3A TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
101 |
-## 2 TET2 TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
102 |
-## 3 ASXL1 TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
103 |
-## 4 JAK2 TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
104 |
-## 5 CBL TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
105 |
-## 6 TP53 TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
106 |
-} |
|
97 |
+#> # A tibble: 6 × 3 |
|
98 |
+#> GeneName ClinicalRelevance DOIReference |
|
99 |
+#> <chr> <lgl> <chr> |
|
100 |
+#> 1 DNMT3A TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
101 |
+#> 2 TET2 TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
102 |
+#> 3 ASXL1 TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
103 |
+#> 4 JAK2 TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
104 |
+#> 5 CBL TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
105 |
+#> 6 TP53 TRUE https://doi.org/10.1182/blood-2018-01-829937 |
|
106 |
+}\if{html}{\out{</div>}} |
|
107 | 107 |
} |
108 | 108 |
} |
109 | 109 |
\examples{ |
110 | 110 |
data("integration_matrices", package = "ISAnalytics") |
111 | 111 |
cis_plot <- CIS_volcano_plot(integration_matrices, |
112 |
- title_prefix = "PJ01" |
|
112 |
+ title_prefix = "PJ01" |
|
113 | 113 |
) |
114 | 114 |
cis_plot |
115 | 115 |
} |
... | ... |
@@ -33,18 +33,18 @@ Plot of the estimated HSC population size for each patient. |
33 | 33 |
data("integration_matrices", package = "ISAnalytics") |
34 | 34 |
data("association_file", package = "ISAnalytics") |
35 | 35 |
aggreg <- aggregate_values_by_key( |
36 |
- x = integration_matrices, |
|
37 |
- association_file = association_file, |
|
38 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
36 |
+ x = integration_matrices, |
|
37 |
+ association_file = association_file, |
|
38 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
39 | 39 |
) |
40 | 40 |
aggreg_meta <- aggregate_metadata( |
41 |
- association_file = association_file |
|
41 |
+ association_file = association_file |
|
42 | 42 |
) |
43 | 43 |
estimate <- HSC_population_size_estimate( |
44 |
- x = aggreg, |
|
45 |
- metadata = aggreg_meta, |
|
46 |
- stable_timepoints = c(90, 180, 360), |
|
47 |
- cell_type = "Other" |
|
44 |
+ x = aggreg, |
|
45 |
+ metadata = aggreg_meta, |
|
46 |
+ stable_timepoints = c(90, 180, 360), |
|
47 |
+ cell_type = "Other" |
|
48 | 48 |
) |
49 | 49 |
p <- HSC_population_plot(estimate, "PJ01") |
50 | 50 |
p |
... | ... |
@@ -85,16 +85,16 @@ distinct non-zero time points. |
85 | 85 |
data("integration_matrices", package = "ISAnalytics") |
86 | 86 |
data("association_file", package = "ISAnalytics") |
87 | 87 |
aggreg <- aggregate_values_by_key( |
88 |
- x = integration_matrices, |
|
89 |
- association_file = association_file, |
|
90 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
88 |
+ x = integration_matrices, |
|
89 |
+ association_file = association_file, |
|
90 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
91 | 91 |
) |
92 | 92 |
aggreg_meta <- aggregate_metadata(association_file = association_file) |
93 | 93 |
estimate <- HSC_population_size_estimate( |
94 |
- x = aggreg, |
|
95 |
- metadata = aggreg_meta, |
|
96 |
- stable_timepoints = c(90, 180, 360), |
|
97 |
- cell_type = "Other" |
|
94 |
+ x = aggreg, |
|
95 |
+ metadata = aggreg_meta, |
|
96 |
+ stable_timepoints = c(90, 180, 360), |
|
97 |
+ cell_type = "Other" |
|
98 | 98 |
) |
99 | 99 |
} |
100 | 100 |
\concept{Population estimates} |
... | ... |
@@ -105,8 +105,6 @@ and Annotation of Vector Integration Sites} |
105 | 105 |
package = "ISAnalytics")} |
106 | 106 |
\item \code{vignette("aggregate_function_usage", |
107 | 107 |
package = "ISAnalytics")} |
108 |
-\item \code{vignette("report_system", |
|
109 |
-package = "ISAnalytics")} |
|
110 | 108 |
\item \code{vignette("sharing_analyses", |
111 | 109 |
package = "ISAnalytics")} |
112 | 110 |
} |
... | ... |
@@ -40,7 +40,7 @@ summary of info for each group. For more details on how to use this function: |
40 | 40 |
\examples{ |
41 | 41 |
data("association_file", package = "ISAnalytics") |
42 | 42 |
aggreg_meta <- aggregate_metadata( |
43 |
- association_file = association_file |
|
43 |
+ association_file = association_file |
|
44 | 44 |
) |
45 | 45 |
head(aggreg_meta) |
46 | 46 |
} |
... | ... |
@@ -92,9 +92,9 @@ will be added to the final data frame. |
92 | 92 |
data("integration_matrices", package = "ISAnalytics") |
93 | 93 |
data("association_file", package = "ISAnalytics") |
94 | 94 |
aggreg <- aggregate_values_by_key( |
95 |
- x = integration_matrices, |
|
96 |
- association_file = association_file, |
|
97 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
95 |
+ x = integration_matrices, |
|
96 |
+ association_file = association_file, |
