{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Using the HumanTranscriptomeCompendium with Bioconductor\n",
    "\n",
    "HumanTranscriptomeCompendium refers to a cloud-resident collection of uniformly produced quantifications for 181000 RNA-seq experiments derived from NCBI SRA in Summer 2017.  The quantifications were obtained by Dr. Sean Davis of NCI using [salmon](https://combine-lab.github.io/salmon/) and transformed to HDF5 by Dr. VJ Carey of Harvard Medical School.  The data are available in the HDF Scalable Data Service (HSDS) thanks to the support of John Readey of the HDF Group.  In this very brief introductory document we illustrate how to access the data and related annotations.\n",
    "\n",
    "1. [Setup](#setup)\n",
    "2. [Metadata management and interrogation](#metadata)\n",
    "   1. [DocSet: indexed metadata](#docset)\n",
    "   2. [Querying a DocSet](#querdoc)\n",
    "3. [Filtering the compendium](#filtering)\n",
    "   1. [Metadata overview](#overview)\n",
    "   2. [Drilling down to tabulate study design factors](#drill)\n",
    "4. [Statistical characteristics of the compendium](#stat)\n",
    "   1. [Distribution of study sizes](#sizes)\n",
    "   2. [Availability of gender or ethnicity information](#geneth)\n",
    "   3. [Single-gene surveys](#sing)\n",
    "5. [Summary](#summary)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Setup and initial acquaintance  <a id=\"setup\"></a>\n",
    "\n",
    "As of April 1 2019, we need to retrieve key packages from github."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "library(BiocManager) # precede with its installation if this fails\n",
    "installOnNeed = function(pkg) {\n",
    "    if (!(basename(pkg) %in% rownames(installed.packages()))) suppressMessages(BiocManager::install(pkg))\n",
    "}\n",
    "installOnNeed(\"vjcitn/HumanTranscriptomeCompendium\") # pending in Bioconductor\n",
    "library(HumanTranscriptomeCompendium)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading required namespace: BiocFileCache\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "class: RangedSummarizedExperiment \n",
       "dim: 58288 181134 \n",
       "metadata(1): rangeSource\n",
       "assays(1): counts\n",
       "rownames(58288): ENSG00000000003.14 ENSG00000000005.5 ...\n",
       "  ENSG00000284747.1 ENSG00000284748.1\n",
       "rowData names(4): gene_type gene_id gene_name havana_gene\n",
       "colnames(181134): DRX001125 DRX001126 ... SRX999990 SRX999991\n",
       "colData names(4): experiment_accession experiment_platform\n",
       "  study_accession study_title"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "se1 = addRD(htx_load())\n",
    "se1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This SummarizedExperiment instance is developed according to methods defined in the [restfulSE package](https://bioconductor.org/packages/restfulSE/).  See the related [f1000research report](https://f1000research.com/articles/8-21/v1).\n",
    "\n",
    "The `assay` method involves the [DelayedArray](https://bioconductor.org/packages/DelayedArray/) protocol.  A preview of remote numerical data is provided when `assay` is invoked.  Note that very large requests of data through the `as.matrix` method on a DelayedArray in HSDS will likely engender errors."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading required package: rhdf5client\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<58288 x 181134> DelayedMatrix object of type \"double\":\n",
       "                      DRX001125    DRX001126    DRX001127 ...  SRX999990\n",
       "ENSG00000000003.14    40.001250  1322.844547  1528.257578   .  1149.0341\n",
       " ENSG00000000005.5     0.000000     9.999964     6.000006   .     0.0000\n",
       "ENSG00000000419.12    64.000031  1456.004418  2038.996875   .  1485.0003\n",
       "ENSG00000000457.13    31.814591  1583.504257  1715.041308   .   631.7751\n",
       "ENSG00000000460.16    12.430602   439.321234   529.280324   .   945.6903\n",
       "               ...            .            .            .   .          .\n",
       " ENSG00000284744.1   1.05614505  24.81388079  32.29261298   .   7.316061\n",
       " ENSG00000284745.1   0.99999879  15.99996994  16.99999743   .   0.000000\n",
       " ENSG00000284746.1   0.00000000   0.00379458   0.00000000   .   0.000000\n",
       " ENSG00000284747.1   7.77564984 270.83296409 239.88056843   . 108.011633\n",
       " ENSG00000284748.1   1.00000768  22.23010514  37.73881938   .  11.278980\n",
       "                    SRX999991\n",
       "ENSG00000000003.14  1430.3955\n",
       " ENSG00000000005.5     0.0000\n",
       "ENSG00000000419.12  1970.0004\n",
       "ENSG00000000457.13   802.0563\n",
       "ENSG00000000460.16  1259.7648\n",
       "               ...          .\n",
       " ENSG00000284744.1   3.268453\n",
       " ENSG00000284745.1   0.000000\n",
       " ENSG00000284746.1   0.000000\n",
       " ENSG00000284747.1  94.606851\n",
       " ENSG00000284748.1   5.240970"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "suppressPackageStartupMessages(library(SummarizedExperiment))\n",
    "assay(se1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Metadata management and interrogation <a id=\"metadata\"></a>\n",
    "\n",
    "The [ssrch](https://github.com/vjcitn/ssrch) package (pending at Bioconductor) defines utilities for managing heterogeneous metadata.  A snapshot of metadata available in March 2019 was obtained using the [SRAdbV2](https://github.com/seandavi/SRAdbV2) package of Sean Davis of NCI.  The `sample.attribute` information was indexed and organized into a `DocSet` instance as defined in `ssrch`.\n",
    "\n",
    "### DocSet: indexed metadata <a id=\"docset\"/>\n",
    "\n",
    "The HumanTranscriptomeCompendium package has sample attribute data.frame instances for 4841 studies available in NCBI SRA."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "ssrch DocSet resource:\n",
       " 4841 documents, 240753 records\n",
       "some titles:\n",
       "  Homo sapiens strain:Human ICESeq Genome sequencing... (DRP000499)\n",
       "  RNA sequencing of wild-type or mutant U2AF35 transduced... (DRP000527)\n",
       "  Identification of hundreds of novel UPF1 target transcr... (DRP000622)\n",
       "  Global transcriptional response against glucose depriva... (DRP000665)\n",
       "  Human inactive X chromosome is compacted through a poly... (DRP000929)\n",
       "  Interactive Transcriptome Analysis of Malaria Patients ... (DRP000987)"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "library(ssrch)\n",
    "HumanTranscriptomeCompendium::ds4842"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Querying a DocSet <a id=\"querdoc\"/>\n",
    "\n",
    "The `searchDocs` function can obtain study accession numbers for studies that employ terms of interest.  In the following we check for studies using the regexp `BRAF[- ]mut`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th scope=col>hits</th><th scope=col>docs</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><td>BRAF mutation</td><td>SRP080797    </td></tr>\n",
       "\t<tr><td>BRAF-mut     </td><td>SRP027530    </td></tr>\n",
       "\t<tr><td>BRAF-mutant  </td><td>SRP065849    </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|ll}\n",
       " hits & docs\\\\\n",
       "\\hline\n",
       "\t BRAF mutation & SRP080797    \\\\\n",
       "\t BRAF-mut      & SRP027530    \\\\\n",
       "\t BRAF-mutant   & SRP065849    \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "| hits | docs |\n",
       "|---|---|\n",
       "| BRAF mutation | SRP080797     |\n",
       "| BRAF-mut      | SRP027530     |\n",
       "| BRAF-mutant   | SRP065849     |\n",
       "\n"
      ],
      "text/plain": [
       "  hits          docs     \n",
       "1 BRAF mutation SRP080797\n",
       "2 BRAF-mut      SRP027530\n",
       "3 BRAF-mutant   SRP065849"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "brm = searchDocs(\"BRAF[- ]mut\", ds4842)\n",
    "brm"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Filtering the compendium <a id=\"filtering\"/>\n",
    "\n",
    "Given a vector of study accession numbers, we filter the compendium (in a delayed manner):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "class: RangedSummarizedExperiment \n",
       "dim: 58288 72 \n",
       "metadata(4): rangeSource SRP080797 SRP027530 SRP065849\n",
       "assays(1): counts\n",
       "rownames(58288): ENSG00000000003.14 ENSG00000000005.5 ...\n",
       "  ENSG00000284747.1 ENSG00000284748.1\n",
       "rowData names(4): gene_type gene_id gene_name havana_gene\n",
       "colnames(72): SRX1420823 SRX1420824 ... SRX3241750 SRX3241751\n",
       "colData names(4): experiment_accession experiment_platform\n",
       "  study_accession study_title"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "se_brafmut = htx_query_by_study_accession(brm$docs, se1)\n",
    "se_brafmut"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Metadata overview <a id=\"overview\"></a>\n",
    "    \n",
    "We obtained a collection of 72 samples.  The sample-level metadata are heterogeneous, possessing unique field sets and informal field annotations."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<dl>\n",
       "\t<dt>$SRP080797</dt>\n",
       "\t\t<dd><table>\n",
       "<thead><tr><th></th><th scope=col>X</th><th scope=col>study.accession</th><th scope=col>experiment.accession</th><th scope=col>source_name</th><th scope=col>cell.line</th><th scope=col>genetic.background</th><th scope=col>culture.medium</th><th scope=col>agent</th><th scope=col>egf.stimulation</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><th scope=row>SRX1994764</th><td>2                                                </td><td>SRP080797                                        </td><td>SRX1994764                                       </td><td>Skin                                             </td><td>A375                                             </td><td>BRAF mutation                                    </td><td>Starvation: Culture in 0.5% FBS medium for 2 days</td><td>DMSO treatment for 3 hours                       </td><td>NA                                               </td></tr>\n",
       "\t<tr><th scope=row>SRX1994763</th><td>3                                                </td><td>SRP080797                                        </td><td>SRX1994763                                       </td><td>Lung                                             </td><td>A549                                             </td><td>KRAS mutation                                    </td><td>Starvation: Culture in 0.5% FBS medium for 2 days</td><td>MEK inhibitor 3 hours at 0.2 uM                  </td><td>EGF stimulation: 20 min, 100ng/ml                </td></tr>\n",
       "\t<tr><th scope=row>SRX1994775</th><td>4                                                </td><td>SRP080797                                        </td><td>SRX1994775                                       </td><td>Skin                                             </td><td>A375                                             </td><td>BRAF mutation                                    </td><td>Starvation: Culture in 0.5% FBS medium for 2 days</td><td>INTS11 siRNA transfection, 3 days                </td><td>EGF stimulation: 20 min, 100ng/ml                </td></tr>\n",
       "</tbody>\n",
       "</table>\n",
       "</dd>\n",
       "\t<dt>$SRP027530</dt>\n",
       "\t\t<dd><table>\n",
       "<thead><tr><th></th><th scope=col>X</th><th scope=col>study.accession</th><th scope=col>experiment.accession</th><th scope=col>source_name</th><th scope=col>tissue</th><th scope=col>age</th><th scope=col>Sex</th><th scope=col>tumor.stage</th><th scope=col>genotype.variation</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><th scope=row>SRX323589</th><td>1             </td><td>SRP027530     </td><td>SRX323589     </td><td>Thyroid tumor </td><td>Thyroid cancer</td><td>57            </td><td>female        </td><td>T1bN0M0       </td><td>BRAF-mut      </td></tr>\n",
       "\t<tr><th scope=row>SRX323603</th><td>2             </td><td>SRP027530     </td><td>SRX323603     </td><td>Thyroid tumor </td><td>Thyroid cancer</td><td>57            </td><td>female        </td><td>T1bN0M0       </td><td>BRAF-mut      </td></tr>\n",
       "\t<tr><th scope=row>SRX323599</th><td>3             </td><td>SRP027530     </td><td>SRX323599     </td><td>Thyroid tumor </td><td>Thyroid cancer</td><td>44            </td><td>female        </td><td>T1bN1aM0      </td><td>BRAF-wt       </td></tr>\n",
       "</tbody>\n",
       "</table>\n",
       "</dd>\n",
       "\t<dt>$SRP065849</dt>\n",
       "\t\t<dd><table>\n",
       "<thead><tr><th></th><th scope=col>X</th><th scope=col>study.accession</th><th scope=col>experiment.accession</th><th scope=col>source_name</th><th scope=col>tissue</th><th scope=col>phenotype</th><th scope=col>host.mouse.treatment</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><th scope=row>SRX1420824</th><td>1                          </td><td>SRP065849                  </td><td>SRX1420824                 </td><td>A375 melanoma bearing mouse</td><td>A375 tumor                 </td><td>vemurafenib-sensitive      </td><td>none                       </td></tr>\n",
       "\t<tr><th scope=row>SRX1420825</th><td>2                          </td><td>SRP065849                  </td><td>SRX1420825                 </td><td>A375 melanoma bearing mouse</td><td>A375 tumor                 </td><td>vemurafenib-sensitive      </td><td>none                       </td></tr>\n",
       "\t<tr><th scope=row>SRX1420826</th><td>3                          </td><td>SRP065849                  </td><td>SRX1420826                 </td><td>A375 melanoma bearing mouse</td><td>A375 tumor                 </td><td>vemurafenib-sensitive      </td><td>none                       </td></tr>\n",
       "</tbody>\n",
       "</table>\n",
       "</dd>\n",
       "</dl>\n"
      ],
      "text/latex": [
       "\\begin{description}\n",
       "\\item[\\$SRP080797] \\begin{tabular}{r|lllllllll}\n",
       "  & X & study.accession & experiment.accession & source\\_name & cell.line & genetic.background & culture.medium & agent & egf.stimulation\\\\\n",
       "\\hline\n",
       "\tSRX1994764 & 2                                                   & SRP080797                                           & SRX1994764                                          & Skin                                                & A375                                                & BRAF mutation                                       & Starvation: Culture in 0.5\\% FBS medium for 2 days & DMSO treatment for 3 hours                          & NA                                                 \\\\\n",
       "\tSRX1994763 & 3                                                   & SRP080797                                           & SRX1994763                                          & Lung                                                & A549                                                & KRAS mutation                                       & Starvation: Culture in 0.5\\% FBS medium for 2 days & MEK inhibitor 3 hours at 0.2 uM                     & EGF stimulation: 20 min, 100ng/ml                  \\\\\n",
       "\tSRX1994775 & 4                                                   & SRP080797                                           & SRX1994775                                          & Skin                                                & A375                                                & BRAF mutation                                       & Starvation: Culture in 0.5\\% FBS medium for 2 days & INTS11 siRNA transfection, 3 days                   & EGF stimulation: 20 min, 100ng/ml                  \\\\\n",
       "\\end{tabular}\n",
       "\n",
       "\\item[\\$SRP027530] \\begin{tabular}{r|lllllllll}\n",
       "  & X & study.accession & experiment.accession & source\\_name & tissue & age & Sex & tumor.stage & genotype.variation\\\\\n",
       "\\hline\n",
       "\tSRX323589 & 1              & SRP027530      & SRX323589      & Thyroid tumor  & Thyroid cancer & 57             & female         & T1bN0M0        & BRAF-mut      \\\\\n",
       "\tSRX323603 & 2              & SRP027530      & SRX323603      & Thyroid tumor  & Thyroid cancer & 57             & female         & T1bN0M0        & BRAF-mut      \\\\\n",
       "\tSRX323599 & 3              & SRP027530      & SRX323599      & Thyroid tumor  & Thyroid cancer & 44             & female         & T1bN1aM0       & BRAF-wt       \\\\\n",
       "\\end{tabular}\n",
       "\n",
       "\\item[\\$SRP065849] \\begin{tabular}{r|lllllll}\n",
       "  & X & study.accession & experiment.accession & source\\_name & tissue & phenotype & host.mouse.treatment\\\\\n",
       "\\hline\n",
       "\tSRX1420824 & 1                           & SRP065849                   & SRX1420824                  & A375 melanoma bearing mouse & A375 tumor                  & vemurafenib-sensitive       & none                       \\\\\n",
       "\tSRX1420825 & 2                           & SRP065849                   & SRX1420825                  & A375 melanoma bearing mouse & A375 tumor                  & vemurafenib-sensitive       & none                       \\\\\n",
       "\tSRX1420826 & 3                           & SRP065849                   & SRX1420826                  & A375 melanoma bearing mouse & A375 tumor                  & vemurafenib-sensitive       & none                       \\\\\n",
       "\\end{tabular}\n",
       "\n",
       "\\end{description}\n"
      ],
      "text/markdown": [
       "$SRP080797\n",
       ":   \n",
       "| <!--/--> | X | study.accession | experiment.accession | source_name | cell.line | genetic.background | culture.medium | agent | egf.stimulation |\n",
       "|---|---|---|---|---|---|---|---|---|---|\n",
       "| SRX1994764 | 2                                                 | SRP080797                                         | SRX1994764                                        | Skin                                              | A375                                              | BRAF mutation                                     | Starvation: Culture in 0.5% FBS medium for 2 days | DMSO treatment for 3 hours                        | NA                                                |\n",
       "| SRX1994763 | 3                                                 | SRP080797                                         | SRX1994763                                        | Lung                                              | A549                                              | KRAS mutation                                     | Starvation: Culture in 0.5% FBS medium for 2 days | MEK inhibitor 3 hours at 0.2 uM                   | EGF stimulation: 20 min, 100ng/ml                 |\n",
       "| SRX1994775 | 4                                                 | SRP080797                                         | SRX1994775                                        | Skin                                              | A375                                              | BRAF mutation                                     | Starvation: Culture in 0.5% FBS medium for 2 days | INTS11 siRNA transfection, 3 days                 | EGF stimulation: 20 min, 100ng/ml                 |\n",
       "\n",
       "\n",
       "$SRP027530\n",
       ":   \n",
       "| <!--/--> | X | study.accession | experiment.accession | source_name | tissue | age | Sex | tumor.stage | genotype.variation |\n",
       "|---|---|---|---|---|---|---|---|---|---|\n",
       "| SRX323589 | 1              | SRP027530      | SRX323589      | Thyroid tumor  | Thyroid cancer | 57             | female         | T1bN0M0        | BRAF-mut       |\n",
       "| SRX323603 | 2              | SRP027530      | SRX323603      | Thyroid tumor  | Thyroid cancer | 57             | female         | T1bN0M0        | BRAF-mut       |\n",
       "| SRX323599 | 3              | SRP027530      | SRX323599      | Thyroid tumor  | Thyroid cancer | 44             | female         | T1bN1aM0       | BRAF-wt        |\n",
       "\n",
       "\n",
       "$SRP065849\n",
       ":   \n",
       "| <!--/--> | X | study.accession | experiment.accession | source_name | tissue | phenotype | host.mouse.treatment |\n",
       "|---|---|---|---|---|---|---|---|\n",
       "| SRX1420824 | 1                           | SRP065849                   | SRX1420824                  | A375 melanoma bearing mouse | A375 tumor                  | vemurafenib-sensitive       | none                        |\n",
       "| SRX1420825 | 2                           | SRP065849                   | SRX1420825                  | A375 melanoma bearing mouse | A375 tumor                  | vemurafenib-sensitive       | none                        |\n",
       "| SRX1420826 | 3                           | SRP065849                   | SRX1420826                  | A375 melanoma bearing mouse | A375 tumor                  | vemurafenib-sensitive       | none                        |\n",
       "\n",
       "\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "$SRP080797\n",
       "           X study.accession experiment.accession source_name cell.line\n",
       "SRX1994764 2       SRP080797           SRX1994764        Skin      A375\n",
       "SRX1994763 3       SRP080797           SRX1994763        Lung      A549\n",
       "SRX1994775 4       SRP080797           SRX1994775        Skin      A375\n",
       "           genetic.background                                    culture.medium\n",
       "SRX1994764      BRAF mutation Starvation: Culture in 0.5% FBS medium for 2 days\n",
       "SRX1994763      KRAS mutation Starvation: Culture in 0.5% FBS medium for 2 days\n",
       "SRX1994775      BRAF mutation Starvation: Culture in 0.5% FBS medium for 2 days\n",
       "                                       agent                   egf.stimulation\n",
       "SRX1994764        DMSO treatment for 3 hours                              <NA>\n",
       "SRX1994763   MEK inhibitor 3 hours at 0.2 uM EGF stimulation: 20 min, 100ng/ml\n",
       "SRX1994775 INTS11 siRNA transfection, 3 days EGF stimulation: 20 min, 100ng/ml\n",
       "\n",
       "$SRP027530\n",
       "          X study.accession experiment.accession   source_name         tissue\n",
       "SRX323589 1       SRP027530            SRX323589 Thyroid tumor Thyroid cancer\n",
       "SRX323603 2       SRP027530            SRX323603 Thyroid tumor Thyroid cancer\n",
       "SRX323599 3       SRP027530            SRX323599 Thyroid tumor Thyroid cancer\n",
       "          age    Sex tumor.stage genotype.variation\n",
       "SRX323589  57 female     T1bN0M0           BRAF-mut\n",
       "SRX323603  57 female     T1bN0M0           BRAF-mut\n",
       "SRX323599  44 female    T1bN1aM0            BRAF-wt\n",
       "\n",
       "$SRP065849\n",
       "           X study.accession experiment.accession                 source_name\n",
       "SRX1420824 1       SRP065849           SRX1420824 A375 melanoma bearing mouse\n",
       "SRX1420825 2       SRP065849           SRX1420825 A375 melanoma bearing mouse\n",
       "SRX1420826 3       SRP065849           SRX1420826 A375 melanoma bearing mouse\n",
       "               tissue             phenotype host.mouse.treatment\n",
       "SRX1420824 A375 tumor vemurafenib-sensitive                 none\n",
       "SRX1420825 A375 tumor vemurafenib-sensitive                 none\n",
       "SRX1420826 A375 tumor vemurafenib-sensitive                 none\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "lapply(metadata(se_brafmut)[-1], head, 3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For the first two studies the role played by BRAF is clear.  However, the table for SRP065849 does not seem to use the token `BRAF` in any field.  It turns out that BRAF is used in the study title, and titles were harvested for the metadata index."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<strong>SRP065849:</strong> 'A novel RAF kinase inhibitor with DFG-out binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation'"
      ],
      "text/latex": [
       "\\textbf{SRP065849:} 'A novel RAF kinase inhibitor with DFG-out binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation'"
      ],
      "text/markdown": [
       "**SRP065849:** 'A novel RAF kinase inhibitor with DFG-out binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation'"
      ],
      "text/plain": [
       "                                                                                                                                                       SRP065849 \n",
       "\"A novel RAF kinase inhibitor with DFG-out binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation\" "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "slot(ds4842, \"titles\")[\"SRP065849\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Drilling down to tabulate study design factors <a id=\"drill\"></a>\n",
    "\n",
    "We will crosstabulate the key factors from SRP080797, derived from a 2017 Genes and Development paper entitled 'Integrator orchestrates RAS/ERK1/2 signaling transcriptional programs'.  Note the inconsistent notation for the MEK inhibitor factor, leading to an unnecessary stratum."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       ", , genetic.background = BRAF mutation\n",
       "\n",
       "                                    cell.line\n",
       "agent                                A375 A549 HeLa\n",
       "  BRAF inhibitor 3 hours at 1uM         2    0    0\n",
       "  Control siRNA transfection, 3 days    2    0    0\n",
       "  DMSO treatment for 3 hours            2    0    0\n",
       "  Doxycycline for 3 days                0    0    0\n",
       "  ERK inhibitor 3 hours at 1uM          1    0    0\n",
       "  INTS11 siRNA transfection, 3 days     2    0    0\n",
       "  MEK inhibitor 3 hours at 0.2 uM       2    0    0\n",
       "  MEK inhibitor for 3 hours at 0.2uM    0    0    0\n",
       "\n",
       ", , genetic.background = Harboring inducible shRNA expressing cassette\n",
       "\n",
       "                                    cell.line\n",
       "agent                                A375 A549 HeLa\n",
       "  BRAF inhibitor 3 hours at 1uM         0    0    0\n",
       "  Control siRNA transfection, 3 days    0    0    0\n",
       "  DMSO treatment for 3 hours            0    0    1\n",
       "  Doxycycline for 3 days                0    0   14\n",
       "  ERK inhibitor 3 hours at 1uM          0    0    2\n",
       "  INTS11 siRNA transfection, 3 days     0    0    0\n",
       "  MEK inhibitor 3 hours at 0.2 uM       0    0    0\n",
       "  MEK inhibitor for 3 hours at 0.2uM    0    0    1\n",
       "\n",
       ", , genetic.background = KRAS mutation\n",
       "\n",
       "                                    cell.line\n",
       "agent                                A375 A549 HeLa\n",
       "  BRAF inhibitor 3 hours at 1uM         0    0    0\n",
       "  Control siRNA transfection, 3 days    0    2    0\n",
       "  DMSO treatment for 3 hours            0    2    0\n",
       "  Doxycycline for 3 days                0    0    0\n",
       "  ERK inhibitor 3 hours at 1uM          0    2    0\n",
       "  INTS11 siRNA transfection, 3 days     0    1    0\n",
       "  MEK inhibitor 3 hours at 0.2 uM       0    1    0\n",
       "  MEK inhibitor for 3 hours at 0.2uM    0    0    0\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "md = metadata(se_brafmut)[-1]\n",
    "with(md$SRP080797, xtabs(~agent+cell.line+genetic.background))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Statistical characteristics of the compendium <a id=\"stat\"></a>\n",
    "\n",
    "### Distribution of study sizes <a id=\"sizes\"></a>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JuCxleSfwi4AgIAgKCChEXIILKKLiEjBuTIhiMAQVHdGYiJmYYAyT\nGMUhwYAzTkRETR4ZUcEI6iQYIC5EURQDaEyQXDdQ2S+gKPuiV1Dm/0q3030859zuc05vVb/v\nef7prurqqvp+33HmvlTV16tWaQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAvMJrDffSusIECBAgMCUC+yY87tf5xxvzOtVU3a+m+V8du45p9U9770lQIAA\nAQIECBAgQKDBAhumb69LHjbGPn44x7q7kw+O8biDHmqfnvOr81x/0C/ajgABAgQmK3CvyR7e\n0QkQIEBgxgV+I+dfV0fenmwy431x+gQIECBAYNUGDAgQIECAwBIF6ja3Ty3xu03/2o/SwUub\n3kn9I0CAQBMFFEhNHFV9IkCAwHgE5j7HWreSafcIfDEvD4VBgAABArMnoECavTFzxgQIEBiV\nwH2z45cnv5o8OPlx8r3k88nHk7uSbqtb657WXei8HpzXa5PPJRcmtZ/nJtXWJn/783f////U\nM0vP7yzWvt/5/z/6xbvH5t3zknpdk5yd/HMyX3tQVr6w54OP5v3VPcv1tp4FOjTpFnf/kvff\nSNbVhrGpfe2UHNCz02PzvgrIfZNH9qxf6O238sHcq3OPyLry3D35WfKfSXmUtUaAAAECBAgQ\nIECAwAoK/Gb2dX1S/4ifL1/J+pqModtqYoT5tqt1f9zZ6MU929zcWdf78oKez6sY621VwLw+\nuTOZe5xTsq6KpO767iQN98m6m3rWvynv57ZnZkX3e1Vk7Dh3g3mWh7WpXSw0ScOH8ln3+Iu9\n1na97TVZqNv25n7np1n35sQkEEHQCBAgQIAAAQIECKyEwAOzk97Coq66fCK5IKl/gHf/Uf6W\nvO+2URdIvcVVHb+uMF2czFckdAukOrf3JN3znW9q7b/r+fzs+sI62lJsapfLLZD+vue8XpX3\n3T7V60+SH85Z97YsawQIECBAgAABAgQIrIDAS7KP7j/APzNnf/+l81nd3nZGsnnn87oFr26z\n636vXuuWsl2T+yfVeoucYa4g3TvfvTTp7vvreb9TUm3T5PSk+1m99hYTe875rPd2tnvls7pl\nsPvd3837dbWl2NQ+FyqQdstnZVqfPzt5VnJQckfSPa8qVh+dVNsiuS7pfnZS3u+QbJT8fs/6\n+v52iUaAAAECBAgQIECAwDIFXpnvd/8BfmveH5HUP+S7z+nUP9LnaztlZfd79VrFUW9baoE0\nt8jZu3eneb9t0nslqbdAqk2/mXTP6y9rRac9Pa/d9bfn/X27HyzyulSbhQqkuYfaKit6z7eu\nDlXR1G2/lzfdc66reXVFq7fVrY/dz9/c+4H3BAgQILA0gfqvaRoBAgQItFvgC+l+3cJWbbPk\nyOQ/k7pycUry3KR75ShvV6x1C7C5O9y5Z8WP8/6LPcv19vtJnd9C7QM9H7yw5/3v9Lw/Le+r\nGFxXG6XNxjn4Pye9V7leneXP9pzUI3reX573j0/qmahuvp333faw7huvBAgQIECAAAECBAgs\nT+Dl+XoVSd2rEXNff5DP6mpKb9spC73bLXYFab5i5EU931/bs+M39Ky/rGd979uP9Wwz9wpS\nXWXp7UvdrlbFWD1b1T3fus1t0PbybNi7v+4+uq/z2azrClKdzz8k3X3U63xXgHr72bvtfO+r\nmNMIECBAYJkCGyzz+75OgAABAs0QOCnd+HzyB8n+yS5Jb3tAFk5ILkvO7v1gwPe9M+B1v1LP\n0XRb/YO/227svsnrQleuNu3ZZu7bes7oU0lND16triJ9Otm+FtKuTc76+bvB/s8obP4mh+69\novWhLNetjXNb3XLXbXVFb7ErZ1d1N/RKgAABAgQIECBAgMDKCHRvva5i4qXJqUnv1ZN39Rxm\np7yvwqabx/Z8Vm9/u+ezn+X93P8o9+c9n9etdN32nLzp7rO+N/e5mzrHK3q2mXsFKR/1Hftb\nWX5Hz/ZVnCylDWOz2BWkP8zBu/2r17ql7t4LnNBberatK2Ddc1hgc6sJECBAgAABAgQIEFiu\nwF9nB+cmNXV0zRA3t/1LVnT/Qf+eng9rNrXu+np9Ys9n9fYxSe/nT+j5vJ6/+WrP57232FVB\nVFdOut89Ju9728uy0P2sXucrkKrg+EHPdrf0vJ97K2A+WrAt1WahAmm/HKm34PxKlu+74NHv\nef6rt6/P6Nl2/bw/L/lS8r6knkvSCBAgQIAAAQIECBBYpkDvlZz6x3gVJDVz3JOSP0uqeOn+\nI/2gvO+2uv2tu75e67a1tyXdW8eqSOktBr6Z5YOTVyTnJL3f7S2Q8tGq4+Z8/uEsvzKpc7tz\nzmfzFUjZpO+qUfdYF9YHQ7Sl2sxXIN0vx70t6Z5LvV6Z1NWwujo0N+tlXWV10v1ObVsF4rOS\nD/asr89rzDQCBAgQIECAAAECBJYpUFdzzky6/whf6PW0bFP/YO9tVXDM3f7tPRvUFae5n3eX\n63a97vu5BdL989klPZ93t6vXm5N/6PlsoQKpbvnr/V69/9NkmLZUm/kKpO1y4Lnns9hy1/px\n+V4VUotte+wwnbItAQIECBAgQIAAAQKLC9SECX+RrEnm/kO8JgeowqKKhbnt17LimqT7nbq6\n846eje6V98cnNYtdd5vv5v0rkq171v047+e2+2XFPybdK0b1PFIVZLslr0m6+6srKQu1C/JB\nd7u6mvXAhTZcZP1SbFayQKpTK6t/Sm5Kuv2p18uTeqZJI0CAAAECBAgQIEBgBAJV0NSzRU/u\npAqK7pWMvJ231eQLj072SOYroupLtU19Xvsetm2SL+yZVJEwTKvz/lrSLShqZrvltKXYLOd4\nC333Iflgr6Re119oI+sJECBAgAABAgQIECDQK/DKLHSLo3p9ce+H3hMgQIAAAQIECBAgQKDp\nAlUEvT/5etJbHNXzTHOnGc8qjQABAgQIECBAgAABAs0VOCRd6y2M6n09e/T85nZZzwgQIECA\nAAECBAgQIDC/wDOy+oakCqP67aOzk+ckGgECBAgQIECAAAECBForsGFre67jBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECKymw3krubEb2tWXOc4tko+S25Kbk9kQjQIAA\nAQIECBAgQIBAKwR2Ty9PSK5L7p4nl2Td8cnWiUaAAAECBAgQIECAAIHGChyRnnWLoivy/rzk\n48lHkk8lX06uTWqbHyYvSTQCBAgQIECAAAECBAg0TuDA9KgKnyqEHr9I7+pWw72TryS1/VMT\njQABAgQIECBAgAABAo0SODm9qdvn6nmjQVo9n3RL8p5BNrYNAQIECBAgQIAAAQLNErhXs7rz\nS73ZLWvOT9b+0ifzr7gxq1cnO8z/sbUECBAgQIAAAQIECDRZoOkFUj1btEey4YCDWFeQqqi6\naMDtbUaAAAECBAgQIECAAIGZEXhpzrSeKToj2XORs65nkPZKasKGu5KnJRoBAgQIECBAgAAB\nAgQaJVCFz+uS+p2jKpTWJF9KPpF8uPNat+Bdk9TndyavTTQCBAgQIECAAAECBAg0VmDn9KwK\noquTKoR6U8XTd5K3JQ9ONAIECBAgQIAAAQIEWipQV1ja1jZPh7dINk7qh2NvTjQCBAgQIECA\nAAECBAisavokDfMN8fpZWam+b5ZsmmgECBAgQIAAAQIECBBojcDu6ekJSV0x6r29rvu+fivp\n+GTrRCNAgAABAgQIECBAgEBjBY5Iz7qF0BV5f17y8eQjyaeSmrmupgOvbX6YvCTRCBAgQIAA\nAQIECBAg0DiBA9OjKnyqEHr8Ir2rZ7H2Tr6S1PZPTTQCBAgQIECAAAECBAg0SuDk9KZun9to\nwF7VD8XekrxnwO1tRoAAAQIECBAgQIBAgwSaPknDbhmr+p2jtQOO2Y3ZbnWyw4Db24wAAQIE\nCBAgQIAAgQYJbNCgvszXlXq2aI9kw6R+BHZdra4gVVFVEzZoBFZaYPvs8HErvdMh93dhtq8f\nRtYIECBAgAABAgRaKPDS9LmeKToj2XOR/tczSHslNWHDXcnTEo3ASgvUTIpVqNePE08i9bdd\n56ARIECAAAECBAgsIND0K0inpN/bJEcl+yVXJ2uS65N61qh+NHarZKdku6T+AXlYcm6iEVhp\ngfrfWz0X94qV3vGA+zsx2zX9f/MDUtiMAAECBAgQIDC/QNP/sVRXj45NTk+OTmqmurlXku7I\nurrl6JjkuOSqZLlt4+zglcm9B9xRjUMVaX884PY2I0CAAAECBAgQIEBgBAJNL5C6ZJfmzUGd\nhbpqtEVSRUz9cOzNyUq3B2SHL08GLZA2ybaPSP40GeRZqWymESBAgAABAgQIECCw0gJtKZC6\nbjVrX91aV5mvrZ+VVUD9KPnxfBsMuG5Ntpt7pWqxrz4lH56X1LNQGgECBAgQIECAAAECExJo\n+jTfxbpt8tHkhqQKo7OThSZh2LWz3evzqhEgQIAAAQIECBAg0DKBphdIm2U8v5K8MKmrQ3Vl\n5+nJOUk9k6QRIECAAAECBAgQIEDgFwJNL5D+LD19cHJk8qBkl+SJydeTNyZvTzQCBAgQIECA\nAAECBAj8XKDpBdJT08uaiOGo5Naf93jVqv/Ia81m98XkdUkVURoBAgQIECBAgAABAgRWNb1A\n2iFjXIVQ/b5Rb6uZ656XrE7emtQteBoBAgQIECBAgAABAi0XaHqBdEXG99lJTek9t9WEDb+Z\n1HNJJyULTdyQjzQCBAgQIECAAAECBNog0PQC6bMZxPrNo7ck288zoFdn3XOSuv3uk8lzE40A\nAQIECBAgQIAAgZYKNL1AenfG9ZtJPWt0VfLiZG67OCv2SX6W1LNK1fwe0T0O/i8BAgQIECBA\ngACBVgk0vUCqH3utH2x9Z3Jl8pNkvnZhVj4hOXO+D60jQIAAAQIECBAgQKAdAhu0oJu3pY+v\n7WSxgvCSbLNvUtOAV2GlESBAgAABAgQIECDQMoE2FEi9Q1q30a2r1Q/LagQIECBAgAABAgQI\ntFBgsSsqLeTQZQIECBAgQIAAAQIE2iygQGrz6Os7AQIECBAgQIAAAQJ9Ak2/xe5V6e3mfT0e\nbOG8bHb+YJvaigABAgQIECBAgACBpgg0vUD6wwzU45YwWH+V7yiQlgDnKwQIECBAgAABAgRm\nWaDpBVLNSvex5CnJ6cn7k0Fa/TaSRoAAAQIECBAgQIBAywSaXiB9L+P5jOQLSRVLRyZfTTQC\nBAgQIECAAAECBAj8kkAbJmlYm17/Xqfn7/olASsIECBAgAABAgQIECDQEWhDgVRd/UbyxqQm\nbNg10QgQIECAAAECBAgQIPBLAm0pkKrjxyS7JV+rBY0AAQIECBAgQIAAAQJzBdpUIM3tu2UC\nBAgQIECAAAECBAj0CSiQ+jgsECBAgAABAgQIECDQZgEFUptHX98JECBAgAABAgQIEOgTUCD1\ncVggQIAAAQIECBAgQKDNAgqkNo++vhMgQIAAAQIECBAg0CegQOrjsECAAAECBAgQIECAQJsF\nFEhtHn19J0CAAAECBAgQIECgT0CB1MdhgQABAgQIECBAgACBNgsokNo8+vpOgAABAgQIECBA\ngECfgAKpj8MCAQIECBAgQIAAAQJtFlAgtXn09Z0AAQIECBAgQIAAgT4BBVIfhwUCBAgQIECA\nAAECBNosoEBq8+jrOwECBAgQIECAAAECfQIKpD4OCwQIECBAgAABAgQItFlAgdTm0dd3AgQI\nECBAgAABAgT6BBRIfRwWCBAgQIAAAQIECBBos4ACqc2jr+8ECBAgQIAAAQIECPQJKJD6OCwQ\nIECAAAECBAgQINBmAQVSm0df3wkQIECAAAECBAgQ6BNQIPVxWCBAgAABAgQIECBAoM0CCqQ2\nj76+EyBAgAABAgQIECDQJ6BA6uOwQIAAAQIECBAgQIBAmwUUSG0efX0nQIAAAQIECBAgQKBP\nQIHUx2GBAAECBAgQIECAAIE2CyiQ2jz6+k6AAAECBAgQIECAQJ+AAqmPwwIBAgQIECBAgAAB\nAm0WUCC1efT1nQABAgQIECBAgACBPgEFUh+HBQIECBAgQIAAAQIE2iygQGrz6Os7AQIECBAg\nQIAAAQJ9AgqkPg4LBAgQIECAAAECBAi0WUCB1ObR13cCBAgQIECAAAECBPoEFEh9HBYIECBA\ngAABAgQIEGizgAKpzaOv7wQIECBAgAABAgQI9AkokPo4LBAgQIAAAQIECBAg0GYBBVKbR1/f\nCRAgQIAAAQIECBDoE1Ag9XFYIECAAAECBAgQIECgzQIKpDaPvr4TIECAAAECBAgQINAnoEDq\n47BAgAABAgQIECBAgECbBRRIbR59fSdAgAABAgQIECBAoE9AgdTHYYEAAQIECBAgQIAAgTYL\nKJDaPPr6ToAAAQIECBAgQIBAn4ACqY/DAgECBAgQIECAAAECbRZQILV59PWdAAECBAgQIECA\nAIE+AQVSH4cFAgQIECBAgAABAgTaLKBAavPo6zsBAgQIECBAgAABAn0CCqQ+DgsECBAgQIAA\nAQIECLRZQIHU5tHXdwIECBAgQIAAAQIE+gQUSH0cFggQIECAAAECBAgQaLOAAqnNo6/vBAgQ\nIECAAAECBAj0CSiQ+jgsECBAgAABAgQIECDQZgEFUptHX98JECBAgAABAgQIEOgTUCD1cVgg\nQIAAAQIECBAgQKDNAhu0sPNbps9bJBsltyU3JbcnGgECBAgQIECAAAECLRdoyxWk3TPOJyTX\nJTcklyUXJWuSKpIuSY5Ptk40AgQIECBAgAABAgRaKtCGK0hHZGyP7IzvlXk9P6kiqQqjupK0\nVbJjckhyQHJockqiESBAgAABAgQIECDQMoGmF0gHZjyrODozOTy5IJmvrZeVeyXHJCcnlyfn\nJRoBAgQIECBAgAABAi0SaPotdvtnLC9N6nWh4qiG++7knGSf5Nbk4EQjQIAAAQIECBAgQKBl\nAk0vkHbLeNYtdWsHHNcbs93qZIcBt7cZAQIECBAgQIAAAQINEmh6gXRtxmqPZMMBx6xmuKui\nqiZw0AgQIECAAAECBAgQaJlA0wukkzKeuySnJnsuMrbdZ5DqWaVNktMW2dZHBAgQIECAAAEC\nBAg0VKDpkzTUbHTbJEcl+yVXJ2uS65Nbks2TmsVup2S75K7ksOTcRCNAgAABAgQIECBAoGUC\nTS+QavKFY5PTk6OTvZO5V5LuyLprkprB7rjkqkQjQIAAAQIECBAgQKCFAk0vkLpDWjPZHdRZ\nqKtG9ftHGyf1w7E3JxoBAgQIECBAgAABAgRWNf0ZpPmGeP2srFTfN0s2TTQCBAgQIECAAAEC\nBAi0pkDaPWN9QlJXjG5ILktqprp6Hum25JLk+GTrRCNAgAABAgQIECBAoKUCbbjF7oiM7ZGd\n8b0yr/W7SFUkVWFUt9rVJA07JockBySHJjW5g0aAAAECBAgQIECAQMsEml4gHZjxrOKopu8+\nPLkgma91p/muiRpOTi5Pzks0AgQIECBAgAABAgRaJND0Z5D2z1jWBA31ulBxVMNds92dk+yT\n3JocnGgECBAgQIAAAQIECLRMoOkF0m4Zz7qlbu2A43pjtlud7DDg9jYjQIAAAQIECBAgQKBB\nAk0vkK7NWO2RbDjgmG2Z7aqoqgkcNAIECBAgQIAAAQIEWibQ9ALppIznLsmpydwfiO0d6u4z\nSPWs0ibJab0fek+AAAECBAgQIECAQDsEmj5JQ81Gt01yVLJfcnWyJrk+uSXZPKlZ7HZKtkvu\nSg5Lzk00AgQIECBAgAABAgRaJtD0AqkmXzg2OT05Otk7mXsl6Y6suyapGeyOS65KltvK9beT\nQW/te9hyD+j7BAgQIECAAAECBAgsX6DpBVJXqGayO6izUFeN6vePNk7qh2NvTla61SQP/yu5\n94A7HnS7AXdnMwIECBAgQIAAAQIEliLQlgKp12b9LFTq+avNkrqt7vZkJdsV2dnOQ+zwKdn2\nvCG2tykBAgQIECBAgAABAiMQaPokDV2y3fPmhKSuGN2QXJbUTHVrktuSS5Ljk60TjQABAgQI\nECBAgACBlgq04QrSERnbIzvje2Ve63eRqkiqwqhutatJGnZMDkkOSA5NTkk0AgQIECBAgAAB\nAgRaJtD0AunAjGcVRzV99+HJBcl8rTvNd03UcHJyeeKWtyBoBAgQIECAAAECBNok0PRb7PbP\nYNYEDfW6UHFU412z3Z2T7JPcmhycaAQIECBAgAABAgQItEyg6QXSbhnPuqVu7YDjemO2W53U\nLHQaAQIECBAgQIAAAQItE2h6gXRtxnOPZNDfI9oy21ZRVRM4aAQIECBAgAABAgQItEyg6QXS\nSRnPXZJTk7k/ENs71N1nkOpZpU2S03o/9J4AAQIECBAgQIAAgXYINH2ShpqNbpvkqGS/5Opk\nTXJ9ckuyeVKz2O2UbJfUbyIdlpybaAQIECBAgAABAgQItEyg6QVSTb5wbHJ6cnSydzL3StId\nWXdNUjPYHZdclWgECBAgQIAAAQIECLRQoOkFUndIaya7gzoLddWofv9o46R+OPbmRCNAgAAB\nAgQIECBAgMCqthRIvUNdt9ZVNAIECBAgQIAAAQIECPQJNH2Shr7OWiBAgAABAgQIECBAgMBi\nAgqkxXR8RoAAAQIECBAgQIBAqwSafovdqzKa9czRsO28fKF+YFYjQIAAAQIECBAgQKBFAk0v\nkP4wY/m4JYznX+U7CqQlwPkKAQIECBAgQIAAgVkWaHqBtG8G52PJU5Ka6vv9ySDt4kE2sg0B\nAgQIECBAgAABAs0SaHqB9L0M1zOSLyRVLB2ZfDXRCBAgQIAAAQIECBAg8EsCbZikYW16/Xud\nnr/rlwSsIECAAAECBAgQIECAQEegDQVSdfUbyRuTmrBh10QjQIAAAQIECBAgQIDALwm0pUCq\njh+T7JZ8rRY0AgQIECBAgAABAgQIzBVoU4E0t++WCRAgQIAAAQIECBAg0CegQOrjsECAAAEC\nBAgQIECAQJsFFEhtHn19J0CAAAECBAgQIECgT0CB1MdhgQABAgQIECBAgACBNgsokNo8+vpO\ngAABAgQIECBAgECfgAKpj8MCAQIECBAgQIAAAQJtFlAgtXn09Z0AAQIECBAgQIAAgT4BBVIf\nhwUCBAgQIECAAAECBNosoEBq8+jrOwECBAgQIECAAAECfQIKpD4OCwQIECBAgAABAgQItFlA\ngdTm0dd3AgQIECBAgAABAgT6BBRIfRwWCBAgQIAAAQIECBBos4ACqc2jr+8ECBAgQIAAAQIE\nCPQJKJD6OCwQIECAAAECBAgQINBmAQVSm0df3wkQIECAAAECBAgQ6BNQIPVxWCBAgAABAgQI\nECBAoM0CCqQ2j76+EyBAgAABAgQIECDQJ6BA6uOwQIAAAQIECBAgQIBAmwUUSG0efX0nQIAA\nAQIECBAgQKBPQIHUx2GBAAECBAgQIECAAIE2CyiQ2jz6+k6AAAECBAgQIECAQJ+AAqmPwwIB\nAgQIECBAgAABAm0WUCC1efT1nQABAgQIECBAgACBPgEFUh+HBQIECBAgQIAAAQIE2iygQGrz\n6Os7AQIECBAgQIAAAQJ9AgqkPg4LBAgQIECAAAECBAi0WUCB1ObR13cCBAgQIECAAAECBPoE\nFEh9HBYIECBAgAABAgQIEGizgAKpzaOv7wQIECBAgAABAgQI9AkokPo4LBAgQIAAAQIECBAg\n0GYBBVKbR1/fCRAgQIAAAQIECBDoE1Ag9XFYIECAAAECBAgQIECgzQIKpDaPvr4TIECAAAEC\nBAgQINAnoEDq47BAgAABAgQIECBAgECbBRRIbR59fSdAgAABAgQIECBAoE9AgdTHYYEAAQIE\nCBAgQIAAgTYLKJDaPPr6ToAAAQIECBAgQIBAn4ACqY/DAgECBAgQIECAAAECbRZQILV59PWd\nAAECBAgQIECAAIE+AQVSH4cFAgQIECBAgAABAgTaLKBAavPo6zsBAgQIECBAgAABAn0CCqQ+\nDgsECBAgQIAAAQIECLRZQIHU5tHXdwIECBAgQIAAAQIE+gQUSH0cFggQIECAAAECBAgQaLOA\nAqnNo6/vBAgQIECAAAECBAj0CSiQ+jgsECBAgAABAgQIECDQZgEFUptHX98JECBAgAABAgQI\nEOgTUCD1cVggQIAAAQIECBAgQKDNAgqkNo++vhMgQIAAAQIECBAg0CegQOrjsECAAAECBAgQ\nIECAQJsFFEhtHn19J0CAAAECBAgQIECgT0CB1MdhgQABAgQIECBAgACBNgsokNo8+vpOgAAB\nAgQIECBAgECfgAKpj8MCAQIECBAgQIAAAQJtFlAgtXn09Z0AAQIECBAgQIAAgT4BBVIfhwUC\nBAgQIECAAAECBNosoEBq8+jrOwECBAgQIECAAAECfQIb9C21Y2HLdHOLZKPktuSm5PZEI0CA\nAAECBAgQIECg5QJtuYK0e8b5hOS65IbksuSiZE1SRdIlyfHJ1olGgAABAgQIECBAgEBLBdpw\nBemIjO2RnfG9Mq/nJ1UkVWFUV5K2SnZMDkkOSA5NTkk0AgQIECBAgAABAgRaJtD0AunAjGcV\nR2cmhycXJPO19bJyr+SY5OTk8uS8RCNAgAABAgQIECBAoEUCTb/Fbv+M5aVJvS5UHNVw352c\nk+yT3JocnGgECBAgQIAAAQIECLRMoOkF0m4Zz7qlbu2A43pjtlud7DDg9jYjQIAAAQIECBAg\nQKBBAk0vkK7NWO2RbDjgmNUMd1VU1QQOGgECBAgQIECAAAECLRNoeoF0UsZzl+TUZM9Fxrb7\nDFI9q7RJctoi2/qIAAECBAgQIECAAIGGCjR9koaajW6b5Khkv+TqZE1yfXJLsnlSs9jtlGyX\n3JUclpybaAQIECBAgAABAgQItEyg6QVSTb5wbHJ6cnSydzL3StIdWXdNUjPYHZdclWgECBAg\nQIAAAQIECLRQoOkFUndIaya7gzoLddWofv9o46R+OPbmRCNAgAABAgQIECBAgMCqpj+DNN8Q\nr5+Vler7ZsmmiUaAAAECBAgQIECAAIHWFEi7Z6xPSOqK0Q3JZUnNVFfPI92WXJIcn2ydaAQI\nECBAgAABAgQItFSgDbfYHZGxPbIzvlfmtX4XqYqkKozqVruapGHH5JDkgOTQpCZ30AgQIECA\nAAECBAgQaJlA0wukAzOeVRzV9N2HJxck87XuNN81UcPJyeXJeYlGgAABAgQIECBAgECLBJpe\nIO2fsawJGup17SLjWrPdnZPsk1yRHJwsp0Cq55uentw7GaQ9cpCNbEOAAAECBAgQIECAwGgF\nml4g7Ra+uqVuseKoV/jGLKxOduhduYT3v5Lv1NTigxZIdQVLI0CAAAECBAgQIEBgwgJ1paPJ\n7dp0bo9kwwE7uWW2q6KqJnBYTqurVpsnNZX4IPn1bKcRIECAAAECBAgQIDBhgaYXSCfFd5fk\n1GTuD8T20nefQapnlTZJTuv90HsCBAgQIECAAAECBNoh0PRb7E7JMG6THJXsl1ydrEmuT25J\n6ipPzWK3U7JdcldyWHJuohEgQIAAAQIECBAg0DKBphdINfnCsUk9D3R0sncy90rSHVl3TVIz\n2B2XXJVoBAgQIECAAAECBAi0UKDpBVJ3SOuZoIM6C3XVqH7/qJ4Nqh+OvTnRCBAgQIAAAQIE\nCBAgsKotBVLvUNetdRWNAAECBAgQIECAAAECfQJNn6Shr7MLLNRU3I9NNl3gc6sJECBAgAAB\nAgQIEGiJQFsKpBdlPN+dvD55WGdsN8vrR5MfJhcmdVXpg0ndfqcRIECAAAECBAgQINBCgabf\nYlcF4D8lz+8Z27/I+7pi9D+SFyafS76b7J68LHlIUpM51AQPGoEmCTw8nan/QDDJWRrfn+O/\nr0mo+kKAAAECBAg0S6DpBdKrMlxVHJ2VvDN5cPLfk88mD00OTP4x6bY35c1fJy9OPtxd6ZVA\nQwRqyvv1k09MqD+/k+PulSiQJjQADkuAAAECBAgQ+GQI6jePasa6bquCqa4OzfePxLridGXy\nt8k421NysDqneh5Ka67AielaZVLtOzlwZVLtxBy4ohEgQIAAAQIEplagCoImt53SubqF7sc9\nnayrRz9Lvtmzrvu21l+W7Nhd4ZUAAQIECBAgQIAAgfYINL1AqqtBz0p6ryDtm+Xq96OSua1u\nOXx8cvncDywTIECAAAECBAgQINB8gaYXSKdnCLdM6la7FyRvSN6R1Kx1VSi9JOm2snhvUrPb\nfT7RCBAgQIAAAQIECBAg0CiBKnpOS+r5nm6uy/ttk//TWfflvJ6aXN1Z/nRex908gzRu8ckc\n78QctjKp5hmkSck7LgECBAgQIDAzAk2fxa6eKdo/qatHT00uTc5Ivp/8eVKTIjw3eVLyo+Rd\nSf1WkkaAAAECBAgQIECAQAsFml4gdYe0fgup0ttuysIrkrrKVJM5XJn8NNEIECBAgAABAgQI\nEGipQFsKpMWGtztz3WLb+IwAAQIECBAgQIAAgRYI1NUTjQABAgQIECBAgAABAgQioEDyZ0CA\nAAECBAgQIECAAIGOgALJnwIBAgQIECBAgAABAgQ6AgokfwoECBAgQIAAAQIECBDoCCiQ/CkQ\nIECAAAECBAgQIECgI6BA8qdAgAABAgQIECBAgACBjoACyZ8CAQIECBAgQIAAAQIEOgIKJH8K\nBAgQIECAAAECBAgQ6AgokPwpECBAgAABAgQIECBAoCOgQPKnQIAAAQIECBAgQIAAgY6AAsmf\nAgECBAgQIECAAAECBDoCCiR/CgQIECBAgAABAgQIEOgIKJD8KRAgQIAAAQIECBAgQKAjoEDy\np0CAAAECBAgQIECAAIGOgALJnwIBAgQIECBAgAABAgQ6AgokfwoECBAgQIAAAQIECBDoCCiQ\n/CkQIECAAAECBAgQIECgI6BA8qdAgAABAgQIECBAgACBjoACyZ8CAQIECBAgQIAAAQIEOgIK\nJH8KBAgQIECAAAECBAgQ6AgokPwpECBAgAABAgQIECBAoCOgQPKnQIAAAQIECBAgQIAAgY6A\nAsmfAgECBAgQIECAAAECBDoCCiR/CgQIECBAgAABAgQIEOgIKJD8KRAgQIAAAQIECBAgQKAj\noEDyp0CAAAECBAgQIECAAIGOgALJnwIBAgQIECBAgAABAgQ6AgokfwoECBAgQIAAAQIECBDo\nCAxbIL0r3/utZEOCBAgQIECAAAECBAgQaJrAsAXSbwbgtOTq5B3J4xKNAAECBAgQIECAAAEC\njRAYtkB6Snr9J8lVyWuTryYXJrVum0QjQIAAAQIECBAgQIDAzAoMWyBdl54el+yRPCb538kD\nkmOTuqp0evKCxC14QdAIECBAgAABAgQIEJgtgWELpN7efSMLr092TH49qeeTnpx8LLkmeXvy\n8EQjQIAAAQIECBAgQIDATAgsp0DqdvChebN38vSkbrO7O6krTXXb3UXJEYlGgAABAgQIECBA\ngACBqRdYaoG0dXr2x8mXk28nb07u33l9WF4fnVTh9M/JkckrEo0AAQIECBAgQIAAAQJTLTBs\ngXRAevOJpG6he2eya3Jy8uzkIclfJpcm1S5LXv3zd6tWPavz6oUAAQIECBAgQIAAAQJTK7DB\nkGf2N9m+CqEvJR9IPprcnCzU7soHVyQXLLSB9QQIECBAgAABAgQIEJgWgWELpHfnxD+Z1LNF\ng7Trs9GvDLKhbQgQIECAAAECBAgQIDBpgWFvsauZ6ao4qlvm6hmjbts+bz6YuJWuK+KVAAEC\nBAgQIECAAIGZExi2QKpC6IzkrGTPnt7unPcv66x/c896bwkQIECAAAECBAgQIDAzAsMWSMek\nZ/smdavdp3t6+a95v0/yxeR/JE9NNAIECBAgQIAAAQIECMyUwDAF0nrp2W8l/5TUFN8/THrb\nZ7LwouSnyYt7P/CeAAECBAgQIECAAAECsyAwTIF033ToPslnF+nYtfns35MdF9nGRwQIECBA\ngAABAgQIEJhKgWEKpFvSg28nj1ukJxvms52TSxbZxkcECBAgQIAAAQIECBCYSoFhCqTqwNnJ\nq5KDamFO2yzLxydbJzWJg0aAAAECBAgQIECAAIGZEhj2d5COSO/2SE5J/jL5ZnJTUrPbPSnZ\nMvn75FOJRoAAAQIECBAgQIAAgZkSGLZAui69e0byzuTXk/2Tmryh2prkjcl7a0EjQIAAAQIE\nCBAgQIDArAkMWyBV/25LXtnp6BZ5rQkZrkjqGSWNAAECBAgQIECAAAECMyuwlAKpt7M3Z+Fr\nvSu8J0CAAAECBAgQIECAwKwKLKVAemY6+7Jkm6Sm/e7eYpe3v2gn5t1Jv1jyhgABAgQIECBA\ngAABAjMgMGyB9ML06aMD9OsLA2xjEwIECBAgQIAAAQIECEyVwLAF0l/n7G9PDklqyu+atGG+\n9rP5VlpHgAABAgQIECBAgACBaRYYpkDaNB15eFK/dVTTfGsECBAgQIAAAQIECBBolMAwPxT7\no/S8ZqqrK0gaAQIECBAgQIAAAQIEGicwTIFUt83Vs0UHJcN8r3FoOkSAAAECBAgQIECAQDMF\nhi10XhWGO5J/TPZO6jeQ7j9PanY7jQABAgQIECBAgAABAjMlMGyBdEZ6V9N7vyCpq0lXJD+c\nJ6/POo0AAQIECBAgQIAAAQIzJTDMJA3Vsa8m1wzQw28NsI1NCBAgQIAAAQIECBAgMFUCwxZI\n/22qzt7JECBAgAABAgQIECBAYAUFhr3FrvfQ9ZzRrsmenZU1DbhGgAABAgQIECBAgACBmRUY\n9gpSdbQmZnhb8jvJesm/JnslH0q+kdSPya5NprVtmRPbItkouS25KTF1eRA0AiMWeHT2/8jk\nWSM+zmK7f1c+/N+LbeAzAgQIECBAoN0CwxZI24XrgqRmrqvnjDZJuq2KpcOT/ZMnJD9OpqXt\nnhN5TfL8ZOt5TurSrDsreVPyg3k+t4oAgeUL3C+7qP8o8Ybl72pJezgk33rUkr7pSwQIECBA\ngACBBQT+IevrasuvdT7/WF6/2Hm/fl6PSu5OXt1ZNw0vR3TOqc6rZt07L/l48pHkU8mXk2uT\n+rxm5HtJMu72lBywjn/vcR/Y8cYqcGKOVplU+04OXJlUm/TxT0zHKxoBAgQIECBAYMUEbsie\nem9P6S2Q6iAbJnXL2gdqYQragTmHKjyqEHr8IudTV7/2Tr6S1PZPTcbZFEjj1J7csU7MoSuT\napMuUCZ9/BMDX9EIECBAgAABAgsKDDNJw+bZSz2/c/GCe1u16s589o3OdotsNraP6na/un2u\nXi9Y5KhVFJ2T7JPcmhycaAQIECBAgAABAgQItExgmALplth8L3niIkZVRD06uWiRbcb50W45\n2PnJ2gEPemO2W53sMOD2NiNAgAABAgQIECBAoEECwxRI1e26Ve33kz9KNkt6Wz2A/cGkZoj7\nTO8HE3xfzxbtkdStf4O0ukJWRdW0FHiDnLNtCBAgQIAAAQIECBBYIYFhC6Q/zXGvSWqq3KuT\nelZn5+S05JLkt5ITk88m09BOyknskpya7LnICdUzSDVV+ZlJzcxX/dEIECBAgAABAgQIEGiZ\nwLDTfN8Un5rsoGar+92kbqmrVoXRDcmhyd8l09JOyYlsk9T57pdUUbcmuT6pWwbr/LdKdkq2\nS+5KDkvOTTQCBAgQIECAAAECBAgMLFDTetfVo7qKtP3A35rMhnWeH06qQKoJGXpT05bX7Fr1\n47cPTibRzGI3CfXxH/PEHLIyqVZ/55VJtUkf/8R0vKIRIECAAAECBBYUGPYKUu+OfpqFmiGu\nMu2tzvGgzknWVaN6Tmrj5Lrk5kQjQIAAAQIECBAgQIDAqmGfQWoCWV35qlTfa6KJTRONAAEC\nBAgQIECAAAECq4a9gnR8zLYdwO0j2aYyLW33nMhrkucnW89zUnWF6azkTckP5vncKgIECBAg\nQIAAAQIEWiAwbIH0nJg8ZB0uNQnCF9axzTg/PiIHO7JzwCvzWr+LdENyW1K32tUkDTsmhyQH\nJIcmNbmDRoAAAQIECBAgQIBAywSGLZDqSszc2/Jq+UHJY5Jjk7pyVK/T0A7MSVRxVNN3H55c\nkMzX1svKmub7mOTk5PLkvEQjQIAAAQIECBAgQKBFAsMWSAtNaFDTZv9n8o3kq8kXkzOSSbf9\ncwJ1+1y9rl3kZGpWu3OSfZIrkoOT5RZIu2YfGyaDtEcMspFtCBAgQIAAAQIECBAYrcCwBdK6\nzubCbFAFRt2KNw0F0m45j7qlbrHiKB//ot2Yd6uTHX6xZmlvHpavlcXcq21L25tvESBAgAAB\nAgQIECAwFoGVLpA2ylnfP6kfZ52Gdm1OYo+kruTcOcAJbZltqqiqySiW076bL9cMeYP6Pinb\n1iQRGgECBAgQIECAAAECExQY9gpH/XbQfebJfbNu5+QDSRUG/55MQzspJ7FLcmqy5yIn1H0G\nqZ5V2iQ5bZFtB/3oR9nw1gFzx6A7tR0BAgQIECBAgAABAqMTGPQKR/cMvpk3D+kuLPBaz/z8\nnwU+G/fqU3LAupp1VLJfcnWyJrk+uSXZPNkq2SnZLrkrOSw5N9EIECBAgAABAgQIEGiZwLAF\nUk1k8O15jH6WdVVw1PM7JyQLTeaQj8baavKFmlHv9OToZO9k7pWkunpzTXJMclxyVaIRIECA\nAAECBAgQINBCgWELpFfMqFFd1Tqoc+511WiLpG4XvC6ZlmIup6IRIECAAAECBAgQIDBJgWEL\npEme60odu650VTQCBAgQIECAAAECBAj0CQxbINXsbtv27WGwhb/PZjVRwrS19XNC9UzVD5Ob\npu3knA8BAgQIECBAgAABAuMVGLZAqimwH5PUTHXVfppUYbFVUjPBLdS+vNAHY1hfkzS8Oakp\nyH+3c7y6xe5/dZZrfT1DVT9ye1JSzyJpBAgQIECAAAECBAi0UGDYAullMfrX5HPJkUlNylAz\nv907eWby9qRuX3t+Uuu7rSZCmER7QA56QVI//FoTTFSr30Sq8398UoXR55O6gvSk5G3Jw5LX\nJPWZRoAAAQIECBAgQIBAiwSGLZDeF5uvJi9IeguIn2S5fkPo68nFyW8n70km3d6YE6ji6A1J\nzWZX7Y+SKo7emxyRfC+pVkXe3ySHJh9LPpNoBAg0R6AmZrlf8qwJdqn+38jvT/D4Dk2AAAEC\nBAisoEDdirY2eek69lm/IfThdWwzro/Pz4EuTe7Vc8Aqfm5M6krS3FbbXZm8de4HI15+SvZf\nU5JXkaY1V+DEdK0yqfadHLgyqTbp49d/vKn/sFNXtyeROvZ7E40AAQIECBCYYoFhriDVPyhu\nS3ZYpD9VdDw0qatM09Cqf3Uu9Q+TbqvnpqoIurO7oue1trsmeXjPOm8JEGiGQP0HkEuSSf3v\n+8Qcu/7fSI0AAQIECBCYYoH6B8OgrQqLzyR121o9rzO3bZIVxyc1y13dbjcN7T9yEs9J7t9z\nMufk/SOSrXvWdd8+MG+ekPxnd4VXAgQIECBAgAABAgTaIzBMgVQqb0nqKlLNSveFpJ4zqud2\n6pa6y5KaJa6eU/p4Mg3thJxE3Rp4YbJX54Tq/Kpw+r/J9p119fK4pIqnulJWt+FpBAgQIECA\nAAECBAi0TGCYW+yKZnXyxOT9SRUceyfdVg8evzqpomRa2r/nRP4g+bukCrqvJVUcfSv5veTy\n5LtJXWHaJqnngKoPtZ1GgAABAgQIECBAgEDLBIYtkIrn2mTfpK4+1a1qdUvdJcnVSRUY09Y+\nkBP6ZPInyUuTg5P6gdhq9TzAI5Pbk48kRydfTzQCBAgQIECAAAECBFoosJQCqcu0Ud5UgfHj\nZE2yaVKFxjS2urr1hk6qOKpnjWqyiTuSOvebEo0AAQIECBAgQIAAgZYLDPsMUnHtmNTzO1UM\n1S139eOq1T6UHJVU4TTN7ac5ubra9W9JXS1SHAVBI0CAAAECBAgQIEBg1aoNhkTYLttfkNQz\nO/UcT81c123r5c3hyf7JE5K6sqQRIECAAAECBAgQIEBgZgSGvYL0zvTsPklN0PCopIqlbjsg\nb+oZnkcnL++u9EqAAAECBAgQIECAAIFZERi2QHpWOva3yb/O08G6de3I5ObkyfN8bhUBAgQI\nECBAgAABAgSmWmCYAmnz9GTL5OJFenRnPvtGZ7tFNvMRAQIECBAgQIAAAQIEpk9gmALplpz+\n95InLtKNKqLqFruLFtnGRwQIECBAgAABAgQIEJhKgWEKpOrAp5LfT/4o2SzpbffLwgeTLZLP\n9H7gPQECBAgQIECAAAECBGZBYNgC6U/TqWuSdyU1VfZTk52T05L6sdjfSk5MPptoBAgQIECA\nAAECBAgQmCmBYQuk+s2gxyfHJxsn2ybbJ1UYVTs0qStMGgECBAgQIECAAAECBGZOYNjfQaoO\n/jD5g+Q1yU7JA5PLk7qypBEgQIAAAQIECBAgQGBmBYYtkGqK7x8lf5HclVzaSV40AgQIECBA\ngAABAgQIzLbAMLfYbZSu1g/APi+p4kgjQIAAAQIECBAgQIBAowSGKZB+kp7fmmySrNcoBZ0h\nQIAAAQIECBAgQIBABIYpkO7O9i/oqJ2R1/+SPDSp3z6am7rapBEgQIAAAQIECBAgQGCmBIYp\nkKpjb0vqClLdZndm8t3k5nnyhqzTCBAgQIAAAQIECBAgMFMCw07ScFF6d+MAPbx4gG1sQoAA\nAQIECBAgQIAAgakSGLZA+v2pOnsnQ4AAAQIECBAgQIAAgRUUWNctdnvnWM9cwePZFQECBAgQ\nIECAAAECBKZWYF1XkN6ZM98iecicHuya5fsnn5+z3iIBAgQIECBAgAABAgRmVmBdV5AW6thR\n+eDshT60ngABAgQIECBAgAABArMosNQCaRb76pwJECBAgAABAgQIECCwqIACaVEeHxIgQIAA\nAQIECBAg0CYBBVKbRltfCRAgQIAAAQIECBBYVECBtCiPDwkQIECAAAECBAgQaJOAAqlNo62v\nBAgQIECAAAECBAgsKrCuab7ry1smb52zl0d1lueu7272mbw5q7vglQABAgQIECBAgAABArMg\nMEiBVL+D9OcLdGah9XdkewXSAmhWEyBAgAABAgQIECAwnQLrKpAOz2nfbwmnvnoJ3/EVAgQI\nECBAgAABAgQITFRgXQXSJyZ6dg5OgAABAgQIECBAgACBMQqYpGGM2A5FgAABAgQIECBAgMB0\nCyiQpnt8nB0BAgQIECBAgAABAmMUUCCNEduhCBAgQIAAAQIECBCYbgEF0nSPj7MjQIAAAQIE\nCBAgQGCMAgqkMWI7FAECBAgQIECAAAEC0y2gQJru8XF2BAgQIECAAAECBAiMUUCBNEZshyJA\ngAABAgQIECBAYLoFFEjTPT7OjgABAgQIECBAgACBMQookMaI7VAECBAgQIAAAQIECEy3gAJp\nusfH2REgQIAAAQIECBAgMEYBBdIYsR2KAAECBAgQIECAAIHpFlAgTff4ODsCBAgQIECAAAEC\nBMYooEAaI7ZDESBAgAABAgQIECAw3QIKpOkeH2dHgAABAgQIECBAgMAYBRRIY8R2KAIECBAg\nQIAAAQIEpltAgTTd4+PsCBAgQIAAAQIECBAYo4ACaYzYDkWAAAECBAgQIECAwHQLKJCme3yc\nHQECBAgQIECAAAECYxRQII0R26EIECBAgAABAgQIEJhuAQXSdI+PsyNAgAABAgQIECBAYIwC\nCqQxYjsUAQIECBAgQIAAAQLTLaBAmu7xcXYECBAgQIAAAQIECIxRQIE0RmyHIkCAAAECBAgQ\nIEBgugUUSNM9Ps6OAAECBAgQIECAAIExCiiQxojtUAQIECBAgAABAgQITLeAAmm6x8fZESBA\ngAABAgQIECAwRgEF0hixHYoAAQIECBAgQIAAgekWUCBN9/g4OwIECBAgQIAAAQIExiigQBoj\ntkMRIECAAAECBAgQIDDdAgqk6R4fZ0eAAAECBAgQIECAwBgFFEhjxHYoAgQIECBAgAABAgSm\nW0CBNN3j4+wIECBAgAABAgQIEBijwAZjPNa0HGrLnMgWyUbJbclNye2JRoAAAQIECBAgQIBA\nywXacgVp94zzCcl1yQ3JZclFyZqkiqRLkuOTrRONAAECBAgQIECAAIGWCrThCtIRGdsjO+N7\nZV7PT6pIqsKoriRtleyYHJIckByanJJoBAgQIECAAAECBAi0TKDpBdKBGc8qjs5MDk8uSOZr\n62XlXskxycnJ5cl5iUaAAAECBAgQIECAQIsEmn6L3f4Zy0uTel2oOKrhvjs5J9knuTU5ONEI\nECBAgAABAgQIEGiZQNMLpN0ynnVL3doBx/XGbLc62WHA7W1GgAABAgQIECBAgECDBJpeIF2b\nsdoj2XDAMasZ7qqoqgkcNAIECBAgQIAAAQIEWibQ9ALppIznLsmpyZ6LjG33GaR6VmmT5LRF\ntvURAQIECBAgQIAAAQINFWj6JA01G902yVHJfsnVyZrwxkm4AAA3WklEQVTk+uSWZPOkZrHb\nKdkuuSs5LDk30QgQIECAAAECBAgQaJlA0wukmnzh2OT05Ohk72TulaQ7su6apGawOy65KtEI\nECBAgAABAgQIEGihQNMLpO6Q1kx2B3UW6qpR/f7Rxkn9cOzNiUaAAAECBAgQIECAAIFVbSmQ\neoe6bq2raAQIECBAgAABAgQIEOgTaGOBVDPV1RWkjZLbkpuS2xONAAECBAgQIECAAIGWC7Sl\nQNo94/ya5PnJ1vOMed2Cd1bypuQH83xu1coIPDm7qR/jnWT7dA7+pUmegGMTIECAAAECBAhM\nr0AbCqQjwn9kZwiuzGv9cOwNSV09qitJNYvdjskhyQHJoUnNfqetvMCrs8t9k4tXftcD7fFX\ns9VDEgXSQFw2IkCAAAECBAi0T6DpBdKBGdIqjur3jQ5PLkjma93fQaqZ7E5OLk/OS5bTatrw\nDQfcwbYDbjfrm5VzjcUrJtSRE3PcOgeNAAECBAgQIECAwLwCTS+Q9k+v6/a5el07r8A9K2s6\n8HOSuv3riuTgZDkF0sPy/e8kGgECBAgQIECAAAECMyTQ9AJpt4xF3VK3WHHUO1w3ZmF1skPv\nyiW8/26+8+Bk0CtI9YzUqUs4jq8QIECAAAECBAgQILCCAk0vkK6N1R5JFSp3DuBWM9xVUXX8\nANuua5M169qg5/MH9rz3lgABAgQIECBAgACBCQnca0LHHddhT8qBdknq6syeixy0nkvZK6nn\nYzZJTks0AgQIECBAgAABAgRaJtD0K0g1G902yVHJfsnVSV3ZuT6pH4vdPKlZ7HZKalKFu5LD\nknMTjQABAgQIECBAgACBlgk0vUCqyReOTU5Pjk72TuZeSboj665JjkmOS65KNAIECBAgQIAA\nAQIEWijQ9AKpO6Q1k91BnYW6alS/f7Rxcl1yc6IRIECAAAECBAgQIEBgVVsKpN6hrlvrKt22\ndd7cP/l28rPuSq8ECBAgQIAAAQIECLRPoOmTNAwyov89G30rud8gG9uGAAECBAgQIECAAIHm\nCjT9ClJN2b3pOoav+5tHT8x23StL9RzSmnV8z8cECBAgQIAAAQIECDRMoOkF0gczXo8dcMxq\niu9u+6u8ObK74JUAAQIECBAgQIAAgXYINL1Aek+GsWaxqwkZzkjqVrq57RlZ8aTkncmPOh+a\n5rsD4YUAAQIECBAgQIBAmwTaUCB9MQNav4f0nOSs5N1JTf/dbW/NmyqQ6orRDd2VXgkQIECA\nAAECBAgQaJ9AGyZp+EaGtQqgv0vqd47+Jek+d5S3GgECBAgQIECAAAECBO4RaEOBVD1dm9Rs\ndc9OHpl8LXlxohEgQIAAAQIECBAgQOAXAm0pkLod/lze1Mx2n0k+nNStd1smGgECBAgQIECA\nAAECBFr5Q7E3ZtxflHw8qeeRNk80AgQIECBAgAABAgQIrGrbFaTeIf/7LNQU4P+YfD65M9EI\nECBAgAABAgQIEGixQNNnsVvX0F6eDQ5c10Y+J0CAAAECBAgQIECgHQJtvoLUjhHWSwIECBAg\nQIAAAQIEBhZQIA1MZUMCBAgQIECAAAECBJouoEBq+gjrHwECBAgQIECAAAECAwsokAamsiEB\nAgQIECBAgAABAk0XUCA1fYT1jwABAgQIECBAgACBgQUUSANT2ZAAAQIECBAgQIAAgaYLKJCa\nPsL6R4AAAQIECBAgQIDAwAIKpIGpbEiAAAECBAgQIECAQNMFFEhNH2H9I0CAAAECBAgQIEBg\nYAEF0sBUNiRAgAABAgQIECBAoOkCCqSmj7D+ESBAgAABAgQIECAwsIACaWAqGxIgQIAAAQIE\nCBAg0HQBBVLTR1j/CBAgQIAAAQIECBAYWECBNDCVDQkQIECAAAECBAgQaLqAAqnpI6x/BAgQ\nIECAAAECBAgMLKBAGpjKhgQIECBAgAABAgQINF1AgdT0EdY/AgQIECBAgAABAgQGFlAgDUxl\nQwIECBAgQIAAAQIEmi6gQGr6COsfAQIECBAgQIAAAQIDCyiQBqayIQECBAgQIECAAAECTRdQ\nIDV9hPWPAAECBAgQIECAAIGBBRRIA1PZkAABAgQIECBAgACBpgsokJo+wvpHgAABAgQIECBA\ngMDAAgqkgalsSIAAAQIECBAgQIBA0wUUSE0fYf0jQIAAAQIECBAgQGBgAQXSwFQ2JECAAAEC\nBAgQIECg6QIKpKaPsP4RIECAAAECBAgQIDCwwAYDb2lDAgQIEFiOwDb58oOS/7mcnSzzu5/M\n97+4zH34OgECBAgQaLSAAqnRw6tzBAhMkcDDcy7bJ7tP6Jx2zXEfmCiQJjQADkuAAAECsyGg\nQJqNcXKWBAg0Q+CadOM3JtSVE3Pc9SZ0bIclQIAAAQIzI+AZpJkZKidKgAABAgQIECBAgMCo\nBRRIoxa2fwIECBAgQIAAAQIEZkZAgTQzQ+VECRAgQIAAAQIECBAYtYACadTC9k+AAAECBAgQ\nIECAwMwIKJBmZqicKAECBAgQIECAAAECoxZQII1a2P4JECBAgAABAgQIEJgZAQXSzAyVEyVA\ngAABAgQIECBAYNQCCqRRC9s/AQIECBAgQIAAAQIzI6BAmpmhcqIECBAgQIAAAQIECIxaQIE0\namH7J0CAAAECBAgQIEBgZgQUSDMzVE6UAAECBAgQIECAAIFRCyiQRi1s/wQIECBAgAABAgQI\nzIyAAmlmhsqJEiBAgAABAgQIECAwagEF0qiF7Z8AAQIECBAgQIAAgZkRUCDNzFA5UQIECBAg\nQIAAAQIERi2gQBq1sP0TIECAAAECBAgQIDAzAgqkmRkqJ0qAAAECBAgQIECAwKgFFEijFrZ/\nAgQIECBAgAABAgRmRkCBNDND5UQJECBAgAABAgQIEBi1gAJp1ML2T4AAAQIECBAgQIDAzAgo\nkGZmqJwoAQIECBAgQIAAAQKjFlAgjVrY/gkQIECAAAECBAgQmBkBBdLMDJUTJUCAAAECBAgQ\nIEBg1AIKpFEL2z8BAgQIECBAgAABAjMjsMHMnKkTJbB8gV2zi0cmv7H8XS1pD5vnW99a0jd9\niQABAgQIECBAYCwCCqSxMDvIlAhUgXJz8icTOp935Lh1DhoBAgQIECBAgMCUCiiQpnRgnNbI\nBG7Lnj86sr0vvuOjFv/YpwQIECBAgAABApMW8AzSpEfA8QkQIECAAAECBAgQmBoBBdLUDIUT\nIUCAAAECBAgQIEBg0gJusZv0CIz3+AfmcC8e7yH7jrZHli7rW2OBAAECBAgQIECAwBQJKJCm\naDDGcCrPzTFqFrezxnCs+Q7xrKx80HwfWEeAAAECBAgQIEBgGgTaWCBtGfgtko2SemD/puT2\npC3t39LRQyfU2X0ndFyHJUCAAAECBAgQIDCQQFueQdo9Gick1yU3JHWb10XJmqSKpEuS45Ot\nE40AAQIECBAgQIAAgZYKtOEK0hEZ2yM743tlXs9PqkiqwqiuJG2V7JgckhyQ1NWVUxKNAAEC\nBAgQIECAAIGWCTS9QKpJCao4OjM5PLkgma+tl5V7JcckJyeXJ+clGgECBAgQIECAAAECLRJo\n+i12+2csL03qdaHiqIb77uScZJ/k1uTgRCNAgAABAgQIECBAoGUCTS+Qdst41i11awcc1xuz\n3epkhwG3txkBAgQIECBAgAABAg0SaPotdtdmrOq3dzZM7hxg3GqGuyqqasIGjQABAk0S2D6d\nqect3zPBTv1Tjv0vEzy+QxMgQIAAgXUKNL1AOikCH0pOTY5OvpzM1+oZpF9L3pZskpyWaAQI\nEGiSwEPSmW2TmpxmEm3PHHSjRIE0CX3HJECAAIGBBZpeINVsdNskRyX7JVcna5Lrk1uSzZOa\nxW6nZLvkruSw5NxEI0CAQNMEvp8OHTShTp2Y49Z/jNIIECBAgMBUCzS9QKrJF45NTk/qCtLe\nSf1XzN52RxauSWoGu+OSqxKNAAECBAgQIECAAIEWCjS9QOoOac1k1/2vpnXVqG4x2TipH469\nOdEIECBAgAABAgQIECCwqumz2M03xOtnZaX6vlmyaaIRIECAAAECBAgQIECgNQXS7hnrE5K6\nYnRDcllyUVLPI92WXJIcn2ydaAQIECBAgAABAgQItFSgDbfYHZGxPbIzvlfmtX4XqYqkKozq\nVruapKGmvj0kOSA5NKnJHTQCBAgQIECAAAECBFom0PQC6cCMZxVHZyaHJxck87WaWWmvpCZq\nODm5PDkvWU67d75ct/IN0mpbjQABAgQIECBAgACBCQs0vUDaP741QUO9rl3Euma7OyfZJ7ki\nOThZToH00Hz/20kbn/FKtzUCBAgQIECAAAECsynQ9AJptwxL3VK3WHHUO3I3ZmF1skPvyiW8\nr2ea9kgGvTL0mGz7viUcx1cIECBAgAABAgQIEFhBgaYXSNfGqgqVDZM7B3DbMttUUVUTNiy3\nXTjEDga9FW+IXdqUAAECBAgQIECAAIFhBZp+C9hJAdklOTWZ+wOxvVbdZ5DqWaVNktN6P/Se\nAAECBAgQIECAAIF2CDT9CtIpGcZtkqOS/ZKrkzXJ9cktyeZJzWK3U7JdcldyWHJuohEgQIAA\nAQIECBAg0DKBphdINfnCscnpydHJ3sncK0l3ZN01Sc1gd1xyVaIRIECAAAECBAgQINBCgaYX\nSN0hrZnsDuos1FWj+v2jjZP64dibE40AAQIECBAgQIAAAQKr2lIgdYe6nrmqW+sq87WaLKEK\nqB8lP55vA+sIECBAgAABAgQIEGiuQNMnaaiR2zb5aHJDUoXR2cnTkvnarllZ271+vg+tI0CA\nAAECBAgQIECg2QJNL5A2y/B9JXlhUleHaoKGpyfnJPVMkkaAAAECBAgQIECAAIFfCDS9QPqz\n9PTByZHJg5Ka8vuJydeTNyZvTzQCBAgQIECAAAECBAj8XKDpBdJT08uaiOGo5Naf93jVqv/I\na81m98XkdUkVURoBAgQIECBAgAABAgRWNb1A2iFjXIVQ/b5Rb6uZ656XrE7emtQteBoBAgQI\nECBAgAABAi0XaHqBdEXG99lJTek9t9WEDb+Z1HNJJyULTdyQjzQCBAgQIECAAAECBNog0PQC\n6bMZxPrNo7ck288zoFdn3XOSuv3uk8lzE40AAQIECBAgQIAAgZYKNL1AenfG9ZtJPWt0VfLi\nZG67OCv2SX6W1LNK1da758X/JUCAAAECBAgQIECgTQJNL5Dqx173TN6ZXJn8JJmvXZiVT0jO\nnO9D6wgQIECAAAECBAgQaIfABi3o5m3p42s7WawgvCTb7JvUNOBVWGkECBAgQIAAAQIECLRM\noA0FUu+Q1m1062r1w7IaAQIECBAgQIAAAQItFFjsikoLOXSZAAECBAgQIECAAIE2CyiQ2jz6\n+k6AAAECBAgQIECAQJ+AAqmPwwIBAgQIECBAgAABAm0WUCC1efT1nQABAgQIECBAgACBPgEF\nUh+HBQIECBAgQIAAAQIE2iygQGrz6Os7AQIECBAgQIAAAQJ9AgqkPg4LBAgQIECAAAECBAi0\nWaBtv4PU5rHWdwIECExS4DE5+C7Jsyd4Eu/Ksd86weM7NAECBAjMgIACaQYGySkSIECgAQJb\npA+3Ja+fUF9eneM+ckLHdlgCBAgQmCEBBdIMDZZTJUCAwIwL3JrzP3lCfXjOhI7rsAQIECAw\nYwKeQZqxAXO6BAgQIECAAAECBAiMTkCBNDpbeyZAgAABAgQIECBAYMYEFEgzNmBOlwABAgQI\nECBAgACB0QkokEZna88ECBAgQIAAAQIECMyYgAJpxgbM6RIgQIAAAQIECBAgMDoBBdLobO2Z\nAAECBAgQIECAAIEZE1AgzdiAOV0CBAgQIECAAAECBEYnoEAana09EyBAgAABAgQIECAwYwIK\npBkbMKdLgAABAgQIECBAgMDoBBRIo7O1ZwIECBAgQIAAAQIEZkxAgTRjA+Z0CRAgQIAAAQIE\nCBAYnYACaXS29kyAAAECBAgQIECAwIwJKJBmbMCcLgECBAgQIECAAAECoxNQII3O1p4JECBA\ngAABAgQIEJgxAQXSjA2Y0yVAgAABAgQIECBAYHQCCqTR2dozAQIECBAgQIAAAQIzJqBAmrEB\nc7oECBAgQIAAAQIECIxOQIE0Olt7JkCAAAECBAgQIEBgxgQUSDM2YE6XAAECBAgQIECAAIHR\nCSiQRmdrzwQIECBAgAABAgQIzJiAAmnGBszpEiBAgAABAgQIECAwOgEF0uhs7ZkAAQIECBAg\nQIAAgRkTUCDN2IA5XQIECBAgQIAAAQIERiegQBqdrT0TIECAAAECBAgQIDBjAgqkGRswp0uA\nAAECBAgQIECAwOgEFEijs7VnAgQIECBAgAABAgRmTECBNGMD5nQJECBAgAABAgQIEBidgAJp\ndLb2TIAAAQIECBAgQIDAjAkokGZswJwuAQIECBAgQIAAAQKjE1Agjc7WngkQIECAAAECBAgQ\nmDEBBdKMDZjTJUCAAAECBAgQIEBgdAIKpNHZ2jMBAgQIECBAgAABAjMmoECasQFzugQIECBA\ngAABAgQIjE5AgTQ6W3smQIAAAQIECBAgQGDGBBRIMzZgTpcAAQIECBAgQIAAgdEJKJBGZ2vP\nBAgQIECAAAECBAjMmIACacYGzOkSIECAAAECBAgQIDA6AQXS6GztmQABAgQIECBAgACBGRNQ\nIM3YgDldAgQIECBAgAABAgRGJ6BAGp2tPRMgQIAAAQIECBAgMGMCG8zY+TpdAgQIECAwiwKb\n5KQfPOETvyrHv2PC5+DwBAgQmHoBBdLUD5ETJECAAIEVENgw+9g8ecIK7Gspu/iLfOmApXxx\nBb/znuzrv63g/uyKAAECjRRQIDVyWHWKAAECBOYIVGH0iOR5c9aPc/GSHOzXxnnAnmMdl/f3\n6Vn2lgABAgQWEFAgLQBjNQECBAg0SqCeub002W1CvVqd496dfG9Cx//RhI7rsAQIEJg5AQXS\nzA2ZEyZAgACBJQr8LN+7fYnfXe7X6tgaAQIECMyAgFnsZmCQnCIBAgQIECBAgAABAuMRUCCN\nx9lRCBAgQIAAAQIECBCYAQEF0gwMklMkQIAAAQIECBAgQGA8Agqk8Tg7CgECBAgQIECAAAEC\nMyCgQJqBQXKKBAgQIECAAAECBAiMR0CBNB5nRyFAgAABAgQIECBAYAYETPM9A4PkFAkQIECA\nwDIFfiXf3zk5Y5n7Wc7XT86XP7qcHfguAQIExiGgQBqHsmMQIECAAIHJCuyQw983+c6ETuM3\nctx9EwXShAbAYQkQGFxAgTS4lS0JECBAgMAsC/wwJ3/YhDpw/wkd12EJECAwtIBnkIYm8wUC\nBAgQIECAAAECBJoqoEBq6sjqFwECBAgQIECAAAECQwsokIYm8wUCBAgQIECAAAECBJoq4Bmk\npo6sfhEgQIAAAQJdgfXy5j7dhQm9/ijHvXtCx3ZYAgSGEFAgDYFlUwIECBAgQGAmBY7JWb9u\nwmf+9hx/UpNkTLjrDk9gtgQUSLM1Xs6WAAECBAjMokBNM75T8r4JnfxeOe6/JX80oeP/ZY5r\nJr8J4TssgWEFFEjDitmeAAECBAgQGFbgV/KFbZMNh/3iCm3/wOynbrP7ygrtb9jd1BTrk2y/\nnYO/aJInkGPXb2B9bMLn4PAEBhJQIA3EZCMCBAgQIEBgmQLfz/cPXuY+lvr1Sf1A7lLPd6W/\n9/zs8LHJ51Z6xwPu75nZrp7BUiANCGazyQq0sUDaMuRbJBsltyU3JbcnGgECBAgQIEBgFAIP\ny04r54xi5wPs8xHZ5rvJHw6w7Sg2OXEUO7VPAqMSaEuBtHsAX5PUf0HZeh7MS7PurORNyQ/m\n+dwqAgQIECBAgMBSBer2wvo312eWuoNlfu9R+X6dg0aAwAACbSiQjojDkR2LK/N6fnJDUleP\n6krSVsmOySHJAcmhySmJRoAAAQIECBBYKYEbs6O/XqmdDbmfg4fcfqU3rwLtV5NfW+kdD7i/\nevat/v336QG3H8Vm52anF49ix/a58gJNL5AODFkVR2cmhycXJPO1enCzZripaUBPTi5Pzks0\nAgQIECBAgACB5QnU4w0/Tv7n8naz5G8fnW/WRBVPXPIelvfFmiTka8mHl7ebZX377Hx79bL2\n0KIvV2HQ5FbFzpOT+i8XawfoaP0P+IqkriD9wQDbL7TJzvngP5J7L7TBnPX3yvJGne3vmvPZ\nSi6ekJ29PPnJSu50iH1t3Nm2/h/JSTTHv0ed/yT++lat8vfn768E/O/P//4mIeD//blHfZL/\n+6t/602y1b8BXzXJE5ilYzf9CtJuGYzzk0GKoxq3uvxd1XX9XsNy2uX58guTDQfcSRWqD0hG\nWRzVqdTthh+rNxNqdTtjtRvueRn7/3X8e8j5j/1P7+cH9Pfn768E/O/vnr+Dcf9f//u7R9zf\n37j/8u453qT//uosLpxM1x11GgXqXtNvJYMWKnUF6ZbkbxKNAAECBAgQIECAAAECjRJ4aXpz\nd3JGsuciPes+g/TlbFNXcZ62yLY+IkCAAAECBAgQIECAwEwKVOHzuqR+56gKpTXJl5JPJPWg\nXL3WLXjXJPX5nclrE40AAQIECBAgQIAAAQKNFahJE6ogujqpQqg3VTx9J3lb8uBEI0CAAAEC\nBAgQIECgpQJ1haVtbfN0uH7/qGZ0uS65OdEIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8QmsN75DOdKUCNx7\nSs7DaRAgQIAAAQIEFhK4Kx/8bKEPrScwSgEF0ih1p2/fX8op7Tl9p+WMCBAgQIAAAQJ9Andm\nyX/U7SOxMC6BDcZ1IMeZCoFLcxbXJ0dNxdk4iWEF3psvfCH50LBfnJLt39Q5j1n9+/uvOf+n\nJ6+aEs9xn4a/v3GLr+zxzs7u3picv7K7Hdve/P2NjXoqDvSUnMXRU3EmTqKVAgqkdg37T9Ld\nHySz+v9Btmu0frm3t2XVlTM8fvW3V21W//72zrnXGMzq+Zf9cpq/v+XoTf67davSRcms/v36\n+5v839A4z2DLHOzucR7QsQj0Ctyrd8F7AgQIECBAgAABAgQItFlAgdTm0dd3AgQIECBAgAAB\nAgT6BBRIfRwWCBAgQIAAAQIECBBos4ACqc2jr+8ECBAgQIAAAQIECPQJKJD6OCwQIECAAAEC\nBAgQINBmAQVSm0df3wkQIECAAAECBAgQ6BNQIPVxWCBAgAABAgQIECBAoM0CCqQ2j76+EyBA\ngAABAgQIECDQJ6BA6uOwQIAAAQIECBAgQIBAmwU2aHPnW9j3n7Swz03q8p3pzCyP4Syfe/0d\n1fnXGLS1+fub7ZGvv99Z/t+gv7/Z/vsb9uxn/e912P7angCBCQpslWNXtNkU2D6nfZ/ZPPWf\nn/Ws//2VfY1BW5u/v9ke+Z1z+rN814i/v9n++xv27Otvtf5mNQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgf/X3pmA21GU\naXiABMIW9k2QTRZZDBC2CSAJ+yab7LIEh21whBlkBJkZB2QZcBCQcRcRBhFZJPCMKKCQBBAc\nQeMjhLBKAoSwBCIIBMI635dbBWVPn3O7bu65p8+57/88362lq7v+eqvTt/5TfW4gAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCECguwks0N3DY3QlBPZRned9ZskxqupHYLhcWlFaskRDVTdbqqOtLqf2kB5o\n4pzvw1HSFtI70iyp3baIHBgpbS2Z+V+kOVKZ1dH/Mj+r1q2qhmX3metel94rXGgVlUdLTl+Q\n3pbaYfuo02bPtNx5qsu4mrFcUwf9b2f90OilBo1znx+5rBp025XVq2tUvT3Tcu6dHNY5bdsN\nf3E54HtzE+kV6TWpkeWMq1VtG/lGPQQgMIgIHKOxvi+dPIjG3OlD/XaYM89bUVfVdHBelE2R\nXm3i39o69pCUjulBlT/a5JxWHzpCHTwvpT45QDqxpOM6+l/iZuWq5dUyHXcxv07hSl9R2QFR\nbPeO8qcU2gxEsbdnWu481WVcjdj5w5Ibpcg9puNV56CpaDnPj1xWxb66uVzlmZZz7+Swzmnb\n7jk4RA74w9d4Xzq9R/LzpWg542pV26JPlCEAgUFIYG+N+S3JDywCpM65AfzLxYHGRSU6rIbD\nWEo+3SL5PmsUIM2nY3dKDj48hrWkY6TZ0pPSotJA207q0DskU6XTpA0lB0YPSx7L4VK0Ovof\nfetrurNO9Dh/JZXda8slFzYrtx0n+VPiLaQ45ycoP1DW2zMtd57qMq5G/ObXgYmS2V8j7SaN\nli6VfO9OloZJqVV9fuSySvvo9nyVZ1rOvZPDOqdtu+dhWzngD0oek46R/Aw9XXpDct1CUrSc\ncbWqbfSFFAIQGKQEltG4r5T8S/XNkBIgCUQHmBdEfj1hQgf4ahf3lWZIvtfmSI0CpONDm+OU\npuZfqj63WJ+2aVXejN23A4XUNlfB9d7dilZH/6NvfU1P1Yke5+heLuBXEKdK0yW/8hJtQWVc\n/7SU1sfj/ZlWfablzFMdxtUbI8/N+5KDnqL9XBU+dkByIOf5kcMq6aLrs1Weabn3Tg7rnLbt\nnoyb5IDvQb+GmNplKrjeQWS0nHG1qm30hRQCEBikBH6rcfvhdK10RMgTIAlEB9i68tFzd34H\n+Lpb8PVFpXtJk6RGAZLvSQfr/m5LasNV8KeN96WVA5D3QvJeyUFQ2eLeu0j+ZDQeq5v/cm2e\n7Se6gnch/P2BZhbn+bySRueozvdrcYFU0nSeqsy/yjMtZ57qMK7eoIxVg6nS0SUND1admZye\nHMt5fuSwSrro6my8J3p7psV2Vf9N5LDOadvuyfAHXF+VvOOTmnfffW+emFTmjKtVbRN3yEIA\nAoORgN9B3zEM3AtXP6gIkAKQmicHhfny4mcrya8vjZW88Kmb+dPBs6Slg2ONAqShOu7dpftD\nu2LyB1X4VVC3q4P5laVXpMeDM53mf1WGD6mhA0Hvzvh7BCdJu0gLS6l5Ae5nyKfTypD3K28+\n5jattCrPtNx5qsO45oXZv+hks/crq9GqPj9yWcXrd3u6kwZY5ZmWc+/ksM5pW9e5cLA0TvK9\nuUFwMmdcrWobXCGBQGMCQxof4kiXEPhcl4xjMA5j4zDoM5WunQDwJ/0XS6dI3tmog/m7K1Zv\ntpQa+HWslxo0nKV6/1JcTprRoM1AVp+qzoZL3w2ddpr/VVj5FaF1pJnSVCndRfJ3B7zo9g6b\nbYWepHT+PHe2lXuSlv2s8kzLnac6jKuvwJbViSdJ/k7fbclFqj4/clklXXR1tuozLefeyWHt\nZ3snPSvTm2F9FfzB3qekjaQvSt6ht7WKQSfz6iHDz1oR8KslGAQgUE8CmwS3nlO6u+S/8Ob0\nIekk6UtSp5mDDZtfWymzuMhetOzgANcdqP7+XXKQcIZk6yT/ezzu/ecINfHvAi9c/Im5Fzf+\ntPdcaU3pZ1LcGWw2/jrNXTM/NZwP/qR8vM+ata/TuOx7avbf3/1wkPQFyc+KaFWfH83G7mvV\nefxxrO1Mm/ErsmvWtsg6p207x1/W9z+p8suS78EnpFulaDnjalXb6AspBBoSIEBqiIYDEGg7\ngXPkwVHSztLN0vSQ+pXJV6R/k+ICT9mOsDeDl42ePQuE4++2eTRHqv8rpZmSXx17Q7J1iv89\n3lb76QWMX6vbXjpfcgA+RfJrWxdIy0tefNuajb8uc9ebnz5e9LVTxmXfozko8i7HltJ/SZdK\nqVV9fjQbu69XZJX2QT7v30QO65y2dZuHM+XQitJxkscxSTpWsuWMq1VtezzhJwSaEGi0SGly\nCocgAIEBInCX+vmhFH9JxG79KbEXRgtJ/rS/k8y++330uCNR9D3WOwBsl3nX6DLJAem2kgOG\naJ3gf/S1avqCGl4t3V1ywhWhLu5GzAjlOE/pKbGunXMX/cmdp04ZVxzfx5T5jTRKciD0j1LR\nqj4/clkV+xns5Zx7J4d1Ttu6zYGfnc9L35cOloZI/g6tLWdcrWrb4wk/IdCEgG9aDAIQ6DwC\n3tmwxVcQekr1/+n3xL0gj4vposeuny29XDwwAGV/ofjr0onSfdKekn/Jp1Zn/1M/+ytfvM+q\nLAaf6a/O5+E6ufPUKeMykg2lX0r+nt6x0iVSrqXzmssqt69ub59z7+Sw9i56XZ+VOXPq7x75\nL9F5p3NV6Smp6rhyGOS0lQsYBJoTYAepOR+OQqBdBPxF+d9L90hl/04/Hhx7JKSdlHhHZn3J\nrwil5gXfepLH7V92A2lm7N06B0c3SmOkYnCkqrlWR/+jb31JT9JJvo/8ml3RivdZ3E0bXWyo\ncqy7t+RYO6py5qlTxrWZQN4hLSbtITUKjnKfHzms1C2WEMi9d3JY57RNXBrwrO/Hx6XxDXp+\nL9S/FtKccbWqbQNXqYYABAYjgb00aL/exJ/57ozZfyDMl/9YQGpbq+BfOLenlTXLT5I/rzbw\n6dOq9314SuH4l0L9/oX6gSgeH/oepzR+56JRv3X0v5GvVer3UyPPx2Qp/T9MnL8lHNtWabT7\nlXlWGh4rlC4h+XWYP0gD+WZCs2da7jzVaVzC+P9sYdVMlfzKrV+t681ynh+5rHrruxuPN3um\n5dw7Oaxz2rabefxgK76OG/3xveoPvPxsiJYzrla1jb6QQgACEJj7H3gSIHXOjbCDXPUvFv/F\ntwukHSUHFQ48XpJGSHW1ZosJ79ZMkTy2sySP6+xQHqd0oG0Zdfhnyf82HHR6B6lM/pTUVjf/\ne7zq+08HhP7k1+OfIB0u7Sv5NS7XFXcpvNPkei+IHMweIHm+/frQSGkgbS91Zl9OLuk0d57q\nNK6S4fzNmWGsfoWx7P503dHJiTnPj1xWSTeDJtvsmZZz7+Swzmnb7onYRg68Lfn1ua9Kvv++\nKPk7iXOkNHDKGVer2solDAIQgEAPgWaLCRjVk8DucutRyYtAy4vQu6Q1pDpbs8WE/V5Wulny\nTlgc263KrygNtO2tDqMPzdKlEsfq5H/iVp+zHtt3JN9fkYEDcy9wyuxQVc6SYlvnjypr2OK6\n3p5pufNUl3GVYfMn8JF3o/Tiwok5z49cVoWuur7Y2zMt597JYZ3Ttt2T4A+7HpbS+9N/TGSj\nEsdyxtWqtiVuUQUBCEAAAp1EYCU560/nF+kkpyv4urjabCq1IzCq4F6vTTrd/+IAh6niE9Lq\nxQMlZb+Ct5a0geS/qFhny5mnThpXVeY5z48cVlX7Hyztcu+dHNY5bdvNe2U5sLm0ZAVHcsbV\nqrYV3KQJBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCA\nAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQ\ngAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEuovAAt01HEYDAQhAoCsI\n7KVRHC6ND6OZX+nXpHelqaGum5MtNDjrCcljHix2jgbqufa4221D5cDe0nDpmXY7Q/8QgAAE\nIAABCEAAAoObwM80/LsSBOsp/760T1LXzdnrwniX65BBbig/fzyPvq4dxrx95nX6o++yLpcK\n/lxfdpA6CEAAAt1MYEg3D46xQQACEOhQApvJ76sT3122/a4n6fqfkzTChaW3OmSkN8jPYfPo\n6646/3Xp15nX6Y++M7ukOQQgAIHuJkCA1N3zy+ggAIHOI7CyXF5RSoOhTVV+XpouDQY7dzAM\nsjBGB0gTpE4JCgvuU4QABCDQPQT4DlL3zCUjgQAEOpfAKnJ9X2ljaU9pa+mP0uqS6/x9pDel\n14L+rLSZ+XWtA6RDpXWlNyQHWNH8yt4ekgOxP8XKkH5S6XbS29JMaYy0pfSgtIN0pGSfXpJm\nSWXWW/8+ZxnpQMm7JqtKJ0hLS09KW0ljpEekdyS/7nWQNFuKrxoeofwK0rOh3js4u0tHSd5x\nmyGVcari2xidu7k0RRopHSL59cblpMek+L0ofz/nYOlTkvt/TlpC8hhsK0mflT4j+Toen3m/\nJ6W2kArfCbovHJhP6W7S4ZLvidUkz7+525r1vaOOex4nS+YVbUFlDpPsxzQptXVUcF8O1Ozf\nC9Kp0kPStdIoyfPve+JVKTX76nM93j+lB8hDAAIQgAAEIAABCECgLwQcrHghW0UODJrZyTo4\nR/Ii92nJAca70jmSF7I2BxzxmAOBaP4+yxvSNGlJyTZOelG6SLJ/j0gOPJz/nlS0Kv37nE0l\nX8N+vRzyLjs4vC6UHZDYRkg+drb0eMg7gHPdo9LK0oRQ9g6M61+XNpFSq+qbx+wA6wuSOca+\nfN1JkgMMm4MtH3e95fxPJJuDFAe1rjc/z4nzDoDsb2pu62NrhcqhSm8OdZ4/B7c+7mt8XrI1\n6/sWHXf7hd0wMc+7629I6pz9luR6s3MA5PwPQnq9UpsDQdef60LBxqjsY6cX6ilCAAIQgAAE\nIAABCECgTwT8yb6DAWu8dFdSHqO8F5+HhLqFlDYy7zS47R3SR0KjxZVeJbl+bKhz4j8G4AX9\nA5L793XvlxwMjJKiOVjwud652CZUDlH6fcn1x4Y6Jzn9xwDJ/f1U8u6PAxhbowDJ/l4peWwr\nSFdI9sHB0C+krSSP5Z8l118jRcvxzWN2X95F+XvJgcWK0k2Sr3ualNpjKjjgTO0JFRxsrB8q\nF1PqYNDnnxfqYvI1ZRz4RTtCGbf7T8nzZ/N1ZkgOYGPwquzcHa1i3zkB0tG6hvv6kbSIZNtB\n8ny7/nrJNkxyYPykFANtZefaD/XTvNboKfITAhCAAAQgAAEIQAAC/UfgBV3KC+Zon1XGC1Uv\n0Huzh9XAbR18pLaoCn49zQvsdHHrftz+y9KFIV9c/McA6UQdT80B1XTpmaQyp/8YIPkaxaCv\nUYDkQCBtu5nK9v9VabgUzWN8S/pjrFCa41sc83HJ+c46SHF/Pp5aMUByMOFdu4lSytu+m69f\nnUvNr8J9M6mIgdR2SZ2zO0v/IDk4jFbs2/W3SPazyg6SmT5X0tbz7WvEAEnZua8Bum60C8Ec\nVP1FmhArSCEAAQhAAAIQgAAEINBfBFbThbwAPSi54LeV9yK2N/Ougs99VBpRojvC8ZWVRvOC\n3UHEHMk7AL+S5pdSi8HCsmllyHvnwH0uL+X2HwOkn4drpUmjAMkL/9Tsv/v/XVoZ8mb2RMjn\n+hbH/InCdR0MuL/bCvVlQcqdoe1vlJ4krVc4JxZXUcbX3DNWKPXunusc+Hn+fcxBbpmV9V01\nQFpGF3Q/3okrmoMwH0sDpC1C3SVJ48+EuiOTOrIQgAAEOprAkI72HuchAAEIdAcBL5J3kBzY\n2NaSxs7N9SyW/WpTLP9a+bIvwvs7KTan6c7J3Mrkh68dd30cGJ0oTZRs8Ts3PaUPf/oVthc/\nLH6Qmx5yDiS8i2DL6d/tp/pHRXuy0M67NLaXe5K/+hmPubIvbHyed1ZSezMUikFk2ibm91fm\nasm7QH8rXSh5rA5G/kPyDpdtF8n5CS4EG6/0aOkC6fggz5UDs7Ok30r9YZ43W7wfeko9P72T\n6T5Tu1eFKZLH9nnJx4+QfH/8VMIgAAEIdAWBIV0xCgYBAQhAoLMJbCT3L0+GcHaSj9l43IFS\nWYAUF++36vj58aSSdHKhzrsb0bz43icWknSo8vNJ7yd1zg4PZQcSMWjI7T8GCuFSTZOctumF\n+srmvfQimXkHGNtL60i7SbtKY6TTpVGSAyOb6++WXnMhsUuV/7G0o+S2vsYe0k6hPFFpb+Y5\nS23xtKD8S6Fctjvlc+OcpqddpoLvL/tyj2T/rpSK/qsKgwAEINCZBIZ0ptt4DQEIQKCrCPjV\nNr+mdr3knY8DJdvG0i+lA6Q7JFvcqekpffjzcWUdwCwr3f5h9Qe5LZXztf3aVrSjldlb+oHk\nxfDfSa5zObUFVVhNmpZWKv9xabb0sOQ2uf3rlAGxvrCZF8cccGwizZQekR6VLpb8Spt393aW\nPiI9L+0onSultpYK60i/kG4KUjL3z26fp/QQaaLUyGJAOEwNPD/RPhYzIZ2i9A3J81g0z7cD\n46L9SBX2dz9pOWkB6XIJgwAEIAABCEAAAhCAQL8TmKUrpovlY1V20OGFdRW7RY3cfvdC4w1U\nniN5cR4XvV6E+1P/pyTvBC0hTZdc52PRxinja349VoTUu17eYXGf0XL631Qn+boXxpOT9Lpw\nzAtw2wjJbb/hQmJDlHf9bUldzE5T5olYUJrjWxxzkbuDSPc3Prmusw40ZiV1ZuN29yV1MXu3\nMu9IS0tbS27n9qndoILr90grld8p1F+U1Bf79iEHuD5/fxcS+2/lXX9jUufg3PM4Mqlz1n24\nrYP2ov2PKl6WHLxPlYo7VarCIAABCEAAAhCAAAQgMG8E/Om+F6T7JZf5nvLpIj85VJpdV7Xe\nEbBOl7ygPkXyDooX5ZtJNgcW/yu5P+9mRPOC3HU+5ja2GCx4Ef0tye2Pl2ZKT0srSdGq9u/2\nAx0g5fgWx1w1QJqo8ZjbZZJ34WwOolznYGSsdKB0heS6GHScqfwMqWjbqcK7fdOlc6RdpdMk\nz+Ob0uZStInK+JqXSbHvXUKdd6j+VTpSsh/PSt6BTAOkj4Z6v273Ocnz63meLfmeib4q+4Ht\nq5z7tL7yQS0ZCEAAAhCAAAQgAAEI9COBg3QtLzhXS675e+WvScpVsn5d6k7JC+y4iPVCe6wU\n7QxlfOySWJGkcRF/RqiLwcKhKj8n+TzvRnnnYYRUtCr9+5yBDpDcZ1Xf4pirBkijdW0HI2Yz\nWbL53KskBxmutxycfFMaKtn8Rw8ud6bEfD9Mk+K5DlAflLaUUhutQrFvHz9Bcn8+3+dOkhyE\nPyV5hyo1B863S29Jbu959nVflcoCJPvv71j5umtKGAQgAAEIQAACEIAABPqdgD/J/2ThqqNU\nXqNQV7W4iBpuLK0mLVD1pJJ2abDgV6m8E7N4SbtiVX/1X7xuf5Rb5dsKcm5YwcHFVN5AWlsy\nv9S2UWGVtKKQnz8cH6l0eOFYsVjWt89fT1q22LhBeQnV28/ezLuL3o2a2FtDjkMAAhCAAAQg\nAAEIQKDbCKQBUreNjfH0jcAhOs07Td5VxCAAAQh0HYH4jnnXDYwBQQACEIAABCDQrwTO1dWW\nkg6THpaulTAIQAACEIAABCAAAQgMKgL+DpS/c7T0oBo1gy0j4L+C6J2jaVKVV/HUDIMABCAA\nAQhAAAIQgAAEINCdBPx9Kv+hBwwCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAgdoR+D/9RWdu1nZrIQAAAABJRU5ErkJggg==",
      "text/plain": [
       "Plot with title “study size”"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "sizes = table(se1$study_accession)\n",
    "hist(log10(sizes), 20, axes=FALSE, main=\"study size\", xlab=\"# experiments/study\")\n",
    "axis(1, at=c(0, 0.699, 1, 1.301, 1.699, 2, 2.3979, 2.699, 3, 3.4771), \n",
    "     labels=c(1, 5, 10, 20, 50, 100, 250, 500, 1000, 3000))\n",
    "axis(2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Studies with at least 1000 experiments:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th scope=col>N</th><th scope=col>title</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><td>1001                                                                                                                                      </td><td>CSER: Exploring Precision Cancer Medicine for Sarcoma and Rare Cancers                                                                    </td></tr>\n",
       "\t<tr><td>1004                                                                                                                                      </td><td>Single Cell Transcriptome Conservation in Cryopreserved Cells and Tissues                                                                 </td></tr>\n",
       "\t<tr><td>1153                                                                                                                                      </td><td>single cell transcriptomic analyses of human pancreatic islets                                                                            </td></tr>\n",
       "\t<tr><td>1236                                                                                                                                      </td><td>_Genetics_of_gene_expression_in_macrophage_immune_response_Open_access                                                                    </td></tr>\n",
       "\t<tr><td>1373                                                                                                                                      </td><td>GxE and Complex Traits                                                                                                                    </td></tr>\n",
       "\t<tr><td>1520                                                                                                                                      </td><td>Single-cell RNA-seq reveal lineage formation and X-chromosome dosage compensation in human preimplantation embryos                        </td></tr>\n",
       "\t<tr><td>1536                                                                                                                                      </td><td>NA                                                                                                                                        </td></tr>\n",
       "\t<tr><td>1544                                                                                                                                      </td><td>Homo sapiens Raw sequence reads                                                                                                           </td></tr>\n",
       "\t<tr><td>1594                                                                                                                                      </td><td>RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes                                                                  </td></tr>\n",
       "\t<tr><td>1598                                                                                                                                      </td><td>Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neural Stem Cell Model Systems                                         </td></tr>\n",
       "\t<tr><td>1681                                                                                                                                      </td><td>A novel addressable 9600-microwell array single cell RNA-seq method applied on fresh mouse cortical cells and frozen human cortical nuclei</td></tr>\n",
       "\t<tr><td>1690                                                                                                                                      </td><td>A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequence Quality Control consortium        </td></tr>\n",
       "\t<tr><td>1722                                                                                                                                      </td><td>Single cell RNAseq characterization of cell types produced over time in an in vitro model of human inhibitory interneuron differentiation.</td></tr>\n",
       "\t<tr><td>1804                                                                                                                                      </td><td>Snapshot and temporal scRNA-seq of progenitor cells to dissect human embryonic stem cells entry into endoderm progenitors                 </td></tr>\n",
       "\t<tr><td>1834                                                                                                                                      </td><td>REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE-CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS [Smart-seq]                     </td></tr>\n",
       "\t<tr><td>1855                                                                                                                                      </td><td>NA                                                                                                                                        </td></tr>\n",
       "\t<tr><td>1911                                                                                                                                      </td><td>GSE35585: RIP-seq from ENCODE/SUNY Albany                                                                                                 </td></tr>\n",
       "\t<tr><td>2275                                                                                                                                      </td><td>Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia                              </td></tr>\n",
       "\t<tr><td>2390                                                                                                                                      </td><td>Single cell transcriptome analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns.           </td></tr>\n",
       "\t<tr><td>2405                                                                                                                                      </td><td>Single-cell indexed RNA-Seq of human hematopoietic stem and progenitors                                                                   </td></tr>\n",
       "\t<tr><td>2671                                                                                                                                      </td><td>REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE-CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS [Cel-seq]                       </td></tr>\n",
       "\t<tr><td>3030                                                                                                                                      </td><td>Single Cell Analysis Program-Transcriptomics (SCAP-T) (USC site)                                                                          </td></tr>\n",
       "\t<tr><td>3383                                                                                                                                      </td><td>Single-Cell RNAseq analysis of diffuse neoplastic infiltrating cells at the migrating front of human glioblastoma                         </td></tr>\n",
       "\t<tr><td>3493                                                                                                                                      </td><td>Single-cell RNA-seq analysis of human pancreas from healthy individuals and type 2 diabetes patients                                      </td></tr>\n",
       "\t<tr><td>3987                                                                                                                                      </td><td>Single_Cell_RNAseq_at_various_stages_of_HiPSCs_differentiating_toward_definitive_endoderm_and_endoderm_derived_lineages_                  </td></tr>\n",