|
97 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
98 | 98 |
) |
99 | 99 |
head(aggreg) |
100 | 100 |
} |
... | ... |
@@ -73,16 +73,16 @@ otherwise an error message is thrown. |
73 | 73 |
data("integration_matrices", package = "ISAnalytics") |
74 | 74 |
data("association_file", package = "ISAnalytics") |
75 | 75 |
aggreg <- aggregate_values_by_key( |
76 |
- x = integration_matrices, |
|
77 |
- association_file = association_file, |
|
78 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
76 |
+ x = integration_matrices, |
|
77 |
+ association_file = association_file, |
|
78 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
79 | 79 |
) |
80 | 80 |
by_subj <- aggreg \%>\% |
81 |
- dplyr::group_by(.data$SubjectID) \%>\% |
|
82 |
- dplyr::group_split() |
|
81 |
+ dplyr::group_by(.data$SubjectID) \%>\% |
|
82 |
+ dplyr::group_split() |
|
83 | 83 |
circos_genomic_density(by_subj, |
84 |
- track_colors = c("navyblue", "gold"), |
|
85 |
- grDevice = "default", track.height = 0.1 |
|
84 |
+ track_colors = c("navyblue", "gold"), |
|
85 |
+ grDevice = "default", track.height = 0.1 |
|
86 | 86 |
) |
87 | 87 |
} |
88 | 88 |
} |
... | ... |
@@ -47,16 +47,16 @@ of reference. |
47 | 47 |
fs_path <- system.file("extdata", "fs.zip", package = "ISAnalytics") |
48 | 48 |
fs <- unzip_file_system(fs_path, "fs") |
49 | 49 |
af_path <- system.file("extdata", "asso.file.tsv.gz", |
50 |
- package = "ISAnalytics" |
|
50 |
+ package = "ISAnalytics" |
|
51 | 51 |
) |
52 | 52 |
af <- import_association_file(af_path, |
53 |
- root = fs, |
|
54 |
- import_iss = FALSE, |
|
55 |
- report_path = NULL |
|
53 |
+ root = fs, |
|
54 |
+ import_iss = FALSE, |
|
55 |
+ report_path = NULL |
|
56 | 56 |
) |
57 | 57 |
matrices <- import_parallel_Vispa2Matrices(af, |
58 |
- c("seqCount", "fragmentEstimate"), |
|
59 |
- mode = "AUTO", report_path = NULL, multi_quant_matrix = FALSE |
|
58 |
+ c("seqCount", "fragmentEstimate"), |
|
59 |
+ mode = "AUTO", report_path = NULL, multi_quant_matrix = FALSE |
|
60 | 60 |
) |
61 | 61 |
multi_quant <- comparison_matrix(matrices) |
62 | 62 |
head(multi_quant) |
... | ... |
@@ -49,9 +49,9 @@ column) will be produced. |
49 | 49 |
\examples{ |
50 | 50 |
data("integration_matrices", package = "ISAnalytics") |
51 | 51 |
abund <- compute_abundance( |
52 |
- x = integration_matrices, |
|
53 |
- columns = "fragmentEstimate", |
|
54 |
- key = "CompleteAmplificationID" |
|
52 |
+ x = integration_matrices, |
|
53 |
+ columns = "fragmentEstimate", |
|
54 |
+ key = "CompleteAmplificationID" |
|
55 | 55 |
) |
56 | 56 |
head(abund) |
57 | 57 |
} |
... | ... |
@@ -83,7 +83,7 @@ all quantification matrices. |
83 | 83 |
\examples{ |
84 | 84 |
data("integration_matrices", package = "ISAnalytics") |
85 | 85 |
rec <- compute_near_integrations( |
86 |
- x = integration_matrices, map_as_file = FALSE |
|
86 |
+ x = integration_matrices, map_as_file = FALSE |
|
87 | 87 |
) |
88 | 88 |
head(rec) |
89 | 89 |
} |
... | ... |
@@ -77,9 +77,9 @@ the chosen column to avoid undesired results. |
77 | 77 |
data("integration_matrices", package = "ISAnalytics") |
78 | 78 |
data("association_file", package = "ISAnalytics") |
79 | 79 |
aggreg <- aggregate_values_by_key( |
80 |
- x = integration_matrices, |
|
81 |
- association_file = association_file, |
|
82 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
80 |
+ x = integration_matrices, |
|
81 |
+ association_file = association_file, |
|
82 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
83 | 83 |
) |
84 | 84 |
cumulative_count <- cumulative_count_union(aggreg) |
85 | 85 |
cumulative_count |
... | ... |
@@ -43,9 +43,9 @@ time point "t+1". |
43 | 43 |
data("integration_matrices", package = "ISAnalytics") |
44 | 44 |
data("association_file", package = "ISAnalytics") |
45 | 45 |
aggreg <- aggregate_values_by_key( |
46 |
- x = rlang::current_env()$integration_matrices, |
|
47 |
- association_file = rlang::current_env()$association_file, |
|
48 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
46 |
+ x = rlang::current_env()$integration_matrices, |
|
47 |
+ association_file = rlang::current_env()$association_file, |
|
48 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
49 | 49 |
) |
50 | 50 |
cumulated_is <- cumulative_is(aggreg) |
51 | 51 |
cumulated_is |
... | ... |
@@ -45,16 +45,16 @@ file has been aligned with the file system |
45 | 45 |
fs_path <- system.file("extdata", "fs.zip", package = "ISAnalytics") |
46 | 46 |
fs <- unzip_file_system(fs_path, "fs") |
47 | 47 |
af_path <- system.file("extdata", "asso.file.tsv.gz", |
48 |
- package = "ISAnalytics" |
|
48 |
+ package = "ISAnalytics" |
|
49 | 49 |
) |
50 | 50 |
af <- import_association_file(af_path, |
51 |
- root = fs, |
|
52 |
- import_iss = FALSE, |
|
53 |
- report_path = NULL |
|
51 |
+ root = fs, |
|
52 |
+ import_iss = FALSE, |
|
53 |
+ report_path = NULL |
|
54 | 54 |
) |
55 | 55 |
stats_files <- import_Vispa2_stats(af, |
56 |
- join_with_af = FALSE, |
|
57 |
- report_path = NULL |
|
56 |
+ join_with_af = FALSE, |
|
57 |
+ report_path = NULL |
|
58 | 58 |
) |
59 | 59 |
head(stats_files) |
60 | 60 |
} |
... | ... |
@@ -69,16 +69,16 @@ For more details see the "How to use import functions" vignette: |
69 | 69 |
fs_path <- system.file("extdata", "fs.zip", package = "ISAnalytics") |
70 | 70 |
fs <- unzip_file_system(fs_path, "fs") |
71 | 71 |
af_path <- system.file("extdata", "asso.file.tsv.gz", |
72 |
- package = "ISAnalytics" |
|
72 |
+ package = "ISAnalytics" |
|
73 | 73 |
) |
74 | 74 |
af <- import_association_file(af_path, |
75 |
- root = fs, |
|
76 |
- import_iss = FALSE, |
|
77 |
- report_path = NULL |
|
75 |
+ root = fs, |
|
76 |
+ import_iss = FALSE, |
|
77 |
+ report_path = NULL |
|
78 | 78 |
) |
79 | 79 |
matrices <- import_parallel_Vispa2Matrices(af, |
80 |
- c("seqCount", "fragmentEstimate"), |
|
81 |
- mode = "AUTO", report_path = NULL |
|
80 |
+ c("seqCount", "fragmentEstimate"), |
|
81 |
+ mode = "AUTO", report_path = NULL |
|
82 | 82 |
) |
83 | 83 |
head(matrices) |
84 | 84 |
} |
... | ... |
@@ -39,11 +39,11 @@ For more details see the "How to use import functions" vignette: |
39 | 39 |
fs_path <- system.file("extdata", "fs.zip", package = "ISAnalytics") |
40 | 40 |
fs <- unzip_file_system(fs_path, "fs") |
41 | 41 |
matrix_path <- fs::path( |
42 |
- fs, |
|
43 |
- "PJ01", |
|
44 |
- "quantification", |
|
45 |
- "POOL01-1", |
|
46 |
- "PJ01_POOL01-1_seqCount_matrix.no0.annotated.tsv.gz" |
|
42 |
+ fs, |
|
43 |
+ "PJ01", |
|
44 |
+ "quantification", |
|
45 |
+ "POOL01-1", |
|
46 |
+ "PJ01_POOL01-1_seqCount_matrix.no0.annotated.tsv.gz" |
|
47 | 47 |
) |
48 | 48 |
matrix <- import_single_Vispa2Matrix(matrix_path) |
49 | 49 |
head(matrix) |
... | ... |
@@ -72,21 +72,21 @@ as transparent in the strata. |
72 | 72 |
data("integration_matrices", package = "ISAnalytics") |
73 | 73 |
data("association_file", package = "ISAnalytics") |
74 | 74 |
aggreg <- aggregate_values_by_key( |
75 |
- x = integration_matrices, |
|
76 |
- association_file = association_file, |
|
77 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
75 |
+ x = integration_matrices, |
|
76 |
+ association_file = association_file, |
|
77 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
78 | 78 |
) |
79 | 79 |
abund <- compute_abundance(x = aggreg) |
80 | 80 |
alluvial_plots <- integration_alluvial_plot(abund, |
81 |
- alluvia_plot_y_threshold = 0.5 |
|
81 |
+ alluvia_plot_y_threshold = 0.5 |
|
82 | 82 |
) |
83 | 83 |
ex_plot <- alluvial_plots[[1]]$plot + |
84 |
- ggplot2::labs( |
|
85 |
- title = "IS distribution over time", |
|
86 |
- subtitle = "Patient 1, MNC BM", |
|
87 |
- y = "Abundance (\%)", |
|
88 |
- x = "Time point (days after GT)" |
|
89 |
- ) |
|
84 |
+ ggplot2::labs( |
|
85 |
+ title = "IS distribution over time", |
|
86 |
+ subtitle = "Patient 1, MNC BM", |
|
87 |
+ y = "Abundance (\%)", |
|
88 |
+ x = "Time point (days after GT)" |
|
89 |
+ ) |
|
90 | 90 |
print(ex_plot) |
91 | 91 |
} |
92 | 92 |
\seealso{ |
... | ... |
@@ -81,9 +81,9 @@ function \code{\link{sharing_heatmap}} or via the function |
81 | 81 |
data("integration_matrices", package = "ISAnalytics") |
82 | 82 |
data("association_file", package = "ISAnalytics") |
83 | 83 |
aggreg <- aggregate_values_by_key( |
84 |
- x = integration_matrices, |
|
85 |
- association_file = association_file, |
|
86 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
84 |
+ x = integration_matrices, |
|
85 |
+ association_file = association_file, |
|
86 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
87 | 87 |
) |
88 | 88 |
sharing <- is_sharing(aggreg) |
89 | 89 |
sharing |
... | ... |
@@ -34,8 +34,8 @@ Filter out outliers in metadata. |
34 | 34 |
\examples{ |
35 | 35 |
data("association_file", package = "ISAnalytics") |
36 | 36 |
filtered_af <- outlier_filter(association_file, |
37 |
- key = "BARCODE_MUX", |
|
38 |
- report_path = NULL |
|
37 |
+ key = "BARCODE_MUX", |
|
38 |
+ report_path = NULL |
|
39 | 39 |
) |
40 | 40 |
head(filtered_af) |
41 | 41 |
} |
... | ... |
@@ -35,17 +35,17 @@ For more details on how to use collision removal functionality: |
35 | 35 |
data("integration_matrices", package = "ISAnalytics") |
36 | 36 |
data("association_file", package = "ISAnalytics") |
37 | 37 |
separated <- separate_quant_matrices( |
38 |
- integration_matrices |
|
38 |
+ integration_matrices |
|
39 | 39 |
) |
40 | 40 |
no_coll <- remove_collisions( |
41 |
- x = separated$seqCount, |
|
42 |
- association_file = association_file, |
|
43 |
- quant_cols = c(seqCount = "Value"), |
|