       "\t<tr><td>4002                                                                                                                                      </td><td>Single Cell RNA-seq Study of Midbrain and Dopaminergic Neuron Development in Mouse, Human, and Stem Cells                                 </td></tr>\n",
       "\t<tr><td>5146                                                                                                                                      </td><td>Single Cell Analysis Program-Transcriptomics (SCAP-T) (UC San Diego site)                                                                 </td></tr>\n",
       "\t<tr><td>9495                                                                                                                                      </td><td>Genotype-Tissue Expression (GTEx) Common Fund Project                                                                                     </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|ll}\n",
       " N & title\\\\\n",
       "\\hline\n",
       "\t 1001                                                                                                                                       & CSER: Exploring Precision Cancer Medicine for Sarcoma and Rare Cancers                                                                    \\\\\n",
       "\t 1004                                                                                                                                       & Single Cell Transcriptome Conservation in Cryopreserved Cells and Tissues                                                                 \\\\\n",
       "\t 1153                                                                                                                                       & single cell transcriptomic analyses of human pancreatic islets                                                                            \\\\\n",
       "\t 1236                                                                                                                                                           & \\_Genetics\\_of\\_gene\\_expression\\_in\\_macrophage\\_immune\\_response\\_Open\\_access                                                                    \\\\\n",
       "\t 1373                                                                                                                                       & GxE and Complex Traits                                                                                                                    \\\\\n",
       "\t 1520                                                                                                                                       & Single-cell RNA-seq reveal lineage formation and X-chromosome dosage compensation in human preimplantation embryos                        \\\\\n",
       "\t 1536                                                                                                                                       & NA                                                                                                                                        \\\\\n",
       "\t 1544                                                                                                                                       & Homo sapiens Raw sequence reads                                                                                                           \\\\\n",
       "\t 1594                                                                                                                                       & RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes                                                                  \\\\\n",
       "\t 1598                                                                                                                                       & Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neural Stem Cell Model Systems                                         \\\\\n",
       "\t 1681                                                                                                                                       & A novel addressable 9600-microwell array single cell RNA-seq method applied on fresh mouse cortical cells and frozen human cortical nuclei\\\\\n",
       "\t 1690                                                                                                                                       & A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequence Quality Control consortium        \\\\\n",
       "\t 1722                                                                                                                                       & Single cell RNAseq characterization of cell types produced over time in an in vitro model of human inhibitory interneuron differentiation.\\\\\n",
       "\t 1804                                                                                                                                       & Snapshot and temporal scRNA-seq of progenitor cells to dissect human embryonic stem cells entry into endoderm progenitors                 \\\\\n",
       "\t 1834                                                                                                                                           & REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE-CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS {[}Smart-seq{]}                     \\\\\n",
       "\t 1855                                                                                                                                       & NA                                                                                                                                        \\\\\n",
       "\t 1911                                                                                                                                       & GSE35585: RIP-seq from ENCODE/SUNY Albany                                                                                                 \\\\\n",
       "\t 2275                                                                                                                                       & Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia                              \\\\\n",
       "\t 2390                                                                                                                                       & Single cell transcriptome analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns.           \\\\\n",
       "\t 2405                                                                                                                                       & Single-cell indexed RNA-Seq of human hematopoietic stem and progenitors                                                                   \\\\\n",
       "\t 2671                                                                                                                                           & REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE-CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS {[}Cel-seq{]}                       \\\\\n",
       "\t 3030                                                                                                                                       & Single Cell Analysis Program-Transcriptomics (SCAP-T) (USC site)                                                                          \\\\\n",
       "\t 3383                                                                                                                                       & Single-Cell RNAseq analysis of diffuse neoplastic infiltrating cells at the migrating front of human glioblastoma                         \\\\\n",
       "\t 3493                                                                                                                                       & Single-cell RNA-seq analysis of human pancreas from healthy individuals and type 2 diabetes patients                                      \\\\\n",
       "\t 3987                                                                                                                                                                       & Single\\_Cell\\_RNAseq\\_at\\_various\\_stages\\_of\\_HiPSCs\\_differentiating\\_toward\\_definitive\\_endoderm\\_and\\_endoderm\\_derived\\_lineages\\_                  \\\\\n",
       "\t 4002                                                                                                                                       & Single Cell RNA-seq Study of Midbrain and Dopaminergic Neuron Development in Mouse, Human, and Stem Cells                                 \\\\\n",
       "\t 5146                                                                                                                                       & Single Cell Analysis Program-Transcriptomics (SCAP-T) (UC San Diego site)                                                                 \\\\\n",
       "\t 9495                                                                                                                                       & Genotype-Tissue Expression (GTEx) Common Fund Project                                                                                     \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "| N | title |\n",
       "|---|---|\n",
       "| 1001                                                                                                                                       | CSER: Exploring Precision Cancer Medicine for Sarcoma and Rare Cancers                                                                     |\n",
       "| 1004                                                                                                                                       | Single Cell Transcriptome Conservation in Cryopreserved Cells and Tissues                                                                  |\n",
       "| 1153                                                                                                                                       | single cell transcriptomic analyses of human pancreatic islets                                                                             |\n",
       "| 1236                                                                                                                                       | _Genetics_of_gene_expression_in_macrophage_immune_response_Open_access                                                                     |\n",
       "| 1373                                                                                                                                       | GxE and Complex Traits                                                                                                                     |\n",
       "| 1520                                                                                                                                       | Single-cell RNA-seq reveal lineage formation and X-chromosome dosage compensation in human preimplantation embryos                         |\n",
       "| 1536                                                                                                                                       | NA                                                                                                                                         |\n",
       "| 1544                                                                                                                                       | Homo sapiens Raw sequence reads                                                                                                            |\n",
       "| 1594                                                                                                                                       | RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes                                                                   |\n",
       "| 1598                                                                                                                                       | Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neural Stem Cell Model Systems                                          |\n",
       "| 1681                                                                                                                                       | A novel addressable 9600-microwell array single cell RNA-seq method applied on fresh mouse cortical cells and frozen human cortical nuclei |\n",
       "| 1690                                                                                                                                       | A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequence Quality Control consortium         |\n",
       "| 1722                                                                                                                                       | Single cell RNAseq characterization of cell types produced over time in an in vitro model of human inhibitory interneuron differentiation. |\n",
       "| 1804                                                                                                                                       | Snapshot and temporal scRNA-seq of progenitor cells to dissect human embryonic stem cells entry into endoderm progenitors                  |\n",
       "| 1834                                                                                                                                       | REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE-CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS [Smart-seq]                      |\n",
       "| 1855                                                                                                                                       | NA                                                                                                                                         |\n",
       "| 1911                                                                                                                                       | GSE35585: RIP-seq from ENCODE/SUNY Albany                                                                                                  |\n",
       "| 2275                                                                                                                                       | Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia                               |\n",
       "| 2390                                                                                                                                       | Single cell transcriptome analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns.            |\n",
       "| 2405                                                                                                                                       | Single-cell indexed RNA-Seq of human hematopoietic stem and progenitors                                                                    |\n",
       "| 2671                                                                                                                                       | REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE-CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS [Cel-seq]                        |\n",
       "| 3030                                                                                                                                       | Single Cell Analysis Program-Transcriptomics (SCAP-T) (USC site)                                                                           |\n",
       "| 3383                                                                                                                                       | Single-Cell RNAseq analysis of diffuse neoplastic infiltrating cells at the migrating front of human glioblastoma                          |\n",
       "| 3493                                                                                                                                       | Single-cell RNA-seq analysis of human pancreas from healthy individuals and type 2 diabetes patients                                       |\n",
       "| 3987                                                                                                                                       | Single_Cell_RNAseq_at_various_stages_of_HiPSCs_differentiating_toward_definitive_endoderm_and_endoderm_derived_lineages_                   |\n",
       "| 4002                                                                                                                                       | Single Cell RNA-seq Study of Midbrain and Dopaminergic Neuron Development in Mouse, Human, and Stem Cells                                  |\n",
       "| 5146                                                                                                                                       | Single Cell Analysis Program-Transcriptomics (SCAP-T) (UC San Diego site)                                                                  |\n",
       "| 9495                                                                                                                                       | Genotype-Tissue Expression (GTEx) Common Fund Project                                                                                      |\n",
       "\n"
      ],
      "text/plain": [
       "   N   \n",
       "1  1001\n",
       "2  1004\n",
       "3  1153\n",
       "4  1236\n",
       "5  1373\n",
       "6  1520\n",
       "7  1536\n",
       "8  1544\n",
       "9  1594\n",
       "10 1598\n",
       "11 1681\n",
       "12 1690\n",
       "13 1722\n",
       "14 1804\n",
       "15 1834\n",
       "16 1855\n",
       "17 1911\n",
       "18 2275\n",
       "19 2390\n",
       "20 2405\n",
       "21 2671\n",
       "22 3030\n",
       "23 3383\n",
       "24 3493\n",
       "25 3987\n",
       "26 4002\n",
       "27 5146\n",
       "28 9495\n",
       "   title                                                                                                                                     \n",
       "1  CSER: Exploring Precision Cancer Medicine for Sarcoma and Rare Cancers                                                                    \n",
       "2  Single Cell Transcriptome Conservation in Cryopreserved Cells and Tissues                                                                 \n",
       "3  single cell transcriptomic analyses of human pancreatic islets                                                                            \n",
       "4  _Genetics_of_gene_expression_in_macrophage_immune_response_Open_access                                                                    \n",