44 |
- report_path = NULL |
|
41 |
+ x = separated$seqCount, |
|
42 |
+ association_file = association_file, |
|
43 |
+ quant_cols = c(seqCount = "Value"), |
|
44 |
+ report_path = NULL |
|
45 | 45 |
) |
46 | 46 |
realigned <- realign_after_collisions( |
47 |
- sc_matrix = no_coll, |
|
48 |
- other_matrices = list(fragmentEstimate = separated$fragmentEstimate) |
|
47 |
+ sc_matrix = no_coll, |
|
48 |
+ other_matrices = list(fragmentEstimate = separated$fragmentEstimate) |
|
49 | 49 |
) |
50 | 50 |
realigned |
51 | 51 |
} |
... | ... |
@@ -4,21 +4,16 @@ |
4 | 4 |
\name{refGenes_hg19} |
5 | 5 |
\alias{refGenes_hg19} |
6 | 6 |
\alias{refGenes_mm9} |
7 |
-\alias{refGenes_mm10} |
|
8 | 7 |
\title{Gene annotation files for hg19, mm9 and mm10.} |
9 | 8 |
\format{ |
10 | 9 |
An object of class \code{tbl_df} (inherits from \code{tbl}, \code{data.frame}) with 27275 rows and 12 columns. |
11 | 10 |
|
12 | 11 |
An object of class \code{tbl_df} (inherits from \code{tbl}, \code{data.frame}) with 24487 rows and 12 columns. |
13 |
- |
|
14 |
-An object of class \code{tbl_df} (inherits from \code{tbl}, \code{data.frame}) with 24627 rows and 11 columns. |
|
15 | 12 |
} |
16 | 13 |
\usage{ |
17 | 14 |
data("refGenes_hg19") |
18 | 15 |
|
19 | 16 |
data("refGenes_mm9") |
20 |
- |
|
21 |
-data("refGenes_mm10") |
|
22 | 17 |
} |
23 | 18 |
\description{ |
24 | 19 |
This file was obtained following this steps: |
... | ... |
@@ -46,8 +41,6 @@ ORDER BY kg.chrom ASC , kg.txStart ASC |
46 | 41 |
\section{Functions}{ |
47 | 42 |
\itemize{ |
48 | 43 |
\item \code{refGenes_mm9}: Data frame for murine mm9 genome |
49 |
- |
|
50 |
-\item \code{refGenes_mm10}: Data frame for murine mm10 genome |
|
51 | 44 |
}} |
52 | 45 |
|
53 | 46 |
\keyword{datasets} |
... | ... |
@@ -54,9 +54,9 @@ For more details refer to the vignette "Collision removal functionality": |
54 | 54 |
data("integration_matrices", package = "ISAnalytics") |
55 | 55 |
data("association_file", package = "ISAnalytics") |
56 | 56 |
no_coll <- remove_collisions( |
57 |
- x = integration_matrices, |
|
58 |
- association_file = association_file, |
|
59 |
- report_path = NULL |
|
57 |
+ x = integration_matrices, |
|
58 |
+ association_file = association_file, |
|
59 |
+ report_path = NULL |
|
60 | 60 |
) |
61 | 61 |
head(no_coll) |
62 | 62 |
} |
... | ... |
@@ -64,9 +64,9 @@ sample_key = c("SubjectID", "CellMarker","Tissue", "TimePoint")) |
64 | 64 |
data("integration_matrices", package = "ISAnalytics") |
65 | 65 |
data("association_file", package = "ISAnalytics") |
66 | 66 |
stats <- sample_statistics( |
67 |
- x = integration_matrices, |
|
68 |
- metadata = association_file, |
|
69 |
- value_columns = c("seqCount", "fragmentEstimate") |
|
67 |
+ x = integration_matrices, |
|
68 |
+ metadata = association_file, |
|
69 |
+ value_columns = c("seqCount", "fragmentEstimate") |
|
70 | 70 |
) |
71 | 71 |
stats |
72 | 72 |
} |
... | ... |
@@ -53,13 +53,13 @@ Displays the IS sharing calculated via \link{is_sharing} as heatmaps. |
53 | 53 |
data("integration_matrices", package = "ISAnalytics") |
54 | 54 |
data("association_file", package = "ISAnalytics") |
55 | 55 |
aggreg <- aggregate_values_by_key( |
56 |
- x = integration_matrices, |
|
57 |
- association_file = association_file, |
|
58 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
56 |
+ x = integration_matrices, |
|
57 |
+ association_file = association_file, |
|
58 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
59 | 59 |
) |
60 | 60 |
sharing <- is_sharing(aggreg, |
61 |
- minimal = FALSE, |
|
62 |
- include_self_comp = TRUE |
|
61 |
+ minimal = FALSE, |
|
62 |
+ include_self_comp = TRUE |
|
63 | 63 |
) |
64 | 64 |
sharing_heatmaps <- sharing_heatmap(sharing_df = sharing) |
65 | 65 |
sharing_heatmaps$absolute |
... | ... |
@@ -40,9 +40,9 @@ for more detail on this. |
40 | 40 |
data("integration_matrices", package = "ISAnalytics") |
41 | 41 |
data("association_file", package = "ISAnalytics") |
42 | 42 |
aggreg <- aggregate_values_by_key( |
43 |
- x = integration_matrices, |
|
44 |
- association_file = association_file, |
|
45 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
43 |
+ x = integration_matrices, |
|
44 |
+ association_file = association_file, |
|
45 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
46 | 46 |
) |
47 | 47 |
sharing <- is_sharing(aggreg, n_comp = 3, table_for_venn = TRUE) |
48 | 48 |
venn_tbls <- sharing_venn(sharing, row_range = 1:3, euler = FALSE) |
... | ... |
@@ -78,7 +78,8 @@ It is also possible to filter different data frames with different |
78 | 78 |
sets of conditions. Besides having the possibility of defining the |
79 | 79 |
other parameters as simple vector, which has the same results as |
80 | 80 |
operating on an unnamed list, the user can define the parameters as |
81 |
-named lists containing vectors. For example:\if{html}{\out{<div class="r">}}\preformatted{example_df <- tibble::tibble(a = c(20, 30, 40), |
|
81 |
+named lists containing vectors. For example:\if{html}{\out{<div class="r">}}\preformatted{ |
|
82 |
+example_df <- tibble::tibble(a = c(20, 30, 40), |
|
82 | 83 |
b = c(40, 50, 60), |
83 | 84 |
c = c("a", "b", "c"), |
84 | 85 |
d = c(3L, 4L, 5L)) |
... | ... |
@@ -86,30 +87,31 @@ example_list <- list(first = example_df, |
86 | 87 |
second = example_df, |
87 | 88 |
third = example_df) |
88 | 89 |
print(example_list) |
89 |
-}\if{html}{\out{</div>}}\preformatted{## $first |
|
90 |
-## # A tibble: 3 × 4 |
|
91 |
-## a b c d |
|
92 |
-## <dbl> <dbl> <chr> <int> |
|
93 |
-## 1 20 40 a 3 |
|
94 |
-## 2 30 50 b 4 |
|
95 |
-## 3 40 60 c 5 |
|
96 |
-## |
|
97 |
-## $second |
|
98 |
-## # A tibble: 3 × 4 |
|
99 |
-## a b c d |
|
100 |
-## <dbl> <dbl> <chr> <int> |
|
101 |
-## 1 20 40 a 3 |
|
102 |
-## 2 30 50 b 4 |
|
103 |
-## 3 40 60 c 5 |
|
104 |
-## |
|
105 |
-## $third |
|
106 |
-## # A tibble: 3 × 4 |
|
107 |
-## a b c d |
|
108 |
-## <dbl> <dbl> <chr> <int> |
|
109 |
-## 1 20 40 a 3 |
|
110 |
-## 2 30 50 b 4 |
|
111 |
-## 3 40 60 c 5 |
|
112 |
-}\if{html}{\out{<div class="r">}}\preformatted{filtered <- threshold_filter(example_list, |
|
90 |
+#> $first |
|
91 |
+#> # A tibble: 3 × 4 |
|
92 |
+#> a b c d |
|
93 |
+#> <dbl> <dbl> <chr> <int> |
|
94 |
+#> 1 20 40 a 3 |
|
95 |
+#> 2 30 50 b 4 |
|
96 |
+#> 3 40 60 c 5 |
|
97 |
+#> |
|
98 |
+#> $second |
|
99 |
+#> # A tibble: 3 × 4 |
|
100 |
+#> a b c d |
|
101 |
+#> <dbl> <dbl> <chr> <int> |
|
102 |
+#> 1 20 40 a 3 |
|
103 |
+#> 2 30 50 b 4 |
|
104 |
+#> 3 40 60 c 5 |
|
105 |
+#> |
|
106 |
+#> $third |
|
107 |
+#> # A tibble: 3 × 4 |
|
108 |
+#> a b c d |
|
109 |
+#> <dbl> <dbl> <chr> <int> |
|
110 |
+#> 1 20 40 a 3 |
|
111 |
+#> 2 30 50 b 4 |
|
112 |
+#> 3 40 60 c 5 |
|
113 |
+ |
|
114 |
+filtered <- threshold_filter(example_list, |
|
113 | 115 |
threshold = list(first = c(20, 60), |
114 | 116 |
third = c(25)), |
115 | 117 |
cols_to_compare = list(first = c("a", "b"), |
... | ... |
@@ -117,27 +119,27 @@ third = c("a")), |
117 | 119 |
comparators = list(first = c(">", "<"), |
118 | 120 |
third = c(">="))) |
119 | 121 |
print(filtered) |
120 |
-}\if{html}{\out{</div>}}\preformatted{## $first |
|
121 |
-## # A tibble: 1 × 4 |
|
122 |
-## a b c d |
|
123 |
-## <dbl> <dbl> <chr> <int> |
|
124 |
-## 1 30 50 b 4 |
|
125 |
-## |
|
126 |
-## $second |
|
127 |
-## # A tibble: 3 × 4 |
|
128 |
-## a b c d |
|
129 |
-## <dbl> <dbl> <chr> <int> |
|
130 |
-## 1 20 40 a 3 |
|
131 |
-## 2 30 50 b 4 |
|
132 |
-## 3 40 60 c 5 |
|
133 |
-## |
|
134 |
-## $third |
|
135 |
-## # A tibble: 2 × 4 |
|
136 |
-## a b c d |
|
137 |
-## <dbl> <dbl> <chr> <int> |
|
138 |
-## 1 30 50 b 4 |
|
139 |
-## 2 40 60 c 5 |
|
140 |
-} |
|
122 |
+#> $first |
|
123 |
+#> # A tibble: 1 × 4 |
|
124 |
+#> a b c d |
|
125 |
+#> <dbl> <dbl> <chr> <int> |
|
126 |
+#> 1 30 50 b 4 |
|
127 |
+#> |
|
128 |
+#> $second |
|
129 |
+#> # A tibble: 3 × 4 |
|
130 |
+#> a b c d |
|
131 |
+#> <dbl> <dbl> <chr> <int> |
|
132 |
+#> 1 20 40 a 3 |
|
133 |
+#> 2 30 50 b 4 |
|
134 |
+#> 3 40 60 c 5 |
|
135 |
+#> |
|
136 |
+#> $third |
|
137 |
+#> # A tibble: 2 × 4 |
|
138 |
+#> a b c d |
|
139 |
+#> <dbl> <dbl> <chr> <int> |
|
140 |
+#> 1 30 50 b 4 |
|
141 |
+#> 2 40 60 c 5 |
|
142 |
+}\if{html}{\out{</div>}} |
|
141 | 143 |
|
142 | 144 |
The above signature will roughly be translated as: |
143 | 145 |
\itemize{ |
... | ... |
@@ -176,30 +178,30 @@ be filtered |
176 | 178 |
} |
177 | 179 |
\examples{ |
178 | 180 |
example_df <- tibble::tibble( |
179 |
- a = c(20, 30, 40), |
|
180 |
- b = c(40, 50, 60), |
|
181 |
- c = c("a", "b", "c"), |
|
182 |
- d = c(3L, 4L, 5L) |
|
181 |
+ a = c(20, 30, 40), |
|
182 |
+ b = c(40, 50, 60), |
|
183 |
+ c = c("a", "b", "c"), |
|
184 |
+ d = c(3L, 4L, 5L) |
|
183 | 185 |
) |
184 | 186 |
example_list <- list( |
185 |
- first = example_df, |
|
186 |
- second = example_df, |
|
187 |
- third = example_df |
|
187 |
+ first = example_df, |
|
188 |
+ second = example_df, |
|
189 |
+ third = example_df |
|
188 | 190 |
) |
189 | 191 |
|
190 | 192 |
filtered <- threshold_filter(example_list, |
191 |
- threshold = list( |
|
192 |
- first = c(20, 60), |
|
193 |
- third = c(25) |
|
194 |
- ), |
|
195 |
- cols_to_compare = list( |
|
196 |
- first = c("a", "b"), |
|
197 |
- third = c("a") |
|
198 |
- ), |
|
199 |
- comparators = list( |
|
200 |
- first = c(">", "<"), |
|
201 |
- third = c(">=") |
|
202 |
- ) |
|
193 |
+ threshold = list( |
|
194 |
+ first = c(20, 60), |
|
195 |
+ third = c(25) |
|
196 |
+ ), |
|
197 |
+ cols_to_compare = list( |
|
198 |
+ first = c("a", "b"), |
|
199 |