       "5  GxE and Complex Traits                                                                                                                    \n",
       "6  Single-cell RNA-seq reveal lineage formation and X-chromosome dosage compensation in human preimplantation embryos                        \n",
       "7  NA                                                                                                                                        \n",
       "8  Homo sapiens Raw sequence reads                                                                                                           \n",
       "9  RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes                                                                  \n",
       "10 Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neural Stem Cell Model Systems                                         \n",
       "11 A novel addressable 9600-microwell array single cell RNA-seq method applied on fresh mouse cortical cells and frozen human cortical nuclei\n",
       "12 A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequence Quality Control consortium        \n",
       "13 Single cell RNAseq characterization of cell types produced over time in an in vitro model of human inhibitory interneuron differentiation.\n",
       "14 Snapshot and temporal scRNA-seq of progenitor cells to dissect human embryonic stem cells entry into endoderm progenitors                 \n",
       "15 REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE-CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS [Smart-seq]                     \n",
       "16 NA                                                                                                                                        \n",
       "17 GSE35585: RIP-seq from ENCODE/SUNY Albany                                                                                                 \n",
       "18 Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia                              \n",
       "19 Single cell transcriptome analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns.           \n",
       "20 Single-cell indexed RNA-Seq of human hematopoietic stem and progenitors                                                                   \n",
       "21 REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE-CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS [Cel-seq]                       \n",
       "22 Single Cell Analysis Program-Transcriptomics (SCAP-T) (USC site)                                                                          \n",
       "23 Single-Cell RNAseq analysis of diffuse neoplastic infiltrating cells at the migrating front of human glioblastoma                         \n",
       "24 Single-cell RNA-seq analysis of human pancreas from healthy individuals and type 2 diabetes patients                                      \n",
       "25 Single_Cell_RNAseq_at_various_stages_of_HiPSCs_differentiating_toward_definitive_endoderm_and_endoderm_derived_lineages_                  \n",
       "26 Single Cell RNA-seq Study of Midbrain and Dopaminergic Neuron Development in Mouse, Human, and Stem Cells                                 \n",
       "27 Single Cell Analysis Program-Transcriptomics (SCAP-T) (UC San Diego site)                                                                 \n",
       "28 Genotype-Tissue Expression (GTEx) Common Fund Project                                                                                     "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "bigstud = which(sizes>=1000)\n",
    "bigstud = bigstud[order(sizes[bigstud])]\n",
    "data.frame(N=as.numeric(sizes[bigstud]), title=slot(ds4842, \"titles\")[names(sizes)[bigstud]])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Availability of gender or ethnicity information <a id=\"geneth\"></a>\n",
    "\n",
    "There is no guarantee that gender or ethnicity is recorded in the sample.attributes field.  But sometimes it is."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<ol class=list-inline>\n",
       "\t<li>1010</li>\n",
       "\t<li>2</li>\n",
       "</ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 1010\n",
       "\\item 2\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 1010\n",
       "2. 2\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "[1] 1010    2"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "\n",
       "    cell.sex    fetal.sex     host_sex     host.sex    mixed sex obsolete.sex \n",
       "           7            1            1            2            1            1 \n",
       " patient.sex          sex          Sex \n",
       "           2          846          149 "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "sex.recorded = searchDocs(\"[Ss]ex$\", ds4842)\n",
    "dim(sex.recorded)\n",
    "table(sex.recorded$hits)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<ol class=list-inline>\n",
       "\t<li>156</li>\n",
       "\t<li>2</li>\n",
       "</ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 156\n",
       "\\item 2\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 156\n",
       "2. 2\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "[1] 156   2"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "\n",
       "Chinese Han ethnicity                ethnic     ethnic.background \n",
       "                    2                     1                     1 \n",
       "         ethnic.group          Ethnic.Group            Ethnically \n",
       "                    1                     1                     1 \n",
       "            ethnicity             Ethnicity    maternal_ethnicity \n",
       "                   86                     2                     1 \n",
       "         patient.race                  race                  Race \n",
       "                    1                    55                     2 \n",
       "    subject.ethnicity                 trace \n",
       "                    1                     1 "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "eth.recorded = searchDocs(\"[Rr]ace$|[Ee]thn\", ds4842)\n",
    "dim(eth.recorded)\n",
    "table(eth.recorded$hits)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "loggapdh = log(as.numeric(assay(se1[which(rowData(se1)$gene_name==\"GAPDH\")[1],]))+1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "logbrca2 = log(as.numeric(assay(se1[which(rowData(se1)$gene_name==\"BRCA2\")[1],]))+1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7J0H2ORU3fZZFnbpvSMsHaRJbwqsoHRURJSiFBFe7F0+CygCCr6KiK8F\nG1UUBUUsgEpdKYogIiKIwMLSe+8s333v5uB5QiaTzGRa8vtf1/3k9JzzO3km+c9JMrPMgkEA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCA\nAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQ\ngAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhkERiXlUgaBIacwIrq39wZfZyutKelR6QHM/JHMSke670agFXE5lGhFaKC\n10bhugT9+bWatLE0XrpB+pf0kNTKOuXZqr1epfv4dl+z7CUlPi/5WL9HelZqZT4GfCxkmf9f\nnpIelx6Q3G5RW1gFXyOtLt0nXS/dJOX1RdljbH7FJkUpdyicN3dR0RnBCfq7vGRW3rfHMeq2\nrAawQDKIh7Wd1uGAZlO9zSS3t6jktm6XbpTulMrYKio8R1LBx53/x/Ks1bHr4+25RPdr+2SL\nRtKfXXEx79/1fNy7rVaW7sN/VNDHepatqcRZkwy36+O5V+b/F8+NzXPreRllq+p4HWUG9B0C\nEIDA0BCYop74Yi5PPtF9XAonIwVH0i5Tr8M4D88YwexK+6i0UipvG8VDPW/Hp/JHPeoLoEuk\neIwOf7vNwNrxbFO9b9mba0/psWXFfcH4C2mTFj07v2A7vlD7uWTHJ88mK9MX2Vl9cRsHSeFi\nU8FcO065cTsn5Zb+b+arFfyZ9IIU17eTtr00yvYTdT6M6eQOBjKH6hwtBYc3tBW2dlJ8vGwg\nFbHFVcjHWFx/xTYVJ0flQ72srZ2WD0npL2q3LlDfztEfJDscWZb+/9k0q1CSZqc+9O+QnHJV\nZNn5Cvvap4oGB9xGt8frgLvP7iEAAQjUi8AUDSecZNptvXKy3ggPP++CfjuNy9/mmsHaqTHW\n3UE6Jhl3ev4PSHFIR/N4pssOMp6+wEuPMx33t+OvzehwUQcptHez2lgjo50JSvuq5AvsULbV\n9lKVsQObZ76Qf0iK2/AYFsyrpDz37QkprpcOf6xNG8Oc3c0F56oa2D/asAms7GD486OdfUoF\nQp2wPapNpckZdULdrO0JqfaKOEihHY/D/Uk7Wen/HxykFOSKot0crxV1gWYg0BsCo/7tem+o\n0OooEfA3pVdL/tbaF3G+wPKFgsO2taTTJd9G4W8KR83uUodvSTod347hWxvOyRnM01G9nGIj\nm+V5DeYL8ndLvki6NyTWbHuxxuPbRj1GH+teObSzMEmyzSl5xSHv233Xv0qyhXb8f+LVBNe3\nrSDZEdrekcg+rbBXZIM9qsBFko/NN0jxfGym+LelfaRW9lZlpJ0h9+Fd0nGtKin9DCk4Xy8q\n/HvJ38q7vXkl25cl/2/4y4Om2Hwa6G+keCXZn41XSDdKr5G2kMLnoo+fM6X1JOe3sv0zMvZT\n2iGSV5aK2J9VyMfLeGkOyX1cXAq2rwKnS+eGhNTW9R+TfL3i+stJS0o2j+Ng6SbphxIGAQhA\nAAIQaCyBKRp5+Abx1xkUllHaSVEZl/UFXp3MF8aBgbfxBWqdxtlqLDdH4/9kq0IZ6ZdF9Q7P\nyB+WpM2jfnp+N83omC847czEx4EdnNjOVyTknxdnRGFfbPoiNJTzSo4vRIPZGXdayL9cYf+P\nxeZbnR6UQpnpCq8YF0iFL4jKvhiFr0uVi6N2CEP73k6OMt1H7zPkfyTKG6Vgp9/Ipz/v7CzP\nnxr4PIqfJgVG3h6bKhNHt4jKxnPkervFBVPhyYrH+9golT9R8c+nyvwiKrN1Km/9KM/BcdLb\npTulsJ97FQ7Pbik4y+ZRnstk/f+4nO1ZKbRzyIyU3v3hFrvesaVlCFRKwN/IYBCoG4FpGtB+\n0pqSvyG1fVb6luRvImPzReZbJX+L7m82fV/8NdJZ0tNS2vZSQvj28+cK3yFtL71OWln6p+Rv\ncv8qZZnLbSf5gs4ndJ8wb5F+LN0mpW13JSyVJF6hrS/wXf+1SVrY7K3A3dIFkvs/SdpVCvZ1\nBXwRENsqiuworStNl/4uXSi5fisr2/9W7cTpHt+ekufL34T7ZQvXSmdLvjCPbRdFlpcWjhJ9\nAfYx6RHpR1F6p8Ey/Yn3YSd1Z8nf1nsuL5Z+K/nY2kKy+fho5ajMKFDijy9aPd6PR3XSF8VR\nVsugj5vvSeFCdk6FN5SmSLajJKfZnpN2k3zcx3a9Iv4f+44UjiX/P9wspW1FJUyOEo9Q+NAk\nbifIx/alSTzemKvneAHJ/+MXScFuV8D/H+FCeNWQUWDrzwDP22TJcz+H9LD0D+lnktuObQVF\n3pIkmIPL+P/NnwPuu49Z//+fIj0jZZnHspPkrdvw/92vpU7Mn0d7RhXd1t5RPASfUOC9kv+H\nXyV5bsK8KvgK2z9KuUhhOzbhc+dAhf3514nZITlcOkBaOmnAx0pRe0kFzdztnJVUWkxb/x/0\n2sFJdvfyZhmF3iWtKLkPPmfcI/1R8ny6r3k2tzI9dz5ux0m+G+J0yeeF2Hw8+7Pa5nF/a0bo\nv39WUvBNSfQFbY/7b9aMVeFBHa9l+eylfndzfvWwN5G2kHw+8fHtz2LPx7lSK+vkXNiqLdIh\nAAEIDIzAFO3ZJx4r76LCFyChnLe+6IttkiJ/kuIyIfxPpfuCN22+8AllfMI6M4qHdJ+gfLKO\nbXZFfiWFMunti8rbNa6QhC+L6viiwnaylK4f4h+cUWKWWbZJlRmfpIfN+xXwyTzUC1v344tS\nunyn/VdTueYTonmF/cfbfyv9dana57Qo63r/SZXNimbxjMuV7U+oawftOSnuv8MnSp+O0k9Q\nuIhtrkJxW76AyrIDlRjK3aWwL7JiO1+RkH9enJEKfyQq5/JrRPn3R3k/iNLTwVmV8EbJTm6e\nHanM0KdbFPaxdnuU5uM7z3zRs2SqgPdtRy+0+8lUfqvoIsrwFwOhXnr7kPJ8sRVb/LliJ9hj\nflRK171WactIsXl+Dpael9LlT1NauKh2XjsOKjLDfOzFba2fpLfamN28rTKT9Pm1taMX2t1X\n4QOi+HSFV5SybLISQz1vN8oqpLTLo3Keg2BbKxDXzxtP/Hn829CAtkX/f1zlWSns7xAnFLT3\nqlyrzy6392NpQqotOz5hX/4/+EcUD+k+jt8gxba7IiHfx1radlFCyE875YM6XjvhE89nmfOr\nefiYPj7iEHiE7WXKW0BKW9lzYbo+cQhAAAJDQ2CKehI+9HxB0cp88RPKebtHVHCiwjen8v3N\nn0/8oY6/cQ3fZik4w+IP8HCys6MxTQr1vPUF0CQp2NEKhHyfkN2OT+gPROkOLynF5g/1UO/w\nJMMXTiEtvS3iIMUXOq7vC/u4H077qhRbp/2P20iH366E9AXGi0qLx+T4VlHFXjpInfTHXXub\nFPfZc3+D5OPC6Y8lW4dPkIrY5ioUt3mo4j5+LTtx+0k/knwxFMrZyUnb+UoI+eelMxUfL20h\n3S6Fcv4/CBd2vqAI6d76oqcb8/7ulEKbX0wa+1KUZm4LJulFNz5GQpvevr5gxfTxZA52zNOf\nA15VCraTAmFfdqCCs3Obws9GeS7zPSm2+ELX+T7+b5TCsRLa9fZkqYj5QjzUe7xIhQJlPM+h\nzScV9sVn2mk6qkU7k5Ue6nqb5SBtoPT4fz3mtHWqfp6D9H9RWXMMlv7/8eeZL4SzFH8GHRIa\naLPdVPnxMeL/Qzs7Ph7isafbC+eMuMz9quNjJ04z86WlYPFx042D1K/jtVM+f9WAA4fAyv8b\n06J05/t/bpIU25mKhLrePpUoTrsgrqBwJ+fCVBNEIQABCAwPgSnqSvjQy3OQxqlcfBL+XDSE\nz0Rt+AT1JmlWaTXpYim0f6zCscUf4C7zFWnupMC7tQ31vPWHbzBfdIW814ZEbb1Pj8cnWLe9\nrxRbloO0jApsJ4X2vN1VWktaWLJtI8X542ekzrzICSce558k+URsh/E9Uqjjk8uSUrBO+x/q\np7c+gfokF/Z3rsKrSLNLm0vx/m5WfC7JtpTk20n8LWuoe0iSNknbdpbF03U67c8E1XX/Ql/+\nrvCrJNs80i+lkOftiVIRM4O4Xl74RZXds0Wj50ftPKuw597yMe8LrXgOwj72UnqwDRUI6d7u\nHDI63O6Uas9zbltVivfz4Rmpxf4soWJTpVDf/0/+329ny6hAcF59sbttVOHNCof2vN0kykuP\nwcei//ds80m+UA5173RiYj5WbpFC3nUKT0ry/BnyqyjPZU5J8tpt4s8rH39pc5/spLRS+PyK\n6/mzKPTzx1HGT6L0exX2/2vaJish1PX2y9KBkp2uT0jfk/x5F5fZR/FgWysQ560fMjK2h0Zl\nfXyHz7ky/z/xvg7J2EdW0jeU6GPGdf0/NqdkM48/S6FNf67FFn/2ukz8pYaPPztGoe4JUcXd\no3T/36ZtFyWEemYb2yCO1075xMedx/MVKRyfeefXN6pcGL+3/vzwsTCX9CkpzttScdv8Ujwf\nRc+FMyrzBwIQgMAwEpiiToUPvF+36aAv9EPZ46Oy06L0b0fpDu4Y5fnbK3/IBos/wK9Woh2c\n2G5XJOzvM1FGnH6h0t8q+dt5m08As80IvfLPZUoK7R0eZU+K0p0fLtBCkW1S+T5Z2PaXQnsv\nKryEEyO7UuGQ/8UovdP+R02MCfqiK+xnqsITx+TOMsurFY+/2fUFVmzx/KXz4nLpcCuenfZn\nY+0gjMNbX5jFtpAi4SLc+SfGmTlhtxO32y78B5VfPqM9X7y1qxvy71FZX2jFtqsiId/b9Pji\nskXCZ0XtXZGq4HjY1z9Tea2idpj/FdXzMbN2q8IZ6XakVpTS4/LxGF+s7hDVTV9wppm9W2XD\nOJ6L6qWPlS2iPAcXl56WQt1TnFjArlWZUGdKRvmtovxQLt7acYptHUXifH8ZE8zhOG+3kBFt\nJ6fKxOWzwj4mZo3qb52qn+cgpS9+l0zaKfv/E/p1SNSPdsF5VWAzycdgbP4iLrT3lzhD4fiC\n/PxUnqPHSKHuI1F+lQ5Sv47XTvh0en49PeKW5ur/8TOk70sflFaVbPtLgfWLChc9F7ou1gAC\nrS7KGjB0htgAAv5gnCMa591J2A7P0lH6AwrHF0D+v3heml1yfa8I/FtK2+VK8LeIsXkfyyQJ\nC0QZ/tDeN4lP1tZyXTtZv5V+Jf1N6rWtEu1gqsLrRXEHPU7f/mLzSk2wqvv/+tCwtidL/vY3\nNl/0XiqFi8jXxJk9CHfanxWivngMf4riDj4k2encypEu7ETVnZbU9/Hp49IXZttIC0pvkLwi\n4QvW30lZ9oQS75RczxcvwdzvPSQfg+nj2eVjWzKOlAz7AsRfPgQ7JQSS7Una2omwrS69Tkrz\ndF4w/59dKK0YErR9n2SHoaj5Aulm6XZpE2lTyX0wT39OBJsYAhnbdB/D54yL+jPE7TwlxcfK\nM4pPkWK7V5G/S4FBnJcXvkeZayUFJuUVLJj3nqic27bzHczhuyQfQ7b/kX4+I1T+z3Oqcpr0\nfil93BVtLZ4jO8f+LM+y7yvRc5xlX1Di+KyMNmmPK/8yySz8f+d521zaUAqWd9zEXEP58xT4\naBLxCsfC0oNJPG/jc11R69fx2i2fyzWg9HHh/y3/39vi8+uqM5Nm/L04Cjvo//G3pdIcXSVK\nm6pw0XNhVI1gnQnMVufBMbbGE1hcBOITx00JkZVS6Ye0IbW08v+dUSb+hi9k+8Inyz6sRH+z\nHX8Iz6q4nRHr85IdpQOlu6Re2cpRw75g8z5bmccdrMr++2LEF8vBbg2B1PYWxbdI0lZP5VUZ\n7aY/y0UduV9hn4zT5pN6t/Y9NeALhrT5YuESaTnJF4tfk1o5SL6Y21ayTZZOk+zwTJS+Kz0s\nXSTFdmMcUdgXg3nmebpBSl/YuM4+UnzO8YXxfs5IbM4QSLYHapu+mAtFPO6LJB/DNnN3e+ZU\nxuZR4WOld0gOt7Ks8YSy6c+BVp8By4UK2trxyDpW7orKFA1Oiwr6f3aC9FyU5uPyl1Hc/3t2\nBLPMjvdeUYbn5M9R3MHYKdlKcX+e/scZLexEpdvR9njdLzuLd0hTpE7Gq2ovm8cSbKoCz4dI\nanuC4ln/Py7mz39/BpS1nVThCOk1ORXzjhsfA2lL85ikAmkHadZ0JcXtiAeLz3khLd7263jt\nlk+6nx5Dq/8tH4PB7guBNttOz4VtmiW7LgRmq8tAGAcEMghslkq7KYnHFw9O8onT3663sqwL\nGZd9NqNCqxPiYyq7kfRm6d3SllL6gmxHpZ0mTZZ6ZfHYfSLxN9atLL7wqrL/L2qH5j1vsuOw\nTfdj/ijhgShcdbCb/jwadWaRKBwHF40jFYc9R2dIn0jaXU3bBaWHk3irzUXK8LF4qeSLq8Uk\nO8ubSP+QgrkdX2CHMfiC2A5Fli2kxGskr5r9Svqu9Dcp2P4hkGxfnYqno7sp4cOS+xCbV3Qv\nklZIEj1//p86OYkX3cynghdK4UsLH5O/T9Iu0vYCKYy71f+1PxvSF+Wtysbj8L6zbO6sxDZp\n5yrf47fNKr1L+qEjiXk+3xoi2m4vtXKid1XeAlHZ+RVeP4qng74YP0A6OJ0Rxb+j8F+ieJXB\n2NELn+9Vtt+qrX2UYcbBsTJjHzsXSWtKX5ZsrY4F58WcHbfFzqfjWZ97/n9Nm7/kCOZjspX1\n63itgk+Z86s/h8P/jj//ilin58IibVOmBgRwkGowiQwhk4BP3J+Lcu5U+LokPlVbnyjCN22+\nsPLFXFnLOxFlteULubOkX0j+37PDtI3kk8lykm1LaWEp/a2h8/LMF0ZF7JaokG9J2U7KO4lH\nxWe88KKq/k9Vw2sljW8Y7yQJ+8Jj3SjdFyC9tKlqvJP+uF4wf/u+jnRNSNB2HinvAjMq2nHQ\nDkMwH2PpC/aQl95eqYQvSEcmGb44s4Pu/sYXD79RfD/JtpNkTlnz8QGl++LNK7cHSj5Wgvm4\nXjlECm7Nc2/pG1F5p50trZCkeay7S/6fKms7qkJwjp5WeA3p9qgROwfBzDXLynwG3Bw14Iu4\nJaR7ojT/D68WxYsGPT927nys2b4gnS45Lcs8R63sPa0yctL3Vd4hUnzM5BSvLOvNamntqDU7\niv2yz2hHwTn6lsI+9oOFzxHHWx03zos/3xy3rTJzM+Oved6RxGO2E5Q2m+TP72A+lopYv47X\nKviU6eu/NfilEgCrZoD4fJL/T23/JF0tdXMuVHWs7gSKXlTVnQPjqxeBlTScU6X4BPQxxZ9K\nhvmMtlclYW/2iMIOvl3yxYwvxPxNYLjwULAje41q/Uq6QXIffAHqk9tl0hekPaXYfAJsZ/HJ\n0WWL1HG5S/0nMZ9QtgwRbX3Cd5+ukH4o7SDZetH/+ILW/ONvgr3Pj0jLOSDzifK8GaHe/em0\nPz7ZPhZ16xiFw/HiC9HjpIWj/CqD/vzeR3pT1OjfFG51YRwVezl4tEKe72BrKvDZEEm2n9b2\n0STsLxV+K22SxMNmXwUODRFt/yOdG8X3j8IPKbyM5OMvS1OVHuzAEEi2x2ob/18fpvj50vwp\nzal4O3ttVOBahWPnyOOL/6dmi8p2GrRTGZxXc/xkqqG9FF82lVYkaufui1HBVynsz7f1ojQH\nfVz+P+lkRyJzX2wrSfHngecza36c9kEp2GIKvCVE+rD1/9Xe0rejfZltHI+yKg8uohZXiVr9\nTRR2cIsonnfcvE3lYmfKZT8U1f27wtOT+L+jdM/XOlF8DoX9GRoszGeId7rt9Hitik+Zfv81\nKvx2hSdFcR+vn5H8WfIN6Y2SrZNz4cya/IUABCAwpASmqF++aLZ8cXBnoru19cVqyAvbPygt\nbbsqIeR7e7w0WTpAcnsh7wKFY/MHccg7JM5IwhdG+V9J0vzN/ANR+nUK7ye9WtpNcv9Cmzcq\nHNtlioS8w6OM+aJ05/9R+qrkk65tGynU89bOj80nT18MhrzbFH6XtLXkC6eQ7m040XfTfzWT\naV5l8FjD/p5R+LuSLxp/GaU7/1tS2qYpIdT1ia+oteLZTX/sZIS+eOvj8HfS7al0550oFbHN\nVShu837Fw3Hu7b2SmcVlHD5Iis3OQyhzXpwRhVdT2P9HodyzCvvYjM0XbiE/bO0EnSPdksp7\nUfE3ScEWUOApKdRrdyH7+ais67xOsi0oPSeFdvK2p7pCG/u08uM2PqL48tJ7pKlSnLen4sF2\nUiDkeaxp21IJId9b//8E8wVanPcTxd8tfU2y8xTnnaJ4UZtVBS+W4voO3yF53q+X3Nd0vo+h\nVSXbl6SQ/4LCSzqxhc2t9MelUN6fP8EmKxDSvd0oZBTc+rMorn+f4uHYdzjNyU5EOEYUnGGb\n62/cxqZJetbm2ajsIVkFUmnjFY+P58sV3yTRD7WN9/tvxWNz/+N8/19/UTpAmpLK21HxYBMU\n8JyEup7PvaV9pUukkO6txxNbv4/Xbvj8VR0PY8maiwuj/K9Eg7RT9lCU58/HL0v+bPY5LrTp\n430pyTZOKnsunFGRPxCAAASGlUD6RBI+/LK2Z2sQr8oYiD8c0xcr6fp3q0y4eAhNdPoBvp0a\nyLqgjffpE5tPtLG1uqB3mWukuL7DxzhDto0U5/mkFczfPt4uxfnp8NdD4WTbaf9TzYyJ2inx\nt5TpfcfxC5Q/75haMyPTonoHZuS3Ssrj2Wl/JmhnP4/6E/ffDsTvorwTFC5i6Qu8uM1W4e9k\nNHy+0kL58zLyQ9LHo3Iu74su/4/E9j5FnpRCe622740rKex6cdlNU/np6LJKeDGqc0pSYP8o\nLW4vK1zEQfJ+HmnRpvfvi/LQ9pEKB+vmgnNhNXKzFNqNt48qPT6OwrjDfttt51IB14nbzAtf\npbLrJo3Opu1dUd28YyWpMssPovLTFV4pyZgcpXv/3TpIeWOwg/EeKW2bKyGul3fMPRuVPSTd\nUIu4P2fj9uNw/Nnqz/x5ojbui+r9MArH9R0+I6oTgt/NKf/NKM/jiW0Qx2unfP6qjgcWWXNx\nYZT/lXiQCvtLjHguQzvxdq9UnU7OhakmiEIAAhAYHgJT1JX4Qy8O+5ujKyVfaGwltbN9VOBG\n6UUptONv6n4mhRO+gi9bNx/gG6qVX0nxvsI+f6N0f1inLe+C/nUqHF/U+JvVY5MGttE2tO3t\n+CQ9bBZVwCs16QvEqUp7n5RlnfQ/q504zReM35b+KfkiK/T5DoU/KKUv0pU0w6bpbyh7YJJW\nZJPH0/U77c+sqvtJ6XzpYcnfKn9eml2KL3o91iK2uQqF8aW3Pj594eXVUnM6WbIDm55jJc3o\nT6h/nhNamPt/qRTKert/Rll/YeBj9QEpLutj2sf2elLafCEeyt6UzmwR/31U52mFF5L+EKWF\n9lptT1XZIvZaFbpeitu5TvHNpP2i9P8oHKybC063sYB0huT/V+/Xx/010trS+6XQF89rJ7a9\nKv1Cek4KbYXtg0o7TdpWim1nRUIZb98ZZ7YIm1Fcx9/W2yZLcXqVDpKPhX9Lf5SOkOaXsiz9\n/7NpVqEkLb6oPiSnXJw1URE7AWEOPd6nJH+xNKc0VQoMYpaxg7Siyuwj+X84lH1C4UMl/z+m\nzWnHS49LobyPy30lf56HNH82xDaI47VTPn9Vx8M4subiwig/7SB5zP4fulx6QQrteHu1tIOU\nZWZX9lyY1Q5pEIAABGpJYG6NahPJ36i2OulWNfB51NDq0mTJtzf5hNqpzaaKa0jrS3N02Mjy\nqucLCm+zLrLTzVbZ/7htXwT7omuROHGA4SL9Ma+lpawLmtD18xUIJ+ujQmINtq/SGCZLq0oT\npFE1z52P/ddJ/Tz25tL+NpZ8gdYL80WqL8K3lOwIOlzk/1vFsIIE5lO5DaS1JH8Wd2orq6Iv\n7ovMj/fjz3t/7vTTOjleq+JTdpw+F/rLGjvnZf6ny54Ly/aL8hCAAAQgAIFGEPBFg7+t9Lf1\nN0unSrH54vd+KThI74ozCUMAAhCAAAQgAAEIQAACEKgbgSs1oOAAeesVoy9JvpVpmhTy7lW4\n16uT2gUGAQhAAAIQgAAEIAABCEBgcATW0a6flIIjlLX1swp7DK6L7BkCEIAABCAAAQhAAAIQ\ngED/CPh5nP+V/iH5QXg7SX6Y2nHfdufndDAIQAACEIAABCAAAQhAAAKNJOC312EQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCA\nAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQ\ngAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIDCs\nBMYNa8ca2K8NNObZGzhuhgwBCEAAAhCAAAQgMPoEntMQrhr9YcwyCw7ScMyinaMrh6Mr9AIC\nEIAABCAAAQhAAAIdEfA17cg7SbN1NHQqVU0grBzNq4btfWMQgAAEIAABCEAAAhAYFQIT1NHH\nJW9H3nCQhmsK7RzhIA3XnNAbCEAAAhCAAAQgAIEGEZi1QWNlqBCAAAQgAAEIQAACEIAABHIJ\n4CDl4iETAhCAAAQgAAEIQAACEGgSARykJs02Y4UABCAAAQhAAAIQgAAEcgngIOXiIRMCEIAA\nBCAAAQhAAAIQaBIBHKQmzTZjhQAEIAABCEAAAhCAAARyCeAg5eIhEwIQgAAEIAABCEAAAhBo\nEgEcpCbNNmOFAAQgAAEIQAACEIAABHIJ4CDl4iETAhCAAAQgAAEIQAACEGgSARykJs02Y4UA\nBCAAAQhAAAIQgAAEcgngIOXiIRMCEIAABCAAAQhAAAIQaBIBHKQmzTZjhQAEIAABCEAAAhCA\nAARyCeAg5eIhEwIQgAAEIAABCEAAAhBoEgEcpCbNNmOFAAQgAAEIQAACEIAABHIJ4CDl4iET\nAhCAAAQgAAEIQAACEGgSARykJs02Y4UABCAAAQhAAAIQgAAEcgngIOXiIRMCEIAABCAAAQhA\nAAIQaBIBHKQmzTZjhQAEIAABCEAAAhCAAARyCeAg5eIhEwIQgAAEIAABCEAAAhBoEgEcpCbN\nNmOFAAQgAAEIQAACEIAABHIJ4CDl4iGzRwRWVrvz9KhtmoUABCAAAQhAAAIQgEDHBHCQOkZH\nxQ4JjFO9C6TDOqxPNQhAAAIQgAAEIAABCPSMAA5Sz9DScAsCr1P6q6R9pIktypAMAQhAAAIQ\ngAAEIACBgRDAQRoI9kbv9B0a/RXSBGnXRpNg8BCAAAQgAAEIQAACQ0cAB2nopqTWHfLx9jbp\nBOln0m4SBgEIQAACEIAABCAAgaEhgIM0NFPRiI4so1EuLp0vXSetIGEQgAAEIAABCEAAAhAY\nGgI4SEMzFY3oyCSNcrp0e6JlGzFqBgkBCEAAAhCAAAQgMDIEcJBGZqpq0VE7SHdLz0t2khaQ\n5pUwCEAAAhCAAAQgAAEIDAUBHKShmIbGdMIO0m3JaO0g2VhFmsmBvxCAAAQgAAEIQAACQ0AA\nB2kIJqFBXYgdpPs17mclP5eEQQACEIAABCAAAQhAYCgI4CANxTQ0phN2kMLK0UsKT5NYQWrM\n9DNQCEAAAhCAAAQgMPwEcJCGf47q1EM7Q+EWO4/LzhIOkklgEIAABCAAAQhAAAJDQQAHaSim\noTGdwEFqzFQzUAhAAAIQgAAEIDCaBHCQRnPeRrHXi6nTc0qsII3i7NFnCEAAAhCAAAQg0BAC\nOEgNmeghGKafP7LhIM3kwF8IQAACEIAABCAAgSEkgIM0hJNS0y75bXWPSE9E47tT4aWiOEEI\nQAACEIAABCAAAQgMlAAO0kDxN2rni2i0frV3bA8qMlGaO04kDAEIQAACEIAABCAAgUERwEEa\nFPnm7XdhDdkOUWwh7jwMAhCAAAQgAAEIQAACAyeAgzTwKWhMB3CQGjPVDBQCEIAABCAAAQiM\nLgEcpNGdu1HruR2kB1KdfkzxF6WFUulEIQABCEAAAhCAAAQgMBACOEgDwd7InfoZpHBLXQDw\nkgIPSdxiF4