+ third = c("a") |
|
200 |
+ ), |
|
201 |
+ comparators = list( |
|
202 |
+ first = c(">", "<"), |
|
203 |
+ third = c(">=") |
|
204 |
+ ) |
|
203 | 205 |
) |
204 | 206 |
filtered |
205 | 207 |
} |
... | ... |
@@ -64,9 +64,9 @@ is required. To visualize the resulting object:\preformatted{gridExtra::grid.arr |
64 | 64 |
data("integration_matrices", package = "ISAnalytics") |
65 | 65 |
data("association_file", package = "ISAnalytics") |
66 | 66 |
aggreg <- aggregate_values_by_key( |
67 |
- x = integration_matrices, |
|
68 |
- association_file = association_file, |
|
69 |
- value_cols = c("seqCount", "fragmentEstimate") |
|
67 |
+ x = integration_matrices, |
|
68 |
+ association_file = association_file, |
|
69 |
+ value_cols = c("seqCount", "fragmentEstimate") |
|
70 | 70 |
) |
71 | 71 |
abund <- compute_abundance(x = aggreg) |
72 | 72 |
grob <- top_abund_tableGrob(abund) |
... | ... |
@@ -50,24 +50,24 @@ by passing a vector of column names or passing 2 "shortcuts": |
50 | 50 |
} |
51 | 51 |
\examples{ |
52 | 52 |
smpl <- tibble::tibble( |
53 |
- chr = c("1", "2", "3", "4", "5", "6"), |
|
54 |
- integration_locus = c(14536, 14544, 14512, 14236, 14522, 14566), |
|
55 |
- strand = c("+", "+", "-", "+", "-", "+"), |
|
56 |
- CompleteAmplificationID = c("ID1", "ID2", "ID1", "ID1", "ID3", "ID2"), |
|
57 |
- Value = c(3, 10, 40, 2, 15, 150), |
|
58 |
- Value2 = c(456, 87, 87, 9, 64, 96), |
|
59 |
- Value3 = c("a", "b", "c", "d", "e", "f") |
|
53 |
+ chr = c("1", "2", "3", "4", "5", "6"), |
|
54 |
+ integration_locus = c(14536, 14544, 14512, 14236, 14522, 14566), |
|
55 |
+ strand = c("+", "+", "-", "+", "-", "+"), |
|
56 |
+ CompleteAmplificationID = c("ID1", "ID2", "ID1", "ID1", "ID3", "ID2"), |
|
57 |
+ Value = c(3, 10, 40, 2, 15, 150), |
|
58 |
+ Value2 = c(456, 87, 87, 9, 64, 96), |
|
59 |
+ Value3 = c("a", "b", "c", "d", "e", "f") |
|
60 | 60 |
) |
61 | 61 |
top <- top_integrations(smpl, |
62 |
- n = 3, |
|
63 |
- columns = c("Value", "Value2"), |
|
64 |
- keep = "nothing" |
|
62 |
+ n = 3, |
|
63 |
+ columns = c("Value", "Value2"), |
|
64 |
+ keep = "nothing" |
|
65 | 65 |
) |
66 | 66 |
top_key <- top_integrations(smpl, |
67 |
- n = 3, |
|
68 |
- columns = "Value", |
|
69 |
- keep = "Value2", |
|
70 |
- key = "CompleteAmplificationID" |
|
67 |
+ n = 3, |
|
68 |
+ columns = "Value", |
|
69 |
+ keep = "Value2", |
|
70 |
+ key = "CompleteAmplificationID" |
|
71 | 71 |
) |
72 | 72 |
} |
73 | 73 |
\seealso{ |
... | ... |
@@ -78,7 +78,7 @@ A default is already supplied: |
78 | 78 |
|
79 | 79 |
```{r echo=FALSE} |
80 | 80 |
library(ISAnalytics) |
81 |
-knitr::kable(default_meta_agg()) |
|
81 |
+print(default_meta_agg(), width = Inf) |
|
82 | 82 |
``` |
83 | 83 |
|
84 | 84 |
You can either provide purrr-style lambdas (as given in the example above), |
... | ... |
@@ -102,10 +102,7 @@ aggregated_meta <- aggregate_metadata(association_file = association_file) |
102 | 102 |
``` |
103 | 103 |
|
104 | 104 |
```{r echo=FALSE} |
105 |
-DT::datatable(aggregated_meta, |
|
106 |
- rownames = FALSE, |
|
107 |
- options = list(dom = "t", |
|
108 |
- scrollX = 120)) |
|
105 |
+print(aggregated_meta) |
|
109 | 106 |
``` |
110 | 107 |
|
111 | 108 |
# Aggregation of values by key |
... | ... |
@@ -131,10 +128,7 @@ aggreg <- aggregate_values_by_key( |
131 | 128 |
``` |
132 | 129 |
|
133 | 130 |
```{r echo=FALSE} |
134 |
-DT::datatable(head(aggreg), |
|
135 |
- rownames = FALSE, |
|
136 |
- options = list(dom = "t", |
|
137 |
- scrollX = 120)) |
|
131 |
+print(aggreg, width = Inf) |
|
138 | 132 |
``` |
139 | 133 |
|
140 | 134 |
The function `aggregate_values_by_key` can perform the aggregation both on the |
... | ... |
@@ -164,10 +158,7 @@ agg1 <- aggregate_values_by_key( |
164 | 158 |
``` |
165 | 159 |
|
166 | 160 |
```{r echo=FALSE} |
167 |
-DT::datatable(head(agg1), |
|
168 |
- rownames = FALSE, |
|
169 |
- options = list(dom = "t", |
|
170 |
- scrollX = 120)) |
|
161 |
+print(agg1, width = Inf) |
|
171 | 162 |
``` |
172 | 163 |
|
173 | 164 |
2. **Changing the `lambda` value** |
... | ... |
@@ -193,10 +184,7 @@ agg2 <- aggregate_values_by_key( |
193 | 184 |
``` |
194 | 185 |
|
195 | 186 |
```{r echo=FALSE} |
196 |
-DT::datatable(head(agg2), |
|
197 |
- rownames = FALSE, |
|
198 |
- options = list(dom = "t", |
|
199 |
- scrollX = 120)) |
|
187 |
+print(agg2, width = Inf) |
|
200 | 188 |
``` |
201 | 189 |
|
202 | 190 |
Note that, when specifying purrr-style lambdas (formulas), the first |
... | ... |
@@ -217,10 +205,7 @@ agg3 <- aggregate_values_by_key( |
217 | 205 |
``` |
218 | 206 |
|
219 | 207 |
```{r echo=FALSE} |
220 |
-DT::datatable(head(agg3), |
|
221 |
- rownames = FALSE, |
|
222 |
- options = list(dom = "t", |
|
223 |
- scrollX = 120)) |
|
208 |
+print(agg3, width = Inf) |
|
224 | 209 |
``` |
225 | 210 |
|
226 | 211 |
3. **Changing the `value_cols` value** |
... | ... |
@@ -241,10 +226,7 @@ agg4 <- aggregate_values_by_key( |
241 | 226 |
``` |
242 | 227 |
|
243 | 228 |
```{r echo=FALSE} |
244 |
-DT::datatable(head(agg4), |
|
245 |
- rownames = FALSE, |
|
246 |
- options = list(dom = "t", |
|
247 |
- scrollX = 120)) |
|
229 |
+print(agg4, width = Inf) |
|
248 | 230 |
``` |
249 | 231 |
|
250 | 232 |
4. **Changing the `group` value** |
... | ... |
@@ -267,10 +249,7 @@ agg5 <- aggregate_values_by_key( |
267 | 249 |
``` |
268 | 250 |
|
269 | 251 |
```{r echo=FALSE} |
270 |
-DT::datatable(head(agg5), |
|
271 |
- rownames = FALSE, |
|
272 |
- options = list(dom = "t", |
|
273 |
- scrollX = 120)) |
|
252 |
+print(agg5, width = Inf) |
|
274 | 253 |
``` |
275 | 254 |
|
276 | 255 |
# Reproducibility |
... | ... |
@@ -124,9 +124,7 @@ sample_sparse_matrix <- tibble::tribble( |
124 | 124 |
"6", 657532, "+", "LOC100507487", "+", 76,545,5, |
125 | 125 |
"7", 657532, "+", "EDIL3", "-", NA_integer_,56,NA_integer_, |
126 | 126 |
) |
127 |
-DT::datatable(sample_sparse_matrix, |
|
128 |
- rownames = FALSE, |
|
129 |
- options = list(dom = "t", scrollX = 120)) |
|
127 |
+print(sample_sparse_matrix, width = Inf) |
|
130 | 128 |
``` |
131 | 129 |
|
132 | 130 |
The package uses a more compact form of these matrices, limiting the amount |
... | ... |
@@ -167,9 +165,7 @@ withr::with_options(list(ISAnalytics.reports = FALSE), code = { |
167 | 165 |
``` |
168 | 166 |
|
169 | 167 |
```{r echo=FALSE} |
170 |
-DT::datatable(head(af), |
|
171 |
- rownames = FALSE, |
|
172 |
- options = list(dom = "t", scrollX = 120)) |
|
168 |
+print(head(af), width = Inf) |
|
173 | 169 |
``` |
174 | 170 |
|
175 | 171 |
## Function arguments |
... | ... |
@@ -242,9 +238,7 @@ withr::with_options(list(ISAnalytics.reports = FALSE), { |
242 | 238 |
``` |
243 | 239 |
|
244 | 240 |
```{r echo=FALSE} |
245 |
-DT::datatable(head(vispa_stats), |
|
246 |
- rownames = FALSE, |
|
247 |
- options = list(dom = "t", scrollX = 120)) |
|
241 |
+print(head(vispa_stats)) |
|
248 | 242 |
``` |
249 | 243 |
|
250 | 244 |
The function requires as input the imported and file system aligned |
... | ... |
@@ -276,9 +270,7 @@ matrix <- import_single_Vispa2Matrix(matrix_path) |
276 | 270 |
``` |
277 | 271 |
|
278 | 272 |
```{r echo=FALSE} |
279 |
-DT::datatable(head(matrix), |
|
280 |
- rownames = FALSE, |
|
281 |
- options = list(dom = "t", scrollX = 120)) |
|
273 |
+matrix |
|
282 | 274 |
``` |
283 | 275 |
|
284 | 276 |
Other arguments you can pass to the function are |
... | ... |
@@ -357,9 +349,7 @@ single data frames that has a dedicated column for each quantification. |
357 | 349 |
For example, for the matrices we've imported before: |
358 | 350 |
|
359 | 351 |
```{r echo=FALSE} |
360 |
-DT::datatable(head(matrices), |
|
361 |
- rownames = FALSE, |
|
362 |
- options = list(dom = "t", scrollX = 120)) |
|
352 |
+print(head(matrices), width = Inf) |
|
363 | 353 |
``` |
364 | 354 |
|
365 | 355 |
### `report_path` argument |
366 | 356 |
deleted file mode 100644 |
... | ... |
@@ -1,122 +0,0 @@ |
1 |
-title: "ISAnalytics report system" |
|
2 |
-author: |
|
3 |
- - name: Giulia Pais |
|
4 |
- affiliation: | |
|
5 |
- San Raffaele Telethon Institute for Gene Therapy - SR-Tiget, |
|
6 |
- Via Olgettina 60, 20132 Milano - Italia |
|
7 |
- email: giuliapais1@gmail.com, calabria.andrea@hsr.it |
|
8 |
-output: |
|
9 |
- BiocStyle::html_document: |
|
10 |
- self_contained: yes |
|
11 |
- toc: true |
|
12 |
- toc_float: true |
|
13 |
- toc_depth: 2 |
|
14 |
- code_folding: show |
|
15 |
-date: "`r doc_date()`" |
|
16 |
-package: "`r pkg_ver('ISAnalytics')`" |
|
17 |
-vignette: > |
|
18 |
- %\VignetteIndexEntry{report_system} |
|
19 |
- %\VignetteEngine{knitr::rmarkdown} |
|
20 |
- %\VignetteEncoding{UTF-8} |
|
21 |
- |
|
22 |
-```{r GenSetup, include = FALSE} |
|
23 |
-knitr::opts_chunk$set( |
|
24 |
- collapse = TRUE, |
|
25 |
- comment = "#>", |
|
26 |
- crop = NULL ## Related to https://stat.ethz.ch/pipermail/bioc-devel/2020-April/016656.html |
|
27 |
-) |
|
28 |
-``` |
|
29 |
- |
|
30 |
-```{r vignetteSetup, echo=FALSE, message=FALSE, warning = FALSE} |
|
31 |
-## Bib setup |
|
32 |
-library("RefManageR") |
|
33 |
- |
|
34 |
-## Write bibliography information |
|
35 |
-bib <- c( |
|
36 |
- R = citation(), |
|
37 |
- BiocStyle = citation("BiocStyle")[1], |
|
38 |
- knitr = citation("knitr")[1], |
|
39 |
- RefManageR = citation("RefManageR")[1], |
|
40 |
- rmarkdown = citation("rmarkdown")[1], |
|
41 |
- sessioninfo = citation("sessioninfo")[1], |
|
42 |
- testthat = citation("testthat")[1], |
|
43 |
- ISAnalytics = citation("ISAnalytics")[1], |
|
44 |
- flexdashboard = citation("flexdashboard")[1], |
|
45 |
- DT = citation("DT")[1], |
|
46 |
- plotly = citation("plotly")[1], |
|
47 |
- eulerr = citation("eulerr")[1] |
|
48 |
-) |
|
49 |
-``` |
|
50 |
- |
|
51 |
-# Introduction |
|
52 |
- |
|
53 |
-In `ISAnalytics`, several implemented functions produce interactive reports in |
|
54 |
-HTML format that not only provide a summary of the process but also provide |
|
55 |
-guarantee of reproducibility of results. In this article we're going to |
|
56 |
-explain more in depth how the report system works. |
|
57 |
- |
|
58 |
-```{r echo=FALSE} |
|
59 |
-inst_chunk_path <- system.file("rmd", "install_and_options.Rmd", package = "ISAnalytics") |
|
60 |
-``` |
|
61 |
- |
|
62 |
-```{r child=inst_chunk_path} |
|
63 |
- |
|
64 |
-``` |
|
65 |
- |
|
66 |
-# Enabling reports and required tools |
|
67 |
- |
|
68 |
-Report production is in no way mandatory, in fact it must be enabled through |
|
69 |
-the option `ISAnalytics.reports`. By default the option is enabled when the |
|
70 |
-package is loaded. |
|
71 |
- |
|
72 |
-Reports require a few additional packages that are listed under the package |
|
73 |
-"Suggests" list, among these we find: |
|
74 |
- |
|
75 |
-* `r CRANpkg("rmarkdown")` `r Citep(bib[["rmarkdown"]])` |
|
76 |
-* `r CRANpkg("flexdashboard")` `r Citep(bib[["flexdashboard"]])` |
|
77 |
-* `r CRANpkg("DT")` `r Citep(bib[["DT"]])` |
|
78 |
-* `r CRANpkg("plotly")` `r Citep(bib[["plotly"]])` |
|
79 |
-* `r CRANpkg("eulerr")` `r Citep(bib[["eulerr"]])` |
|
80 |
- |
|
81 |
-# Functions |
|
82 |
- |
|
83 |
-Functions that produce interactive reports always have a function argument |
|
84 |
-`report_path`, which must contain a valid path on disk where the compiled |
|
85 |
-report should be saved. By default this is set to the |
|
86 |
-`{user home}/ISAnalytics_reports`, but it can be changed according to user |
|
87 |
-preference. Accepted formats include: |
|
88 |
- |
|
89 |
-* `NULL`: it is a convenient and fast way to disable report production only |
|
90 |
-for that particular execution. If you want to disable reports for all |
|
91 |
-functions set `ISAnalytics.reports` to `FALSE` instead. |
|
92 |
-* A folder: if the folder doesn't exist the function creates it (provided |
|
93 |
-the user has permission to write in the given path) |
|
94 |
-* A file |
|
95 |
- |
|
96 |
-If report production fails for any reason, functions return their result |
|
97 |
-correctly regardless and a warning message is displayed. |
|
98 |
- |
|
99 |
-# Reproducibility |
|
100 |
- |
|
101 |
-`R` session information. |
|
102 |
- |
|
103 |
-```{r reproduce3, echo=FALSE} |
|
104 |
-## Session info |
|
105 |
-library("sessioninfo") |
|
106 |
-options(width = 120) |
|
107 |
-session_info() |
|
108 |
-``` |
|
109 |
- |
|
110 |
-# Bibliography |
|
111 |
- |
|
112 |
-This vignette was generated using `r Biocpkg("BiocStyle")` `r Citep(bib[["BiocStyle"]])` |
|
113 |
-with `r CRANpkg("knitr")` `r Citep(bib[["knitr"]])` and `r CRANpkg("rmarkdown")` `r Citep(bib[["rmarkdown"]])` running behind the scenes. |
|
114 |
- |
|
115 |
-Citations made with `r CRANpkg("RefManageR")` `r Citep(bib[["RefManageR"]])`. |
|
116 |
- |
|
117 |
-```{r vignetteBiblio, results = "asis", echo = FALSE, warning = FALSE, message = FALSE} |
|
118 |
-## Print bibliography |
|
119 |
-PrintBibliography(bib, .opts = list(hyperlink = "to.doc", style = "html")) |
|
120 |
-``` |
... | ... |
@@ -74,10 +74,7 @@ data("association_file") |
74 | 74 |
``` |
75 | 75 |
|
76 | 76 |
```{r echo=FALSE} |
77 |
-DT::datatable(head(integration_matrices), |
|
78 |
- rownames = FALSE, |
|
79 |
- options = list(dom = "t", |
|
80 |
- scrollX = 120)) |
|
77 |
+print(head(integration_matrices)) |
|
81 | 78 |
``` |
82 | 79 |
|
83 | 80 |
We can aggregate our data in different ways according to our needs (to |
... | ... |
@@ -90,13 +87,11 @@ sites. |
90 | 87 |
agg <- aggregate_values_by_key(integration_matrices, |
91 | 88 |
association_file, |
92 | 89 |
value_cols = c("seqCount", "fragmentEstimate")) |
90 |
+agg <- agg %>% dplyr::filter(TimePoint %in% c("0030", "0060")) |
|
93 | 91 |
``` |
94 | 92 |
|
95 | 93 |
```{r echo=FALSE} |
96 |
-DT::datatable(head(agg), |
|
97 |
- rownames = FALSE, |
|
98 |
- options = list(dom = "t", |
|
99 |
- scrollX = 120)) |
|
94 |
+print(agg, width = Inf) |
|
100 | 95 |
``` |
101 | 96 |
|
102 | 97 |
An integration site is *shared* between two or more groups if the same triple |
... | ... |
@@ -281,7 +276,7 @@ df1 <- agg %>% |
281 | 276 |
df2 <- agg %>% |
282 | 277 |
dplyr::filter(TimePoint == "0060") |
283 | 278 |
df3 <- agg %>% |
284 |
- dplyr::filter(TimePoint == "0180") |
|
279 |
+ dplyr::filter(Tissue == "BM") |
|
285 | 280 |
|
286 | 281 |
keys <- list(g1 = c("SubjectID", "CellMarker", "Tissue"), |
287 | 282 |
g2 = c("SubjectID", "Tissue"), |