iwhQAEIAABCEAAAhAYKAEcpIHib9TOs26xMwA7TThIjToUGCwEIAABCEAAAhAY\nXgI4SMM7N3XrGQ5S3WaU8UAAAhCAAAQgAIEaEsBBquGkDumQWjlIvsWOZ5CGdNLoFgQgAAEI\nQAACEGgaARykps34YMbr42xBKf0MknvDLXamgEEAAhCAAAQgAAEIDAUBHKShmIbad2IBjdDH\nGg5S7aeaAUIAAhCAAAQgAIHRJoCDNNrzNyq9Dy9hwEEalRmjnxCAAAQgAAEIQKChBHCQGjrx\nfR52noPEM0h9ngx2BwEIQAACEIAABCDQmgAOUms25FRHwL+B9KT0TEaTPIOUAYUkCEAAAhCA\nAAQgAIHBEMBBGgz3pu211RvszMEOkl/gwLFoGhgEIAABCEAAAhCAwEAJcFE6UPyN2Xk7B8nH\noV/kgEEAAhCAAAQgAAEIQGCgBHCQBoq/MTvPc5D8DJKN30KayYG/EIAABCAAAQhAAAIDJICD\nNED4Ddq1nZ/gCKWHHdJxkNJkiEMAAhCAAAQgAAEI9J0ADlLfkTdyh/Np1I+2GPlTSn9BchkM\nAhCAAAQgAAEIQAACAyWAgzRQ/I3Z+fwa6WM5o3UeDlIOILIgAAEIQAACEIAABPpDAAepP5yb\nvhc7P+0cJDtRGAQgAAEIQAACEIAABAZKAAdpoPgbs/MiDhIrSI05HBgoBCAAAQhAAAIQGF4C\nOEjDOzd16pmdn1bPIHmczsNBMgkMAhCAAAQgAAEIQGCgBHCQBoq/MTtnBakxU81AIQABCEAA\nAhCAwGgTwEEa7fkbld7jII3KTNFPCEAAAhCAAAQg0HACOEgNPwD6MPw5tY/ZJV7S0AfY7AIC\nEIAABCAAAQhAoDsCOEjd8aN2ewLh2aJ2DlIo175FSkAAAhCAAAQgAAEIQKBHBHCQegSWZl8m\nEByfvJc08DtIL+MiAAEIQAACEIAABCAwSAI4SIOk34x9BwcpbwWJt9g141hglBCAAAQgAAEI\nQGDoCeAgDf0UjXwH/QOw06Unc0bCClIOHLIgAAEIQAACEIAABPpHAAepf6ybuievID0uvZQD\nAAcpBw5ZEIAABCAAAQhAAAL9I4CD1D/WTd2THaS82+vMBQepqUcH44YABCAAAQhAAAJDRgAH\nacgmpIbdsYOU94IGD9kO0nhpbkcwCEAAAhCAAAQgAAEIDIoADtKgyDdnv0VWkIID5bIYBCAA\nAQhAAAIQgAAEBkYAB2lg6Buz4yIOUrgFDwepMYcFA4UABCAAAQhAAALDSQAHaTjnpU698lvs\nggPUalwhHwepFSHSIQABCEAAAhCAAAT6QgAHqS+YG72TIitIT4nQC5KdKQwCEIAABCAAAQhA\nAAIDI4CDNDD0jdlxEQfJMPwqcFaQGnNYMFAIQAACEIAABCAwnARwkIZzXurUKzs94SUMeeNy\nGRykPELkQQACEIAABCAAAQj0nAAOUs8RN34HRZ5BMiQ/h4SD1PjDBQAQgAAEIAABCEBgsARw\nkAbLvwl7n1eDDC9hyBsvDlIeHfIgAAEIQAACEIAABPpCAAepL5gbvRP/+OuTBQg8oTLzFChH\nEQhAAAIQgAAEIAABCPSMAA5Sz9DScELATo+dn3ZmJwoHqR0l8iEAAQhAAAIQgAAEekoAB6mn\neBvf+DgRmEsquoLk1SYMAhCAAAQgAAEIQAACAyOAgzQw9I3YsZ0jO0lFVpC4xa4RhwSDhAAE\nIAABCEAAAsNNAAdpuOdn1HsXbpkrsoLELXajPtv0HwIQgAAEIAABCNSAAA5SDSZxiIcQbpkr\nuoIUyg/xkOgaBCAAAQhAAAIQgECdCeAg1Xl2Bz+2MitI3GI3+PmiBxCAAAQgAAEIQKDxBHCQ\nGn8I9BRAWBEqsoLELXY9nQoahwAEIAABCEAAAhAoQgAHqQglynRKwCtIL0jPFWjATlRwqAoU\npwgEIAABCEAAAhCAAASqJ4CDVD1TWvwvATs8RVaPXINb7P7LjRAEIAABCEAAAhCAwIAI4CAN\nCHxDdusVpKIOkm+xYwWpIQcGw4QABCAAAQhAAALDSgAHaVhnph79soNU5BXfHq0dqfHSnI5g\nEIAABCAAAQhAAAIQGAQBHKRBUG/OPsveYmcyrCI15/hgpBCAAAQgAAEIQGDoCOAgzTLLopqV\n1SRYVH94ll1Bcg9cB4MABCAAAQhAAAIQgMBACOAUzDLLJ0T+X9ICA5mBeu+0zApSuBUPB6ne\nxwSjgwAEIAABCEAAAkNNYLah7l33nVtbTbS7ZWvpZDcbavtYEp6m7R1JmE3nBOzsFH1JQyjX\nbr467w01IQABCEAAAhCAAAQg0IZA3R2kkzX+17RhELLPDQFtvyAdFsUJdkbAzk5YGWrXwjMq\n8KLEClI7UuRDAAIQgAAEIAABCPSMQN0dpO+K3NelOaSzJd9Kl7bXK2Ej6Tjp6STz0mTLpjsC\ndnbuLNGEnSkcpBLAKAoBCEAAAhCAAAQgAIGyBNZQhb9LT0kflMZJsR2tyEvSQnFin8ObJn2Y\n0Of99np352kHXy6xEztTe5YoT1EIQAACEIAABCAAgcET8DWsr6d9TTvy1oSXNPxTs+QVom9L\n35B80R6eO1IQ6yEB32IXni0qshuXZQWpCCnKQAACEIAABCAAAQj0hEATHCSDe1b6hPQG6dXS\nP6TdJay3BOzsFH0GyT3hFrvezgetQwACEIAABCAAAQi0IdAUBylguEABv9nuD9JPpNOkBSWs\nNwQ6WUFyHQwCEIAABCAAAQhAAAIDIVD3lzRkQX1Yie+QfiP9nzSfhPWGQNkVJG6x68080CoE\nIAABCEAAAhCAQEECTVtBirGcoohfAX6GdJH0vIRVS6DsChK32FXLn9YgAAEIQAACEIAABEoS\naOIKUoxoqiK7xQmEKyVQ1kHyChK32FU6BTQGAQhAAAIQgAAEIFCGQNMdpDKsypZNv068bP1R\nLz+nBuAVyjIvabCDtOSoD5z+QwACEEgINP08wIFQbwJ+pTMGgVoSwEEaO63vVfQg6TuSf2S2\nU1tRFW+QyvKt08k0vK7bTk9RszPFClJRWpSDAASGmcDn1LnDh7mD9A0CXRLwM92LSS902Q7V\nITB0BMpewA/dACru0OJqz2+587Ybu0WVN5eK/vDrTir7Scnz4VeS18HmSgbhH+gtajhIRUlR\nDgIQGHYCPo9cIh0y7B2lfxDogIB/MsVfJM8u4SB1AJAqw00AB2ns/Hjl6BfSvWOTS8e87HxF\niVqrlig7KkU7cZDsTIV6ozJO+gkBCECgFYH7lWEnCYNA3Qg8U7cBMR4IxARwkGIaMx2jbp2j\nsS02NxYcnTIrSDhIzT1eGDkEIAABCEAAAhAYCgJNdJD8w7DzSxMlPx/ziFTmRQIqjhUg0KmD\nxDNIBeBSBAIQgAAEIAABCECgNwSa8jtI6wrfD6T7pIekWyW/ROEOyU7SzdLx0qISVg0BO0h+\nnmp6iebsqAbHqkQ1ikIAAhCAAAQgAAEIQKAaAk1YQTpUqA5LcN2u7eWSnSQ7Rl5JWkhaVjpQ\n2lX6kHSahHVHwI5OmdvrvDduseuOObUhAAEIQAACEIAABLokUHcHaTfxsXN0rvRZ6Wopy/x6\nbb917mvSj6Wp0mUS1jmBTh2kObVLzwe/r9A5e2pCAAIQgAAEIAABCHRIoO632L1FXPzKbW9b\nOUdG54txv2loG+lxaW8J646AnyUqu4LkW+zsHNlJwiAAAQhAAAIQgAAEINB3AnV3kNYWUd9S\nV/S3hfyjZ9dKS0tYdwQ6XUHyXnkOqTv21IYABCAAAQhAAAIQ6JBA3R2ku8Vlfck/ZFbE/IY7\nO1V+gQPWHYFuHCTeZNcde2pDAAIQgAAEIAABCHRIoO4O0knispp0prRxDqPwDJKfVfKF/Vk5\nZckqRqATB8m32NlYQZrJgb8QgAAEIAABCEAAAn0mUPeXNPhtdItJR0g7S3dKd0gPSo9J80l+\ni90kaUnpBenj0qUS1h0BOznB4SnaUnhmCQepKDHKQQACEIAABCAAAQhUSqDuDpJfvvB16VfS\nkdIWUnolyRfld0l+g903pGkS1j2BTlaQgoPELXbd86cFCEAAAhCAAAQgAIEOCNTdQQpI/Ca7\nPZKIV438+0dzSPdJj0pY9QQ6cZCmqxvPSKwgVT8ftAgBCEAAAhCAAAQgUIBAUxykGIVvrbOw\n3hKwk+OXZJQ1ryLhIJWlRnkIQAACEIAABCAAgUoI1P0lDZVAopGOCHSyguQd4SB1hJtKEIAA\nBCAAAQhAAAJVEGjiClIV3GijPYFOHSS/2IFnkNrzpQQEIACBOhDYTINYXDpbenEAA1pD+1wl\ntV8/v3yH5J/8eCKVF6I7KjAhRKKtx+AfnL9Vmiq1szVVYHPpVdIj0o3SOdLzUp5NVOYOSYHf\navtcXmHlrSD5rb7+2ROPy/vBIAABCAw1gQPUO38g18kx+IvG88kOqF+tOh/toB5VIAABCAwT\ngW+qM2cMU4eGtC/+eQ2f/+YcUP+OSvbvPqTl52Ivl5aS0ua34abLp+MXqczC6YpJ3E7Zn6R0\nHcenSm+S8mx3ZYa6DreyJZThny4JZcP2AqXZaerUNlJFtzWoeeu039TrHQF/YeBjYtPe7aJ/\nLbOC1D/WTdtTpytI3GLXtCOF8UIAAhAYPIHvqQuXJd0Yr+280tbSztKfJa80pZ9f9qpNWMVR\ncIb5usqrQXtLW0r+2ZDVJTtbwfw23T9IPk/+WvqddL5kp8n720uyc72L5NWhLHu3Em+RFpAO\nkn4qpc2PUTjd/fiZdKLkc6z7tp/kVbsNpGckDAIQgMDQEajjCpI/uP0BXNZ+rwpfKluJ8hCA\nAASGjAArSMUm5FwVG+RKRFhBslOSZScq0f17WyrTK0hPp9Li6OyK3Cm5rh2iYL5T5GbJ6Z8J\niantGxW3Q3W7lPVF9rJK9618Psa+L7ktO2Fp21IJzguOX5xvx8t5u8WJJcKsIJWA1ZCiEzRO\nH1O1WEHytwsYBHpBwN+M+ZuqsvakKrguBgEIQAACzSXgFZuPSP4tww9J60itbA5lbCvZ2Xmf\nZAdikrSPtLTUjflLO5ufFSpjz6vwqUkFP2MU7B0KrCBdILm/WfYHJf5GekQyh7T5y0dfv50j\n/TTJPCjZxpvlFJkq/UhK2ylJQpZjlS5LHAKNI5D1zUTjIDDgnhDo1EGyU4WD1JMpoVEIQAAC\nI0HgGPXSTpGdgHskP0fjb6b9Y+6fkl6Qgq2mgJ8T8q1mD0j+ncMjpJ9LB0rbS17J6dTCt+EX\ndtDAWkmdu6O6dpBsXv2ZPiOU/efNSvaY0zZOCftKD0m+Lc8s7pL2lv6fFH8xeZLiVpbZSbN5\nNQuDAARSBPzhg0GgFwS6cZB8CwIGAQhAAAIzCfiieJjUy3l5txr3i3r+KC0pLSUtJvmWMKd/\nWAo2nwJnSb7dzM8LLSrZQfqZZOfIZm5FbD0V8vM/1lukAySvAH1A+pY0RSpi3v860vFScM78\nnFGwVZPA9SGhxTbLOXLRraTlJK8cPSt57F4N8n73kIrYIipkln6mypwxCEAAAkNJwB/E/jCs\ni2MwMRnPph3QPlZ1ftlBPapAAAIQGCYCVT2DdLAG5fPDMMkrOVVZ/AySnZmHJT/f4wv+2Hx+\n9ErM41I4V75XYXNJ317mL3+vS/LspOTZUcrMY+sVlsUzGnAf8+o5z32wsxTbM4r49rvxcWKJ\n8Gkq67Y3jOp4Fc1pf43SWgXN7grJ5fdvVahA+kZJG3MWKEuRZhCYkBwTnVz7DR0hbrEbuimp\nRYfCLXLxUn/RgblOqF+0DuUgAAEI1JXA9zSwy4dscDf2qD+T1O4CkldEHk3t40nF/eWZnSI7\nBFdJ60u29JdqvnXtTGkNZxa0H6icHQebHazFpBWkvaTrpf0kv/UtNq/e/DRJ8MXhWpL7drvk\nW97+JLlMbM5bWVpQ8i2BZcxsdpHcnyujijco7L5vItlxivMUfdm8cuQxbCwdJ/1QwiAAgQwC\nOEgZUEjqmkBwcOzslDXX8TdcGAQgAAEIzFxRuaQhIMLtZ7e1GG9IX0n5dpBeI3k15l4pbdPS\nCW3iFyn/xxllvqO0v0hHS2kHyft+pxTbFxU5RPLdEJtLT0ixud92kFaXys7rnqozh2RHMrBQ\ncIbZ4bLZgcxykFZUulfrzO5I6XMSBgEItCAwa4t0kiHQDYFuHCR/Sxjqd9MH6kIAAhCAwGgR\n8Oe/rdWXZPPOzH75d3vsfMwuhfQke8YmfYtenFcm7NvW7NR4ZchqZ4eqgB0t31rnbfo662ql\n2dacuWn59wPK+ae0e1TCt8T51rhzpD+nZOfnacnlvdIUm/c1RVpO8rNZOEeCgEEgj0D6Hzev\nLHkQKEogODjhZFe0nst5BSnUL1OPshCAAAQgMNoEbkq6v3qLYYT0sHpyQ1LOK0lps4NSlc2T\nNPRMwQbt3HgF603SR1N1fNud7VPSojNCr/zju3veI3m8tyfZHuN60iXSbtLbM3Sm0uaU9pGC\nbaDAxZLHsKP0fQmDAAQgMBIEDlAv/a1Qq2/NRmIQUSf9gJ7H43uyy9q7VMEnFgwCEIDAKBOo\n6iUNo8ygSN+98uHzhS/sbX7eys8Q+cI+Nq+CvCDdIo1LMuw0uOz50sQkzRs7Er79ze1uL+XZ\nUcp0ub1aFArn56mp/AcV94pNK9tOGW7XXxQunyr06yTvIm1nT+XZOfJtfa4bnCkX+UaS5lWk\nVjZZGa73r6SAmd4q2bGr+sH5jdSm9xXmTUGs4QR4SUPDDwCG356AV4BelJ5rX/QVJXwycX0M\nAhCAAASaR8CrL3aS/igdLl0j2TnyrWuPSrtIvjC3/V06Vvqo9FfJjodXZezsPCItItmBKmIf\nUyGvzASbQ4GVpRUkO2b7SmXMjt9pkp8bOl7aRgp2oALnSVtK90l28KZIi0m7Sn4Wy46NwzY7\nf++U7OicIbUyrxTdLPlWwNcnWk7bu6SDpSz7jRJ/kJVBGgQgAIFBEwjfUNVlBWlnAX2sQ6j+\n1s0nAQwCEIDAKBP4pjqfdzE7ymOrsu92JNIrEesqzQ6P062nJDtMXhnKsv9R4qXSo9LfpPdJ\nR0iu+1opz45SZthPvLWDdb10krSOlLZ2K0gub2fN5dzu3lJsCyjyZel+Kd6vx3qMZOcu2NsV\ncJnTQ0LO9rNRWbOI284KfyOnrbysjZK2WUHKo9SsvAnJMVH1amWzKDLaMQTq5iC9Q6O7Z8wI\ni0e2UFF/iI8rXoWSEIAABIaOAA5S91PiH4JdW/KFV5bNo8TxWRlK+5bkc4lXU4bZ/Cz40tKG\n0nKS46NgOEijMEv97WOtHKRR+Ufs7xSzt24J+BulpztsxN+e2bjNbiYH/kIAAhBoKgHfiXCt\n1Op27d2V53PN/lJsSyiyh+TVm3/HGUMY9i2Ad0pXSlOlorcEqigGAQj0ioAfBsQgUDWBbhyk\n4Fi5jSer7hjtQQACEIBAbQj4tjvfkn205JUi32a3huS7GLz65GeRcDgEAYMABMoRYAWpHC9K\nFyPQjYPEClIxxpSCAAQg0HQCUwVgJ8nbT0i/lA6V/EWbX45wuoRBAAIQKE2AFaTSyKhQgEA3\nDlK8glRgVxSBAAQgAIEGE7hEY99AWkhaUvJb3LyqhEEAAhDomAAOUsfoqJhDoAoHiWeQcgCT\nBQEIQAACYwg8pJiFQQACEOiaALfYdY2QBjII2LkJK0EZ2blJ4RY7O1kYBCAAAQhAAAIQgAAE\n+koAB6mvuBuzs25WkJ4XJf/ILA5SYw4XBgoBCEAAAhCAAASGhwAO0vDMRZ16YucmrAR1Mi7X\n5Ra7TshRBwIQgAAEIAABCECgKwI8g9QVPiq3IGAHyb8/0an59jxWkDqlRz0IQAACo0NgM3V1\ncelsyXcPDNrcl22kZaSJ0nWSf4vJv6fkH57NM5ffISnwW22fa1F4ZaWvmcpz2365xMPSjdIj\nUtp2VkJ83eY6/kLxfumOZKvNK2w7pcwhnfWKnP8mrKXgStKfpbv+m0wIAhCAwOAIHKBd+4Nu\n7sF1odI9+0T3tS5avFV19+2iPlUhAAEIDJrAN9WBMwbdiRHY/7nqo89/g/5SzG/B+6nk27zd\nn7TOU5rfkpdnuysz1HO4lfmV5KFc1taO0k+k+VMNPJFT7wXlnSytkqrjqH+Itt3vQX1dZdyX\nt0lFbCMVcvlBz1uRvlKmPwQmaDc+Jjbtz+56u5f4m4je7onWm0TAH5idvqTBnFhBatLRwlgh\nAAEIDJbA0tq9f2R2knSF9B3Jq0Z+K97a0juld0hOe43UaoXl3cq7RVpAOkiyw5Vnpynz91GB\n8QrbUfuQZAfL7XhFyhedwbxi9L4Q0darVotKb5LeJe0oeTWoVR+VhUEAAhAYDQJ1W0H6k7B/\ntgv0V6nux7uoT1UIQAACgybAClKxGThXxQa9EnFO0gff+WAnJcs+rUT38ytZmUpbVvItgp73\n70suu7qUZWEF6cNZmUqzY+Rb5tyGnZ1gXkF6OERSW3/2FnsWAABAAElEQVR771Un1/F4YmMF\nKaZBuFcEfAz6+KvFChIvaejVYdLsdrtdQfI3ZCzbN/sYYvQQgECzCayh4X9E8q1fXlFZR2pl\ncyhjW+koyasrdlYmSftIXh3Ks9cqczvpGulgqdVzUHaevCrzeinr2mm/JN3OSVg5OkjhTuwR\nVfIzTLaNZ27a/vXzTntKF0sej1eUMAhAoEMC3GLXITiq5RKYS7lP55bIz3Rdt4FBAAIQgEDz\nCByjIdspsiNyj7SE5G+mvyF9SvLzNsFWU+ByaQHpAWl+6Qjp59KB0vaSV1Ba2R5Jxqnaxu2m\ny9sBWVXyKk7axilhX+kh6XzJ7diZ2lv6f5K/9CtryycVytQ1ox9IW0rrS2dLGAQg0AEBHKQO\noFGlLQFWkNoiogAEIACBwgR8Ad7KfFGcZZ3UcTut6rXaT9a+u0nzczwflc6T9pHulRaRfiQ5\n3c6OV3Ns80lnSV712Vq6QPL5x6tO/yPZWo1nZu4ss2yQBLyC1M6ynCPX2UpaTvq29KxkO0U6\nWLID9kOpjPnWvDdIHtdfylRU2euS8m4jNnP4SJyQCq+bihOFQKMJ4CA1evp7NnifoMp865Xu\niFeQ3AYGAQhAoOkEfJF9VAsIdlq2lKak8ldR/J9Sq3P8ccr7cKqOo1dJ62WkO+luaakWeVUl\n+yLezo9XYt4hPSrZvDJkR+M/0hek70pPSntJXtV5r2TnyObzx/uk10m+Ta+dhVvw/p5RcFOl\n+aUJwckKWzst90bl90/CJ0ZpDnvu3LdWDtIOyltYCjaXAstJO0nel59n8pjL2H1JYa+spc2O\nIwYBCBQg0OrDs0BVikCgJQE7Nz5JdWp2rnyiwCAAAQg0ncD3BODyFhCmK/2KjLyblLaFNHtG\nnpNubJFuJ8S3s2WZnZZe2yTtwLfKefUlOEdhn3aIfinZ4fDFv50530Zmc3ps5nKmVMRBej6p\nuKi2dsRis2Nqjml7sxLC7Wvu7y7S9dKVUrAbFPDcbCJtKMV5is6wbfTXis19v1X6knRCnFEw\nHBwu80rb69MJUfwDCu8axQlCoNEEcJAaPf09G3y3DpKdK986gUEAAhBoOoGHBeCSkhBeUvlW\nTlVeU/9WpjUo82qQ7baZm1f8DekrKccO0mskOzj3Smmblk5oEb9D6ctLdmL+lSpztOInRWlv\nV3jbKO7gntIckp270D8FZ9iCydZOXZaD9BWln5qU8ca38Lk/wWlzWllbMalwS6qij4mLUmlx\n1E4fBgEIJARmgwQEKibgY8piBalisDQHAQhAoOYEwqrH3C3GOW+S/kyytUPhVTKnP56khc38\nIdBme6HyN5c2kE5Olf1dKr664mkHybfX2fk4J9lqM8Z8u9zu0sekR8bkzHyRwz9Sad1Gwy2S\nrVYJu22f+hBoBIFZGzFKBtlPAl49snXjILluaGdGY/yBAAQgAIHaE/CtgTY7IlkW0sNKjW9j\ns3klKW3rpBNaxO0U+WUI+0qvlcqY92uHxCt8u0leYUrLt/r5fLaP1GtbXDv4sPSCdEKvd0b7\nEKgzARykOs/uYMYWHJtuHaS5BtN99goBCEAAAgMicK/26+d2/FyOV3RiW1ORN0m3SuGFCt9V\n2Ks3h0kTpWB2WrxqU8RuVqHDJa9CnSttKaVtvBIOkvZJZbw7iZ+SSo+j4QUNrt9LW0mN/1Ty\n7el2+m6XMAhAoEMC3GLXITiqtSQQHJtuHKSn1HpwtFruiAwIQAACEKgdAb8s4HLpj5Idl2sk\nO0eHSn5xg1+IYKfIZkfpWOmj0l+lX0uLSntJvp1tEckvPWhnR6iAy3rfF0leobo02a6trZ01\nr874FsDPSudJdsjeKT0jnSG1souVYSdsNen10oVSN+bbD8+KGvCthJOkZSU7cr+X3i9hEIAA\nBEaewAEagT/wW913PUoDfHUyFp9MOjXzGOSDwp32m3oQgAAEAoFvKpB34RzKNX3rVRuf/+Iv\nxdZV3A6P0y1/aWaHKTxfo+AY+x/F7NA8Kv1Nep9kp8d1y9w290aVP1t6Pqnr+r79zuej70lL\nScF8K53zTw8JOVs7VXHZTyRx3w5Xxp5QYbcTy19G/kcyR/cp64vvO5XezlH8usq43bdJRWwj\nFXL5eN6K1KNMfQlM0NB8TGxa3yEysn4TsEPgg6oODpJPYB5LeJhWwdK2l2rcUboWFSAAAQgM\nDwEcpO7nwreLeQXHF15ZNo8SvWqSZd9Sos9FXrkpa3OowsrS+lIdzstlx1+kPA5SEUrNKlMr\nB4lnkJp18PZjtOHbpG5usXPd0E4/+sw+IAABCEBg+Ag8pi5dKz3Xomu7K93ni/1T+Uso7t90\nelDy6k9Ze0YVbpKuknxbHQYBCDSMQNZSbMMQMNyKCdixeSFRp00/pYrhWaZO26AeBCAAAQjU\nm4Bvu7Mzc7TklaJLpTWkd0heffLdCO1uLVMRDAIQgMBYAqwgjeVBrHsCdpC6WT1yD1zftziM\ncwSDAAQgAAEIZBCYqrSdJG/9XM8vpUMln0P2lE6XMAhAAAKlCbCCVBoZFdoQqMpB8m7clleT\nMAhAAAIQgEAWgUuUuIG0kLSk5DfGeVUJgwAEINAxARykjtFRsQWBKhyk4BThILWATDIEIAAB\nCIwh8JBiFgYBCECgawLcYtc1QhpIEfCzQ1XcYudmeQ4pBZcoBCAAAQhAAAIQgEBvCeAg9ZZv\nE1uvegWpiQwZMwQgAAEIQAACEIDAgAjgIA0IfI13W8VtcWEFym1hEIAABCAAAQhAAAIQ6BsB\nHKS+oW7MjqpcQeIWu8YcNgwUAhCAAAQgAAEIDAcBHKThmIc69aIKB8k/CujfrmAFqU5HBmOB\nAAQgAAEIQAACI0AAB2kEJmnEuji3+hveQtdN132bHQ5SNwSpCwEIQAACEIAABCBQmgAOUmlk\nVGhDwD/wGp4halM0NxsHKRcPmRCAAAQgAAEIQAACvSCAg9QLqs1us4pb7EwQB6nZxxGjhwAE\nIAABCEAAAgMhgIM0EOy13qlXkKr4FXMcpFofJgwOAhCAAAQgAAEIDCeB2YazW/RqhAmwgjTC\nk0fXIQCBSgmMU2sWBoG6EeAL9rrNKOMZQwAHaQwOIhUQYAWpAog0AQEIjDyB5zWCt0p+IycG\ngToS8LH9Yh0HxpgggIPEMVA1AVaQqiZKexCAwCgSOFydPmsUO06fIVCQwMMq55/lwCBQOwI4\nSLWb0oEPiBWkgU8BHYAABIaAgC8eLxmCftAFCEAAAhAoSYB7SEsCo3hbAqwgtUVEAQhAAAIQ\ngAAEIACBYSWAgzSsMzO6/WIFaXTnjp5DAAIQgAAEIACBxhPAQWr8IVA5AFaQKkdKgxCAAAQg\nAAEIQAAC/SKAg9Qv0s3ZDytIzZlrRgoBCEAAAhCAAARqRwAHqXZTOvAB2UHyj7x2a/xQbLcE\nqQ8BCEAAAhCAAAQgUJoADlJpZFTIITBBeT6mnskpUzQLB6koKcpBAAIQgAAEIAABCFRGAAep\nMpQ0JAJ+/sjGCtJMDvyFAAQgAAEIQAACEBgxAjhIIzZhQ95d315nYwVpJgf+QgACEIAABCAA\nAQiMGAEcpBGbsCHvLitIQz5BdA8CEIAABCAAAQhAIJ8ADlI+H3LLEWAFqRwvSkMAAhCAAAQg\nAAEIDBkBHKQhm5AR7w4rSCM+gXQfAhCAAAQgAAEINJ0ADlLTj4Bqx88KUrU8aQ0CEIAABCAA\nAQhAoM8EcJD6DLzmu/MK0nTpuQrG6TfhBYerguZoAgIQgAAEIAABCEAAAu0J4CC1Z0SJ4gTs\n0FTxBjvv0Q7SOAknyTQwCEAAAhCAAAQgAIG+EMBB6gvmxuzEK0hV/AaSgYV2wnNNjYHIQCEA\nAQhAAAIQgAAEBkcAB2lw7Ou456pXkMwIB6mORwpjggAEIAABCEAAAkNKAAdpSCdmRLvFCtKI\nThzdhgAEIAABCEAAAhCYSQAHiSOhSgKsIFVJk7YgAAEIQAACEIAABPpOAAep78hrvUNWkGo9\nvQwOAhCAAAQgAAEI1J8ADlL957ifI6xyBSm8DY9nkPo5g+wLAhCAAAQgAAEINJwADlLDD4CK\nh1/lCpJ/T+lZCQep4kmiOQhAAAIQgAAEIACB1gRwkFqzIac8gSpXkLx3v+obB6n8PFADAhCA\nAAQgAAEIQKBDAjhIHYKjWiaBKleQvAMcpEzMJEIAAhCAAAQgAAEI9IoADlKvyDazXVaQmjnv\njBoCEIAABCAAAQjUhgAOUm2mcigGwgrSUEwDnYAABCAAAQhAAAIQ6JQADlKn5KiXRYAVpCwq\npEEAAhCAAAQgAAEIjAwBHKSRmaqR6CgrSCMxTXQSAhCAAAQgAAEIQKAVARykVmRI74QAK0id\nUKMOBCAAAQhAAAIQgMDQEMBBGpqpqEVHWEGqxTQyCAhAAAIQgAAEINBcAjhIzZ37XowcB6kX\nVGkTAhCAAAQgAAEIQKBvBHCQ+oa6ETvCQWrENDNICEAAAhCAAAQgUF8COEj1ndtBjKzqZ5Ce\n0SDsdGEQgAAEIAABCEAAAhDoCwEcpL5gbsxO7MzYqanKnlZDdrowCEAAAhCAAAQgAAEI9IUA\nDlJfMDdmJ3Zm7NRUZW6LFaSqaNIOBCAAAQhAAAIQgEBbAjhIbRFRoASBqm+xw0EqAZ+iEIAA\nBCAAAQhAAALdE8BBmmWWicK4ijS+e5yNbmGCRu/jqepb7FhBavRhxeAhAAEIQAACEIBAfwk0\nxUFaXlgPknaR5kkQL6ntGdID0o3SY9KR0uwSVp5AeFaoylvseElD+XmgBgQgAAEIQAACEIAA\nBHIJfFS5L0W6VeFFpdOTtIe1/Z10VxJ3er/tAO3QfZy73zuucH+LJWN4dYVt7qe2bqmwPZqC\nAAQgAAEIQAACEKiegO8k8rXsptU3TYtVE9hODU6XrpM+JH1MelDyipEn8VNSuIXLKyAnJ+nb\nattPq4ODtKyAmalX66qy3dXQ3VU1RjsQgAAEIAABCEAAAj0hgIPUE6y9afR4Nfu4FK/MvEVx\nX8hPk9LPHdlZul86Vuqn1cFBWlXAzHWJCsG9WW09UmF7NAUBCEAAAhCAAAQgUD2BWjlIdX8G\naWPN/7nSk9Fx8HuF/WzLb6QXo3QH/fzMDdLKjmClCIRnkMy2KuMtdlWRpB0IQAACEIAABCAA\ngUIE6u4g+fkiO0nxOJ9S/HPSv6S0LaCEDSU/j4SVI9ALB8nOlr+RiOevXK8oDQEIQAACEIAA\nBCAAgRIE6n7heZ5YLCMdIy0RcfmawsdFcQdnl74k+bXfF0hYOQLhWa5ny1XLLe0VJFtwvmbG\n+AsBCEAAAhCAAAQgAAEIdETAF9ZXSX42xqsRC0pZtqsS75Vczs7ROKmfVodnkLYTsODQVMVu\nTTXkOVm4qgZpBwIQgAAEIAABCECgcgI8g1Q50t41aKfoddKR0rWSb7nLMr/EwRPrVaUdJF+U\nY+UI2Bk17yotOFxhdarKtmkLAhCAAAQgAAEIQAACEGhBwBfg6TfatSjak+Q6rCDtITJ3VUxn\nKbVnZ3XlitulOQhAAAIQgAAEIACB6gjUagVptuq4jHRLYaVipAcx4M6zgjTgCWD3EIAABCAA\nAQhAAALdE6j7Sxq6J0QLRQn0wkEKt+xxi13RWaAcBCAAAQhAAAIQgEBXBHCQxuJ7r6J/lw4a\nm1w6tqJq+G1u0wvq+NJ7GL4KdmKCQ1NV70J7dr4wCEAAAhCAAAQgAAEI9JwAt9iNRby4omtL\n3nZjt6jyVpLvxyxiO6rQx4sUHOIydmKqvlXRzx/ZSWIFaYgnnq5BAAIQgAAEIACBOhHAQRo7\nm99R9BfSvWOTS8d8YX9piVorlSg7rEV7cYudx2qnCwdpWGedfkEAAhCAAAQgAIGaEcBBGjuh\ndoy6dY7GtticmJ2YcEtclaPGQaqSJm1BAAIQgAAEIAABCOQSaKKD5B+LnV+aKD0hPSI9KWHd\nEejFLXbuEbfYdTcv1IYABCAAAQhAAAIQKEGgKS9pWFdMfiDdJz0k3SrdIN0h2Um6WfKLEhaV\nsM4I9PIWO7eNQQACEIAABCAAAQhAoOcEmrCCdKgoHpaQvF3byyU7SXaMvJK0kLSsdKC0q/Qh\n6TQJK0eglw4SzyCVmwtKQwACEIAABCAAAQh0SKDuDtJu4mLn6Fzps9LVUpaNU+Lm0tekH0tT\npcskrDgBOzG+XbFq4xmkqonSHgQgAAEIQAACEIBASwJ1v8XuLRq5X7ntbSvnyHD81rlLpG2k\nx6W9JawcAVaQyvGiNAQgAAEIQAACEIDAEBKou4O0tpj7ljr/aGsRe1iFrpWWLlKYMmMI9MpB\n4iUNYzATgQAEIAABCEAAAhDoJYG6O0h3C9760uwFIfoNd3aq/AIHrBwB32Ln2+GqNrfJSxqq\npkp7EIAABCAAAQhAAAKZBOruIJ2kUa8mnSltnElgZmJ4BsnPKs0lnZVTlqxsAr1aQeIZpGze\npEIAAhCAAAQgAAEI9IBA3V/S4LfRLSYdIe0s3SndIT0oPSbNJ/ktdpOkJaUXpI9Ll0pYOQK9\ndJAWLtcVSkMAAhCAAAQgAAEIQKAzAnV3kPzyha9Lv5KOlLaQ0itJTyntLslvsPuGNE3CyhPo\n5S12vOa7/HxQAwIQgAAEIAABCECgAwJ1d5ACEr/Jbo8k4lUj//6RVzz8w7GPSlj3BHq5goSD\n1P380AIEIAABCEAAAhCAQAECTXGQYhS+tc7CqiWAg1QtT1qDAAQgAAEIQAACEBgAgbq/pGEA\nSBu7S6/y+JXcVRsvaaiaKO1BAAIQgAAEIAABCLQkgIPUEg0ZJQlMVHk7M1UbDlLVRGkPAhCA\nAAQgAAEIQKAlARyklmjIKEHAzpFflc4KUgloFIUABCAAAQhAAAIQGD4COEjDNyej2KPwEgUc\npFGcPfoMAQhAAAIQgAAEIPAyARykl1EQ6IJAcJD8yvSqzU5XaL/qtmkPAhCAAAQgAAEIQAAC\nYwjgII3BQaRDAsGB4RmkDgFSDQIQgAAEIAABCEBgOAjgIA3HPIx6L/yKb1uvbrGbXW2Pn7EH\n/kAAAhCAAAQgAAEIQKCHBHCQegi3QU332kEyyrCPBmFlqBCAAAQgAAEIQAAC/SaAg9Rv4vXc\nX7jFrlcrSKYW9lFPgowKAhCAAAQgAAEIQGAoCOAgDcU0jHwnvLozXXq+ByMJzzXhIPUALk1C\nAAIQgAAEIAABCIwlgIM0lgexzgjYQQqOTGcttK4V2sVBas2IHAhAAAIQgAAEIACBigjgIFUE\nsuHN2Hnpxe11xoqD1PCDi+FDAAIQgAAEIACBfhLAQeon7fruixWk+s4tI4MABCAAAQhAAAKN\nIoCD1Kjp7tlg7SD1agXpWbX9ksQtdj2bPhqGAAQgAAEIQAACEAgEcJACCbbdEOjlLXbul2+z\nw0HqZoaoCwEIQAACEIAABCBQiAAOUiFMFGpDoJe32HnXOEhtJoBsCEAAAhCAAAQgAIFqCOAg\nVcOx6a308hY7s8VBavoRxvghAAEIQAACEIBAnwjgIPUJdM13g4NU8wlmeBCAAAQgAAEIQKAp\nBHCQmjLTvR2nnw8Kr+PuxZ5YQeoFVdqEAAQgAAEIQAACEHgFARykVyAhoQMCrCB1AI0qEIAA\nBCAAAQhAAALDRwAHafjmZBR71GsHya8Q5y12o3hk0GcIQAACEIAABCAwYgRwkEZswoa0u9xi\nN6QTQ7cgAAEIQAACEIAABMoRwEEqx4vS2QR6vYLEM0jZ3EmFAAQgAAEIQAACEKiYAA5SxUAb\n2lw/HCTvA4MABCAAAQhAAAIQgEBPCeAg9RRvYxr3LXZ+TqhXxgpSr8jSLgQgAAEIQAACEIDA\nGAI4SGNwEOmQgFd3eM13h/CoBgEIQAACEIAABCAwPARwkIZnLka5J/24xY632I3yEULfIQAB\nCEAAAhCAwIgQwEEakYka8m5yi92QTxDdgwAEIAABCEAAAhAoRgAHqRgnSuUT4Ba7fD7kQgAC\nEIAABCAAAQiMCAEcpBGZqCHvJrfYDfkE0T0IQAACEIAABCAAgWIEcJCKcaJUPgFuscvnQy4E\nIAABCEAAAhCAwIgQwEEakYka8m5yi92QTxDdgwAEIAABCEAAAhAoRgAHqRgnSrUm4GNodonf\nQWrNiBwIQAACEIAABCAAgREhgIM0IhM1xN0Mr9/GQRriSaJrEIAABCAAAQhAAALFCJR1kL6p\nZt8secUAg4AJ+PY6Wy9/KPYptR8csRk74w8EIAABCEAAAhCAAAR6QaCsg7SDOnGWdKd0rLSO\nhDWbQHCQer2C5GN1YrNRM3oIQAACEIAABCAAgV4TKOsgbaoOfUSaJn1Y+pt0jeS0xSSseQT6\n5SCZLKtIzTu+GDEEIAABCEAAAhAYGQJrqKdHS3dIL0nPS7+SdpG4BU8QStgBKmuGc5eoMyxF\n10z6vnAPO7RKso+lergPmoYABCAAAQhAAAIQ6IzABFXztawXUzAR8CrUltIx0r2S4dyfxFfW\nFmtPYJQdpA00vF47d69K9rFie5SUgAAEIAABCEAAAhDoM4FaOUhlb7HLYu2L1i0kO0m+zc4X\ny/dJvu3uBulQCasvAW6xq+/cMjIIQAACEIAABCAAgYIEFlW5D0p/luwQWVOlw6QVJNvy0lmS\n8/aVsNYERnkF6Y0alm+v7KXNpcZ9HG3Uy53QNgQgAAEIQAACEIBARwRqtYJUlsCuqvBbyRfE\nvmD165dPlbaWxklpW1wJLndKOoP4GAKj7CDtrJE8NmY01Ud8bPk42rL6pmkRAhCAAAQgAAEI\nQKBLArVykGYrCeN/Vd4rQ1dIJ0inS49KrewFZdwmXd2qAOkjT2BOjaCXv4FkQHaO/Bpx7wuD\nAAQgAAEIQAACEIBAzwiUdZD+Tz35neRni4rYgyq0XJGClBlZAv1wkAzHTphvtcMgAAEIQAAC\nEIAABCDQMwJlX9LgZ4r8hrpWFt5ot06rAqTXjkC/HCTfzskKUu0OHwYEAQhAAAIQgAAEhotA\nWQfpj+r+B3KGMFF5F0kH5pQhq14E/BY73/7Wa/MKEg5SrynTPgQgAAEIQAACEGg4gXa32K0s\nPn6Fd7B5FVhP2j8kRFs7W2Hl6KEonWC9CfRrBYlb7Op9HDE6CEAAAhCAAAQgMBQE2jlI96qX\nh0tLRr19k8JWK3tSGb9slUl67Qj0awWJW+xqd+gwIAhAAAIQgAAEIDB8BNo5SH59807S6knX\nj9F2ipTlAE1Xui9ir5Zul7BmEOjnChK32DXjmGKUEIAABCAAAQhAYGAE2jlI7pgdHsu2gXSJ\n9AtHMAiIQL9WkHgGicMNAhCAAAQgAAEIQKDnBNo5SAuqB7NLD0n+TSPfbjdeWkzKM99mZ2H1\nJ9CvFSSvTvKa7/ofT4wQAhCAAAQgAAEIDJRAu7fYXaje+Tmk8PKFK5O40/L0CeVjzSDAClIz\n5plRQgACEIAABCAAgUYQaLeC5Nd63yQ9nNA4R9t2q0cuen1Snk39CXgF6ZE+DNO32M3dh/2w\nCwhAAAIQgAAEIACBBhNo5yClV4Le32BWDD2bQD9XkBbN7gKpEIAABCAAAQhAAAIQqIZAu1vs\niu7Fjtaq0riiFShXGwJeQfLqTq/NzyB5XxgEIAABCEAAAhCAAAR6RqATB2lX9eb4qEc7K/yg\ndIN0p7S9hDWHQD9XkHCQmnNcMVIIQAACEIAABCAwEAJlHaS3qJdnSHtLXi2aXzpFmlf6veRn\nRH4irShhzSDQrxUkr1LxFrtmHFOMEgIQgAAEIAABCAyMQFkH6fPq6a3SxtJL0pslO0lflbaV\n1k3idqSwZhDo1woSt9g143hilBCAAAQgAAEIQGCgBMo4SC67muQVomuTXu+QbM9Mtrdo+y9p\nvSTOpv4E+rmCxC129T+eGCEEIAABCEAAAhAYKIEyDpJvo/NqwT1Jj/2DsdtI/hFZ/z5SMJeZ\nECJsa0/A8/1MH0bJLXZ9gMwuIAABCEAAAhCAQNMJlHGQHhUsO0ObJ9DeqO2C0rnS9CTNt9gt\nL3klCWsGgX6tIHGLXTOOJ0YJAQhAAAIQgAAEBkqgjIPkjp4q7SZdlIT9HNL3JNsh0p8kO0sn\nSlgzCPRzBYlb7JpxTDFKCEAAAhCAAAQgMDAC7X4oNt2xg5XgVSM7SY9LH5QulmxbSn6z3T6S\nn0PC6k/A8z1R8u1vvTbvw7du+tbOF3u9M9qHAAQgAAEIQAACEIBAGQK+UPXFcWxrK+LnlLDy\nBA5QFa/G+TXpo2Re0XG/N+pDp9dP9jVPH/bFLiAAAQhAAAIQgAAEihOwb+Brwk2LVxnekmVX\nkMJInguBaBvebBclEaw5gXDLW79WkIzT+3yi5lwZHgQgAAEIQAACEIDAgAh04iBtpb6+S1pM\n8sVqeiVJSTOeQTrJAazWBPz8ka1fb7HzvoJT5jAGAQhAAAIQgAAEIACBSgmUdZDerr2fXqAH\nFxcoQ5HRJxCclX6sIPktdra5Zm74CwEIQAACEIAABCAAgeoJlHWQDlcXnpQOlC6U7pOyLLz2\nOyuPtPoQYAWpPnPJSCAAAQhAAAIQgAAERKCMg+QXCKwsHS+dJmEQYAWJYwACEIAABCAAAQhA\noFYEyvwOkm+jekzyChIGARPo5wrSC9rf8xK32Jk8BgEIQAACEIAABCDQEwJlHCTfNudni/aQ\nytTrScdpdCgIeAXJTku/fpfIzyHhIA3F1NMJCEAAAhCAAAQgUE8CZR0d/16PL1LPkLaQlpUW\nzlC49UpZWI0JeAWpH2+wCwhxkAIJthCAAAQgAAEIQAACPSFQ1kE6W71YTNpF8mrSbdIDGTpY\naVj9CdgR7scb7AJJHKRAgi0EIAABCEAAAhCAQE8IlHlJgzvwN+muAj35V4EyFBl9Aqwgjf4c\nMgIIQAACEIAABCAAgYhAWQfpvVFdghBgBYljAAIQgAAEIAABCECgVgTK3mIXD94Xx2tJGyeJ\nfg041iwCrCA1a74ZLQQgAAEIQAACEKg9gU4cJL+Y4WeSX/d9rfRVyXaqdIQ00RGsEQRYQWrE\nNDNICEAAAhCAAAQg0BwCZW+xW1Jorpb85jo/ZxS/cnmc4p+V3iJtIPXz7WbaHTYAAqwgDQA6\nu4QABCAAAQhAAAIQ6B2BsitIx6krXjXYXFpdsrMUbFcFjpTWkPYJiWxrTYAVpFpPL4ODAAQg\nAAEIQAACzSNQ1kHaWoi+Jf0pA5V/LPQw6VFpk4x8kupHoN8rSH6leLxqWT+ijAgCEIAABCAA\nAQhAYKAEyjhI86mnC0o35vT4eeX9MymXU4ysmhCws+LfJuqX8TtI/SLNfiAAAQhAAAIQgEBD\nCZRxkB4To3ukDXNY2YnyLXY35JQhqz4EuMWuPnPJSCAAAQhAAAIQgAAERKCMg2Rg50jvkT4g\nzSPFtoAiJ0vzS3+IMwjXlgAOUm2nloFBAAIQgAAEIACBZhIo6yB9TJjukr4p3SltJq0gnSXd\nLL1ZOlE6X8LqT2AQDpL3iUEAAhCAAAQgAAEIQKAnBMo6SI+oF+tJx0t+QH9xaSnJjpHtQ5JX\nmLBmELCz0s/XufMMUjOOK0YJAQhAAAIQgAAEBkag7O8guaMPSAdJ75cmSUtIUyWvLGHNIjCI\nFSTeYtesY4zRQgACEIAABCAAgb4S6MRBCh30a71vSRTS2DaLgFcR/ertfhkrSP0izX4gAAEI\nQAACEIBAQwl04iAtJlb+kVhvb5PsJN0vYc0jwApS8+acEUMAAhCAAAQgAIFaEyjqIPlC+MvS\nO6WFM4j4t4++Ip0mvZCRT1I9CQzCQZoolH52bno9kTIqCEAAAhCAAAQgAIFBEijiIK2rDtrx\nWU16VrpQ8vNGDvsNditK/u2jk6S9JL+woZ8P7mt32IAIDMJB8lD9HNITAxozu4UABCAAAQhA\nAAIQaDABO1C3Si9JJ0oLSlm2hRL/Jrnc97MKkJZL4ADlmt3cuaWGL9NOyo597NartS9z8u2d\nGAQgAAEIQAACEIDAcBCYoG74Gm3T4ehOb3uxr5r3YM+Wxkt55gf2b5W8erRIXkHyXkFgVB0k\n30651StG07uESWrax+NyvdsFLUMAAhCAAAQgAAEIlCRQKwep3e8gbZvA2V9bv7Uuz+wY+Qdk\n/YzIa/MKklcLAv5HsNPcz9sp/RY7G6/6nsmBvxCAAAQgAAEIQAACFRNo5yB5Jeghqehb6m5O\n+rd0xf2kueEj4OePbP1+zbf3iYNkChgEIAABCEAAAhCAQOUE2jlIfmNdmYfh70x6OKy32LUb\nr1dE/JyVbxfE8gkERv10kMK+cJDy54ZcCEAAAhCAAAQgAIEOCbRzGJxf5nXK4RXf4zrsTy+q\nLa5GT5e8EvaYdKHU6hbAtZJyB2uL5RMYxAqSj0Xf0oeDlD835EIAAhCAAAQgAAEIdEignYPU\nYbNDU20e9eRK6e2SV4fukLaULpGOlLDOCQzCQXJvvYqEg9T5vFETAhCAAAQgAAEIQCCHQJHf\nQZpP9T+S00acNWzPHn1SnVtGOkz6mvS4tL70I+kzki/yPyZh5QkMykHyixpwkMrPFzUgAAEI\nQAACEIAABAoQKOIgLaR2vl6grWEsspk6dZ90hBRu/7tKYf9u06+lj0p3S/8rYeUI4CCV40Vp\nCEAAAhCAAAQgAIERINDOQbJjtGgH47isgzq9qOIVrSlScI7CPh5VYKck72htb5N+JmHFCdhB\n8qvf02yLt9BZSa8gBeessxaoBQEIQAACEIAABCAAgRYE2jlIJ7WoNyrJdnzeIPmNa+nf6/EL\nG3aQLpc8Tr+B70kJK0bATkp4q1yxGtWUsoM0dzVN0QoEIAABCEAAAhCAAATGEqj7SxrO13Dn\nl74kLTV26DNidoreKPnZpN9JO0pYMQKDcpDsxOIgFZsjSkEAAhCAAAQgAAEIlCRQdwfp/8Tj\nesnPGk2TdpfSdqMStpH8Cmk/q2QbN3PD3xwCXpUbxAoSDlLOpJAFAQhAAAIQgAAEINAdgbo7\nSL6tbmPpOOl26Tkpy65R4gbSuVmZpGUSYAUpEwuJEIAABCAAAQhAAAKjTKDdM0ijPLbQ9ycU\n+HCiPIfwZpXZXtpQSj+vpCQsRQAHKQWEKAQgAAEIQAACEIDA6BNogoMUz5Jvo2tnV7YrQP4M\nAoN0kBZjDiAAAQhAAAIQgAAEINALAnkrKr3YH23Wh8AgHSRe0lCf44iRQAACEIAABCAAgaEi\ngIM0djreq+jfpYPGJpeOraAafpnA8wX17dJ7GHwFHKTBzwE9gAAEIAABCEAAAhComEDTbrFr\nh29xFVhb8rYbu1WVt5cmFGzEZT9WsOywFLODNIhntXiL3bAcAfQDAhCAAAQgAAEI1JAADtLY\nSf2Oor+Q7h2bXDr2kmpcUqLW8iXKDktRO0hPD6AzT2mf3GI3APDsEgIQgAAEIAABCDSBAA7S\n2Fm2Y9StczS2xfrG/DtIXs3pt7GC1G/i7A8CEIAABCAAAQg0iEATHaQFNb/zSxMlvwL8EWkQ\nF/ra7UibV5AeGMAIcJAGAJ1dQgACEIAABCAAgaYQaMpLGtbVhP5Auk96SPIzQjdId0h2kvwb\nSMdLi0pYMQKDusXODtJcxbpIKQhAAAIQgAAEIAABCJQj0IQVpEOF5LAEy+3aXi7ZSbJj5JWk\nhaRlpQOlXaUPSadJWD6BQTpI49U1rwA+m99FciEAAQhAAAIQgAAEIACBmMBuiviFCedI68UZ\nqfA4xbeQ/COxLr+Z1E87QDvzfkfp5QN/Vn8/1U9Iyb7W0tas7NhiEIAABCAAAQhAAAKDJ+A3\nN/v6bNPBd6X7HtT9Fru3CNEtkrdX5+DyhPqtc9tIj0t7S1g+gUGuILlno+RM5pMkFwIQgAAE\nIAABCEBgaAjU3UFaW6R9S13RW7EeVtlrpaUlLJ+AnwPyK7f7bWGfOEj9Js/+IAABCEAAAhCA\nQAMI1N1BultzuL40e8G59Bvu7FT5BQ5YPgE7SIP4HSS/pMGGgzSTA38hAAEIQAACEIAABCok\nUHcH6SSxWk06U9o4h5ufQdpcOlfyhf9ZEpZPwLfYhdWc/JLV5uIgVcuT1iAAAQhAAAIQgAAE\nIgJ1f4ud30a3mHSEtLN0p+RXez8oPSbNJ/lh/0nSktIL0selSyUsn8CgnkGarm49I7GClD8/\n5EIAAhCAAAQgAAEIQKAlgRWU8xPJDpJfyBDLKxI3SV+VlpEGYQdop+7TqFz0e+XR/fWq2yDM\nP1DrV7JjEIAABCAAAQhA4P+3dx7wcxTlGwdCILQEQu+hhE6kIygEaQpIB6WLgjQVQdqfIkVp\nihVQQQXpoNKLNCFIlSIgHWmhJJDQQ2iBhP/zJLdkc7l+e7uzu9/383l+tzs7O/POd+7ut+/O\n7BwEsidQqFXsij6CFL1dvJLdjpUdjxr594/6SaOldyWsPQIePbJl8QyS63VQm5dg0v5iEIAA\nBCAAAQhAAAI5IVCWACneHZ5aZ2GdE/BzWrYsnkFyvQRIpoBBAAIQgAAEIAABCCROoOiLNCQO\njAInEmAEiTcCBCAAAQhAAAIQgEAhCZRxBKmQHZlyo6IRJKbYpQye6iAAAQhAAAIQyJzALvLg\nC5Jn0vgxjsekhyQvJIUVgAABUgE6MYMmRCNIWU2xc708g5RBx1MlBCAAAQhAAAITVz5eVhx8\nw/jbkhf5el3yz8T8WnpSwnJMgCl2Oe68DF2PAiRGkDLsBKqGAAQgAAEIQKAnBOZUqQ50Hpb8\nW5nVdooSvi6tLy0izSsdIg2WzpewnBMgQMp5B2bkvu+YjJc+yah+FmnICDzVQgACEIAABApM\nwMHQ96Vnpa9Jx0r+WZNmNloZzpW+Iq3eLDPHwyfAFLvw+yhEDz2ClNX0OvNwgDS3NzAIQAAC\nEIAABCCQAIFBKsNBzsrSkdIfpE+ldq2VgKrdMsmfMgFGkFIGXpDqPIKUdYA0a0FY0gwIQAAC\nEIAABLIlsLGqf1DyIgsrSqdJnQRHOq2mbarUQTWPkBgkAQKkILsleKc8gpTV80eG855EgGQS\nGAQgAAEIQAAC3RLYTgWcLm0gvdhtYTXO30Fpd0tL1jhGUoAEmGIXYKfkwCWPIGUZII1V/bPl\ngBMuQgACEIAABCAQPoG9euziHir/CulWaR2pF0GYisWSIsAIUlIky1VO1s8gOUBiBKlc7zla\nCwEIQAACEMgrAS9qta30P+l6aYCEBUyAACngzgnYtRBGkAiQAn6D4BoEIAABCEAAAlMQ+Fh7\n21RSLtFrnymOshMUAQKkoLojN85kPYLEM0i5eavgKAQgAAEIQCAYAn3lyVnS1hl5NEb1bi55\nKfCjM/KBalsgQIDUAiSyTEUg60UaPMXOo1jTTuUZCRCAAAQgAAEIQGBqAr7m9Y+4biY9OvXh\n1FKeU03fkMalViMVtU2ARRraRsYJIuDgJMtlvh0g+YvOfvg3kTAIQAACEIAABCDQiMBpOvhV\naV3JPwSbpXmxBgsLlAAjSIF2TOBuhTCCZEQ8hxT4GwX3IAABCEAAAgEQOEo+fFv6upTl6FEA\nKHChFQIESK1QIk81gRBGkOwTAVJ1z7APAQhAAAIQgECcwK7aOVbaUbpLwiDQlAABUlNEZKhB\nIJQRJH4LqUbnkAQBCEAAAhCAwEQC8+uvF2U4QLpqYgp/INACAZ5BagESWaYi4BGkrH8o1k4x\ngjRV15AAAQhAAAIQgECFwCi9+pmjfwdO5Jfyr5/0vcD9LI17jCCVpqsTbahHkLJcpOFT1e/f\nEyBASrRbKQwCEIAABCBQKAIT1JrQgyMDv1LaR/qyd7DsCRAgZd8HefQg6yl2ZsZvIeXxnYPP\nEIAABCAAAQhUE7hDCedJp0tcm1fTyWCfTsgAegGqzHqRBiP0Ut+MIBXgzUQTIAABCEAAAhCY\n5v/EYHFpT1hkT4AAKfs+yKMHIYwgESDl8Z2DzxCAAAQgAIHeEfAPsHpJ7zyan5c6QTpeGpDH\nBhTJZwKkIvVmem1hBCk91tQEAQhAAAIQgEBzAl9UlvOkN5pnDTbHb+SZHyE4PFgPS+IYAVJJ\nOjrhZjKClDBQioMABCAAAQhAoGMCC+jMy6XzpTM6LiX7E70A1SHShtm7Um4PCJDK3f+dtH5a\nneSlKLNc5tt+e4odv4NkEhgEIAABCECgvARmVNMdHL0gFWGZbLdlNQnLkAC/g5Qh/JxW7dEj\nW5bLfLt+nkEyBQwCEIAABCBQbgIeMVpIclAxrtwoaH1SBAiQkiJZnnL8/JEthABp4CRX+AsB\nCEAAAhCAQAkJ7Kk27yD5x2BfK2H7aXKPCDDFrkdgC1xsFCC9n3Eb+R2kjDuA6iEAAQhAAAIZ\nE/CCDF657v6M/aD6ghFgBKlgHZpCc6IAKYQRJH4HKYUOpwoIQAACEIBAoASuDNSvpNzyQMbq\n0r1JFUg5rRFgBKk1TuSaTCAKkLIeQeIZpMl9whYEIAABCEAAAsUjMFhNukcaUrymhd0iAqSw\n+ydE76IAKYRV7BhBCvEdgk8QgAAEIAABCCRB4GkVcrOU1x+/TYJBJmUQIGWCPdeVziLvP5Im\nZNwKRpAy7gCqhwAEIAABCKRMYEPVN0fKdWZd3U/lwLbSclk7Uqb6CZDK1NvJtNUjSFk/f+SW\nOEDid5BMAoMABCAAAQgUn8CWauIN0lLFb+oULbxTe/+SjpwilZ2eEiBA6ineQhYeSoA0RnQ9\nmuUfrsUgAAEIQAACECgugeXVtAuk46QyLlhwgtr9TWlxCUuBAAFSCpALVkVIAZLfvzyHVLA3\nGM2BAAQgAAEIxAj4Nw+vlm6Ujo+ll2nzFjX2QemQMjU6y7YSIGVJP591e9Qm6xXsTM4jSLb+\nk174CwEIQAACEIBAwQj0UXv+Jnla/bekz6SymhdqWLSsjU+73dOnXSH15Z5ASCNIhukAaUTu\nqdIACEAAAhCAAASqCfxSCV+Q/FtAIdycrfYvzf2bVJmFpUCAEaQUIBesihADpIIhpjkQgAAE\nIACB0hPwTfzNpe2l4RIGgdQIMIKUGurCVBRKgOSlxj+VmGJXmLcWDYEABCAAAQh8TsD/45f4\nfI8NCKRIgBGkFGEXpCo/gxTCMt/G6eeQCJBMAoMABCAAAQhAAAIQSIQAAVIiGEtViEeQQpkH\nTIBUqrcejYUABCAAAQhAQAT8Y7nzQ6J3BAiQese2qCWHMsXOfAmQivouo10QgAAEIFBGAlyX\nttbr+ynbda1lJVcnBHgjdkKt3OcQIJW7/2k9BCAAAQhAoBcEvIz3s70ouIBlXqA2DZHWL2Db\ngmgSAVIQ3ZArJ3gGKVfdhbMQgAAEIACB4AmsLA/PkH4dvKdhOPii3LhMOigMd4rnBQFS8fq0\n1y1iBKnXhCkfAhCAAAQgUB4Cfp7mcskX/KeVp9ldt9S/EbWJtEzXJVHAVAQIkKZCQkITAg6Q\nWKShCSQOQwACEIAABCDQlMC0ynG+NFbaq2luMsQJ3Kede6QD4olsJ0OAACkZjmUqhRGkMvU2\nbYUABCAAAQj0jsDhKnpdaVsplJ8Q6V1rky/ZUxJ3kwYmX3S5SyRAKnf/d9L60J5Bmq2TRnAO\nBCAAAQhAAAKZElhRtf9E+o70v0w9yW/lV8j1l6W189uEMD2fPky38CpgAowgBdw5uAYBCEAA\nAhDICQFf2G8jXZ0Tf0N0c7yccqA5LkTn8uwTI0h57r30ffdc4ZmkUIbB+R2k9N8D1AgBCEAA\nAhBIgsA7KoTgqHuSBEfdM5yqBAKkqZCQ0IBAPx1zkESA1AAShyAAAQhAAAIQgAAE8kuAACm/\nfZeF537+yMYqdpM48BcCEIAABCAAAQhAoGAEeAapYB3a4+b4+SNbSCNIfeWPR7Y+smMYBCDQ\ncwL+zZLlpAUkT7n1Z2+09LT0qoRBAAIQqEWgvxK9mMANtQ6SlggBXxN9kkhJJS+EAKnkb4A2\nmx9igOQm+EuXAKnNziQ7BNogsIby7ij5RwmXlj6T3pR8s8Q3KOaU+kgvSb74+Zs0TJogYRCA\nAARM4C/SwhIBkmkkbwupyEelFaQRyRdPiRBIn8B3VaUvOKIpbOl70FqNq1T8DGVp7QUr/izZ\nmvvkggAE2iDg5w2/IT0oOdD5l/QjaTXJQVHcfNfS/5T3lf4h+Q7m85J/wDC6saJNDAIQKCkB\n/wjsh5K/J7DeEPB39hPSCb0pvmmpMyiHr2XXapqTDBBokUBeAqR11B6/+X2nOATzyJH9ceCG\nQQACyRH4sopyYOQRot9Ii0vt2DzKfKT0mjRK+oHkIAqDAATKR2AZNdnPLn+vfE1PvcX7qMbX\npeqbWGk4QoCUBuWS1ZGXAOmr6peQprL5bol/A2D9kr1faC4EekXAo8NnSv5cnSP5OaNuzM8o\nHSS9JT0pbShhEIBAeQj4ovkhieW80+lzz0R6W/pOOtVNUQsB0hQ42EmCQF4CpK3VWF/ohGR+\nDmLbkBzCFwjklMAX5benxT0jDU24DQNV3u8lB17nS97HIACB4hP4hZroxVvmKn5Tg2nhKfLk\n4Qy8IUDKAHrRq8xLgLSrOsK/fB2SPSdn9gjJIXyBQA4J/FA++8cGz5J8B7JXtqYKfkzy1Lst\nelUJ5UIAAkEQmE9e+KaIZ59g6REYpKrMfd30qpxYEwFSysDLUF1eAiTPbfU0mZDsATlzcEgO\n4QsEckTA/9DOlfzw9G4p+e06T5Q+lRyQhbLoi1zBIACBhAksknB5FNcagSuUzd+vaRoBUpq0\nS1JXXgIkP0vggCQk+6ecOT4kh/AFAjkh4Glud0ivSKtm4LNXOnpWek5i1aMMOoAqIQCBwhLw\nlMZFU25doQKk6VKGR3X5JjCr3PdKNCGZH0acPSSH8AUCOSDgu7p3SR698bS3/0hp2z2qcCVp\nmORA7SfS9BIGAQhAAALdEXhDp7/YXRHlPpsAqdz9327r/WxCaAHSO/JpjnYbQn4IlJjAMmq7\ng6ORkueoj5CysrGqeE9pe2k/6W5pKQmDAAQgAAEIZEaAACkz9Lms2AGSL2hCMkaQQuoNfAmd\nwBA5+C/JU2U3lcZIIZjny68g+a6nV1/aX/Iy/hgEIJAfAn3l6uGSl/fHIJBrAgRIue6+1J1n\nBCl15FQIgcQIrKKSPJ3tFskjNh9LIZlXtnPQdqB0gnSbNFjCIACBfBDw5/YAiamy+egvvGxA\ngACpARwOTUVgVqWENsWOEaSpuokECExFwIsweEGTa6VdpE+lUO1MObai5ADuEekoaQYJgwAE\nwiWwkVzzQk7fkt4L181Sena+Wp3FQjylhE2jkyXwXRX3mdTL3x9JwuPrVcjPkigowTJ2VFn+\nEToMAhCoTWBlJfsHns+R8nZTbFf5PEryj9duLmEQgEB4BOaRS/4//KvwXMMjEbhMujwFEr6R\n5WvZtVKoiypKQiAvAdLt6o8fB9Ynm8gf/4YLBgEITE1giJL8XM95Ut6Co6g1s2vjN5J/yNZT\nBPnnKwgYBAIh4GcFb5AekBjpDaRTqtwYqn3PGli0Kj3pXQKkpIlS3jR5CZC8FPCPAuuvL8of\n37GYMTC/cAcCWRNYTg6Mli6S+mTtTAL1D1YZf5MmSDdK60kYBCCQLYHDVL0Xe1kyWzeovQmB\n/+r4z5vk6fYwAVK3BDl/KgJ5CZCelud7T+V9tglestgB0nzZukHtEAiKgIMJT3m5VCraA9Me\nFfur5DuiD0p7SH4+EoMABNIn8Kyq/Gb61VJjmwT8PfmWNHOb57WTnQCpHVrkbYlAXgKkV9Sa\nXVpqUXqZ5lVVDpAcKGEQgMA00wwShJela6S+UlFtMTXsF9Kbkh8K9zTCzST/k8YgAAEIQGAy\ngX7afEPq5U1uAqTJvNlKiEBeAiSvGLdVQm1OqhhPrXOAxHMJSRGlnDwTWEHOj5RukvzZKIO5\nnV62/ErJzyN6us+lku+YLixhEIAABCAwzTQnCoJXBu2VESD1imyJy81LgOSHpDcKsJ8+kE9e\nrAGDQJkJeJrpi9JwqZfTKFR8sDabPHOwdK7k31XyzROvgPcnaTdpcQmDAAQgUEYCc6rR+/Ww\n4QRIPYRb1qLzECBFb/y1A+ykkfJppwD9wiUIpEXAy+w+Id0tzZpWpTmoZ0X5uL90meTlwh0w\n+fvi79IB0mpSHwmDAAQgAIHuCETXiczo6Y4jZ8cI5CFAmkP++uLiCzG/Q9n0hWEv74qE0k78\ngEAtAnMp0dMm7pP618pA2ucEltLWt6U/S09J/k7zlLzrpcOk1aW8Locu1zEI9JTAGirdizKU\ndYS6p3ALUDgBUgE6MbQm5CFAWkjQfDGxRGjw5M+d0lEB+oVLEOg1AU+Z8PKtD0iz97qyApY/\nt9q0jfRbyUGmlxD3og9eJW93yYvAYBCAwDTTLCIIHn09CxgQqEOAAKkOGJI7J5CHAGlpNc8B\nUojLafvh7N90jp8zIZBLAh45cnD0H8kjvFj3BBwQ7Sx5RbzRkgOmf0tHSMtLGATKSGCAGv2Y\ndKvki2AMArUIFCpAYipBrS4mrRaB6LmG92sdzDjtDdXvi0UMAmUh4JEPX6x8Km0oeYVJrHsC\nfk7pQmk3yTeD/MzlLZKfcfQFohd8+LnkdP5/CgJWeAJeHto3IW0ebR03cYs/eSewgRqwft4b\ngf/FJ5CHEaR11Q0eQQrxouBk+XVD8d8mtBACEwnMr79+7s7PHDGtbiKSVP4sqVoOljyld7zk\nYMrTjXzRyLNfgoAVjsD0atHVklfHXLhwrSt3g45Q85+TkrymK9QIUrnfHuG0Pg8B0ibC9UE4\nyKbwxBctfgYDg0DRCSyiBnoU4y6Ji/LsenseVb2H5DvrY6VPpDuk4ySP6M0mYRDIM4E+ct7T\nSz1rZKk8NwTfaxLwLISPpC1rHu0skQCpM26c1YBAHgKk7eT/6w3akOWh3VX58CwdoG4IpEBg\nsOrwndxbpFlSqI8qWiPgH6r1VJWTpHskT0EaL3mU7yLpSOkb0hrSglJfCYNAyAQ8cuSFSvw/\nfz0JKyaBs9SsYQk2rVABkj8EGARaIeBnkEJ8/si+8wxSKz1InjwTWEnO3yjdK/li23f+sDAI\nfCw3/DyYZZtJWrUi/yzC5tKSklccjOw9bbwrefTpQ8lleBTKz5RZDrD86jTL/e18zj9G8jNn\nXkTiVenlipwfg0C3BPz+/ZvkgP4r0mMSVkwCXr3TC/34/8vDxWxi560iQOqcXdnO9B3rkAMk\n++eHSblwLNs7s/jtXUdNvEa6Vtpd4kJYEAI2BzJ3VhR3099RC0heKW+gNEBymi9IPQrlkSX/\nT7Y8vcmvTvNdWR+fXfIIlM/zqoXzSHNJfobAz4f+T3pE8nTjuyQ/o+bgCoNAqwQcxF8l+X32\nZekZCSsuAX9f3CIdIO0uYRAIjsB35ZH/wfmfZah2qBzz3esQbUk5ZX4LhegcPkGgCwJb6Fxf\ncJ8qTdtFOZxaTAIOoBaTdpe+L/1J8h1hj0B5lOpS6ZuSbx5hEGhG4CBluF/yQjBYOQhspmZ6\nBHu+BJpbqCl2CfCgiAQI5CFAOk7tjKaQJNDkRIvwnVUHSCslWiqFQSBbAnuoeo8AHJWtG9Se\nQwIeYdpWOk8aI/nHb38uceErCBgEIPA5Ad948/fEEp+ndL5BgNQ5O86sQyAPAdIv5fs1dfzP\nOtkfcF9Ibpi1I9QPgYQIeAlWT6XzdwMGgW4IzKyTHWz7WRJPQT5F8k0lDAIQgECSBAoVIHmO\nMwaBVgh4+t/YVjJmkMejR75D6vn4GATyTMDPk/xW2lPaTrpSwiDQDYEPdPJZ0tmS31MnSrtK\nB0iXSNhkAqdrc1XJ/+/8bJivkfpItpHSFyduTflnfe16KqwXCxoteeGMV6SXJP9fCtH8PbOB\nNEzyjRgMAhCoIkCAVAWE3boEZtOR9+oezf6A/zkRIGXfD3jQOQHffTtf2riiOzovijMhMBUB\n30j6u3S1dJh0nrSVtJfkaXhFNc8w8GqC60lrSw6A/iH9QKq2/yjBwY0XJPJom2cm+Hkum//H\n1DIHUoOk1SQvwOFphmZSYwAAQABJREFUjA6wbO9K60qPeCcQczD3E2kJaUVpuIRBAAIQCJJA\nHqbY+Z/qL4OkN8kp3wk7NmD/cA0CjQjMqoM3SyMkX7RgEOg1gZVUwVPSM9Jyva4sg/K/ojo9\najZKcnDotnp/H2lRqZc2uwofIm0qeQXCaltDCb4B4hGr3aXlJY/q9Mr8/eJA2IGaH8g/Q5pP\nwiCQJAHf5PNnba0kC6WschPIQ4DkAOS4gLvJd0Z/F7B/uAaBegQG6oBXiPQyzYMkDAJpEfCF\n82WSRzo2SKvSlOq5T/VcKX1HWjClOlutZk5lPFryjceRki8qx0oOmn4tLSAlYZ4ldJ7kEbHX\npZ9JrPYqCFhNAn6/bFTzSGuJhQqQDAODQCsEZlMmpti1Qoo8EGidgKfjeOToE+nLkp9hwCCQ\nFgFflG8n+cLZ0852kK6QimAepQnV3pRjnuYWmQOi1aXVJE8H9L4Dp7j5f/AekoPZt6UPJD8/\n1FdyoPuo5JsscXPg9aK0s3S95NEjDAL1CAzSgZukVaSHJAwCmRPIwwjS06K0d+ak6jvwUx26\ntf5hjkAgOAKLyqNnpTulAcF5h0NlI/B/arAD9W1y0nBPSdtFukKaKSc+d+PmIJ18j/SC9I7k\nYMfPR30kOeBy/2EQ6JaAA6QLOiykUCNIHTLgtIQJ5CFAGqE275Rwu5Msbl8V9lSSBVIWBHpI\nYHGVPVz6pxQ90K1NDAKZEvDiDeOkr2bqRfPKN1eWxySPgJ0gOVjCIACB7gn4s+/vgIU6KIoA\nqQNonNKYQB4CpDFqgv8phWpbyjH7iEEgdAIOjl6SbpD6he4s/pWOgAMOBx6e7hWarSCHfFPB\nF3CnSV41DoMABJIl4Omap3RQJAFSB9A4pTGB0AOkaeX+BGm9xs3I9Kjnb3u+tediYxAIlcAg\nOeZnAvw8wIwSBoEQCfxFTr0qeRpoKHasHPEUwGulpSUMAhDoDYFvqVg/69a/zeIJkNoERvbm\nBEIPkBx0OPhYtXlTMsuxYMXHpTLzgIoh0JiA36PPSzdJjBw1ZsXRbAn0VfV+pvNhKZQpoL+V\nL/4NHwwCEOgtAX/+X5EObrMaAqQ2gZG9OYHQAySvtOUAKeTgo4/88wOr60kYBEIjMJccelL6\nlzRzaM7hDwRqEBiotOekv9Y4RhIEIFBsAnureWe22cRCBUhFX+bbgUe7Q4R+P9wt3eMNbCIB\nLy9qGzvppau/Xm3IK87dInmaUVLm4GiUtEBSBVIOBBIi4M+Pnzfyb5H4OT4vz4tBIHQCb8nB\nraV/SwdIv5EwCECgHATaDY7KQaVArfQ67h75aFfHpMwg9BEkT60zwyhQ6hSP70jeJb0m9WJJ\n7gdUbrtDwjoFg0DPCPiO2s3S05JHkTAI5I3AbnLYiyKsmYLjnglwdEUpVEcVEIBAggQYQUoQ\nZq+L2kQVXC6tJV0lnS21Yr6YwSYTcGDkAKnbEaQLVYafZ1pZ8gPASdtIFejnPDAIhEDAi5v4\nO2d5yd9Bb0gYBPJG4Dw5PFS6RPJ3t3+Dpxe2sAq9SFpO2rEXFVAmBCAAAQhMJjCjNj1F4GPJ\nX+4hWugjSF8XtPe6BOd/eg6yVumynEann6GDzJdvRIhjaRI4QZV56fmV0qyUuiDQAwJ+bu4J\nyUFSL2xTFeobCLdLnfz+Si98okwIQKA9AoUaQWqv6fnN7Tu4DpD8i/UhWugBku/meXSmG3Pw\n0mv+nppxRzdOci4EEiLwbZXzifS1hMqjGAhkTcCBvv+P7pagI55Sd6L0aeXV+xgEIBAWgfnk\nzoAWXCJAagFSiFkOklOPSCsG6FzoAdJeYvZ0F9y8TKwfUN++izJaOXVPZfKqSxgEsiSwrir3\nheS+WTpB3RDoAYFDVOa70iIJlX2OynlT8ggSBgEIhEngz3LLj6s0MwKkZoQ43jaB0AMkB5cP\ntN2qySf4WQyPQk03OWmKrSu0N2iKlM52/MzZh52dylkQSITAIJXyunRqIqVRCATCIuDvcE+D\n8yqk/l7v1tZRAX72CIMABMIlsLZcmyAt08RFAqQmgDjcPoHQA6Rj1aRh7Ter5TMeV87/azl3\n/Yz+8Po5J5b6rs+II70j4JHS/0r/lJgq1DvOlJwtgcVUvRfs+V62blA7BCCQIgHfGDm7SX2F\nCpDq3dFvwoDDJSPgVey6XcGuEbJrdXCzRhlaPPaC8vkuxxIt5icbBJIk4H8es0rfkMYnWTBl\nQSAgAv6e9VS7n0kOljAIQKD4BE5WE3eRFip+Uye1kACpLD3dXTsdIHW7il0jD67TwbWkgY0y\ntXDMz328IhEgtQCLLIkS8AWjg/ytJP/AJgaBIhPwojv3SWdJrUy180XV7yX/L8EgAIH8EfiH\nXH5S8iMXWAkJ+KFqT5HZp8u2L67zvbzvRy3KP8LnqWGeohOiXSynzuyhY9Or7LelnRKo41aV\ncXwC5VAEBFolsL4yfirt0OoJ5INAAQj4/5xnFuzdpC3r6vgo6XbJP7uBQQAC+STgZ8n9mZ+z\njvuFmmLnC1NsMoF5tTlE8ms3Nlwn+05y3xYL+ZryHdBi3iyyedrQiA4r9l31myUHgfXMF5c3\nSuZwUb1MLaY/q3yMILUIi2xdE/APE18inVZ57bpACoBATgg8Lz+PlH4ueRaAR++r7ftK+JX0\nR+lAyUvfYxCAQD4J/E1uHyGtLt2QzybgdacEkgqQ2q0/9EUablODjmm3Ucq/iOSRsWVaOHc/\n5XmuhXzNshymDPc3y8RxCCRAwDdA7pbukLjZlABQisgdgenksT8D11R53k/750gfSrtLGAQg\nUHwChRpBKn535aOFoQdI/xHGH3WA0lPmXm/xPE/XuK3FvI2ybaeDPAPSiBDHkiLwaxXkqUML\nJFUg5UAghwSWk89+/jOaYuoflPRNqpek1SQMAhAoBwECpJz38xzyf5C0tOTpMbNIWVvoAdIz\nArRnB5B+q3M89SJN86+9e9Sq2wUf0vSZuvJHYBu57Kmh6+fPdTyGQOIEPMPANwv8vesbBmdI\n80gYBCBQHgIESDns65Xl85+l0ZIvnqvlqV1ehGBuKQsLPUAyt+07APNvnXN0B+d1c4pXSXL/\nrtFNIZwLgQYEPNr5jvTjBnk4BIEyEfCF0ePSX8rUaNoKAQhMQYAAaQoc4e/4Aj0KiF7U9t3S\ntZIfrL5euld6VXKeNyRPC0vbQg+QPhKQr7YJxR8Un/e1Ns9LIvsLKmSvJAqiDAhUEfD7+gHp\nJmm6qmPsQqDMBNZW48dLjKqW+V1A28tEYOGqxvr/o6+l16pKZzdAAh71cGc5EFqlgX/+HYd1\nJc+bdn5/0adpIQdIXpbVTL7YJpDVK+dlMdXtUtXtKR4YBJIm4NXqRkpMH0qaLOXlkcCictrT\nmiP7vTY8JduLNGAQgECxCXhwYbdYEwmQYjBC37xQDnr6nC/yWzE/nzRGSvviOuQAyReCDpCW\nldqxvZT56XZOSDDvESrrvgTLoygImMC2kp87GuodDAIlJ7CZ2u/fr/OzppH118YI6cQogVcI\nQKCwBE5Wy56SotkUBEg56upH5esFbfp7p/JXL1naZhFtZw85QBqs1jhA8oIW7djsyrxiOydU\n8p6qV1+IdmOe1veRxNLL3VDk3DiBxbTDc0dxImyXlYBnXBwj+WbB8VJ0caTNibaN/o6TOvn+\nn1QCfyEAgTwQ8A30D6RvVpwlQMpDr1V8vEmvT0p9W/Q5GkE6pcX8SWULOUDyMq0OkGZNqrFN\nynFAe26TPM0OR6NeX2iWMXbcPy57gPRDyRfDGAQiAv7S94jkP6Xqi8EoD68QKAMB3/jyM7zv\nSls2aPCVOnaPxOelASQOQaAABH6jNvxX8o0TAqQcdejO8tUX91dLazbw2x27juQFG3xX7EtS\nmhZygLSBQPjB27TsIFX0SAKVvawyvt1COR5lOk1yG/8nef683wM/l/y+wCDwayF4TZoXFBAo\nMYHl1XZ/P3q1uqWacFhIx8dI32uSj8MQgEC+CSwo9/07aL5hQoCUo770Be6B0vuSA6VXpH9L\n10kXV159l2uk5OOfSB5BSNtCDpC2Foy3UwTyFdXlfujXZZ2X6PwLm5TRV8evl3zxu2Es79e1\n/Y50biyNzXIS8Je+A2bfKMAgUGYCp6vx/r/Z6myCHyivR5p8AYVBAALFJeDn9u+XCJBy2MeL\ny2d/sY+QHAjF5eDpGekX0sJSFhZygLS7gAxPEcocqsv9s3qXde6k8x3YeYSonjmAcnA8qEaG\nlZXm98aBNY6RVA4Ci6qZb0nHlaO5tBICiRLw9DrPyrg80VIpDAIQCI3AIDn0puSRY1+/scy3\nIOTRvMqOA6HB0oBAGhBygLS/GP23TU7LKf98bZ4Tz/6CdvaKJ3Sw7bnyflC43p3/Q3RsrPQF\nqZ7tqgMezeJh43qEipveV03zaPOtEs9RFLefaVlvCQxR8f4O3aq31VA6BCCQMQH/n2QEKeNO\nKGL1IQdIPxbwO9qEfpfyH9HmOfHsl2nHQ7bd2j9VgJ8vqrZoGt8O1Qdq7F+pNLdn2hrHSCou\ngV+raZ562U2gX1w6tKzoBHyDICk7WQX5mdDZkiqQciAAgSAJECAF2S35dirkAMlTD71qUavm\nQOI9qZs7ht/R+b9ttcIG+XbXMfsyfyzPItp+XfpVLK3RpvN7pOlbjTJxrFAEvEwxzx0Vqktp\nTBsEtlReL7CwahvnNMo6kw4+J53aKBPHIACB3BMgQMp9F4bXgJADpD8J14VtIFtCeT0HdfE2\nzulVVg/5PijZfwdui0nPSh5ZavRskg5PYcdqz3dA+02Ryk4RCfj9+450dBEbR5sg0ITA4Tru\nmwN+/yc5ar6xyhsvrSFhEIBAMQkQIBWzXzNtVcgB0l9F5g9t0NlaeX33Mcl/rm1UP1VWPyzo\nHzJ7XvpYulGaWWrHvGqTp1sd1s5J5M0dAQfAD0k3SA6uMQiUhcCMauj5khem2bZHjb5A5T4s\ntXNzqkeuUCwEINADAgRIPYBa9iJDDpB8seg55K3aMcp4V6uZU8o3v+o5StpE6tNhnd/XeV6l\npX+H53Na+ATOkosvSXOF7yoeQiAxAnOrJH9nvyKtklipUxfkH/D2d+ihUx8iBQIQKAABAqQC\ndGJoTQg5QLpbsA5vA5gXWGhnxKmNojPN6g++L56ZepVpN/Ss8j1VskcY1+xZDRQMgfAIeKT/\naekBaYEU3PuO6vAolac7YxCAQLEIECAVqz+DaE3IAdLjIrRfG5SebDN/G0VnnnUvefC2NCBz\nT3AgSQKrqbCPpH2TLJSyIJATAl6Uod1px502zQHZbZJnJmAQgECxCBAgFas/g2hNyAGSp13s\n0galzZR3jjby18u6jA78sd7BjNL7qt4XJUaRMuqAHlTr6UUeGTynB2VTJAQgMDWBpZXkGxI7\nTn2IFAhAIMcECJBy3Hmhuh5ygORlsjfPAJxXO/JqeKE987O3fGIUKYM3RA+q9MPiwyRPL/IC\nDRgEIJAOAT+rOkpK4mZaOh5TCwQg0IwAAVIzQhxvm0CoAdJ0askEad22W9T9CbNU6v5S90Ul\nWoK/ABhFShRpZoWdpppHS4tk5gEVQyA9Al6gZjup04VqkvTU36Oeju2fkcAgAIFiECBAKkY/\nBtWKUAOk2UXJozgrZUTrWdW7T0Z1N6qWUaRGdPJxbA+5OU7KIvjPByG8LBIBP2N0reQfyQ7l\nGUp/9vzbSOtIGAQgkH8CBEj578PgWhBqgDRIpBwg+TULu0KV/i6LipvU6S+B4dJxTfJxOEwC\nviDzinUOdDEIFJ2An7O7V3pOGhxYY8+SP09I/k7FIACBfBMgQMp3/wXpfagB0sqi5QCp1TuO\nSU9V+onqvj3IHptmmm/LL/8gLr+ZE2gH1XFrMaX7LvrpdY6TDIEiEVhCjXlGul/y7xCFZgPl\nkKe5/jg0x/AHAhBomwABUtvIOKEZgVADpPXl+Hhp2mYN0HE/8D5WWruFvK1m2V4ZvSBCiOZ5\n/P79kF+G6Bw+1STgQP9x6SbJ71cMAkUmsLoa5+DjH5Kf6QzVvErqh1Joo1uh8sIvCIRKgAAp\n1J7JsV+hBkjbiql/+bwVW1aZPNq0YCuZW8wzSPkcIM3UYv60s22jCj1Vy6MSWNgEHBA5MPJ0\nnlZHRMNuEd5BoD4BL7DzluQpbHm4GXCz/LxFwiAAgfwSIEDKb98F63moAdKeIuaFEloxBwvv\ntpKxzTz+Rx+y3Snn/hqyg/g2kcCf9XeURDDLG6IsBPL0Xl9SneJRpF3L0jm0EwIFJECAVMBO\nzbpJoQZIhwiM5663Ykcp0z2tZCxYHk9j8TRET0fEwiTwY7n1gbRGmO7hFQQgIAJHSp4SOCc0\nIACBXBIoVIAU+t35XL5DCuS0f8Sv1WeAPMXOv2tRNnMA6dEJP/TvLwcsLALfljvHSDtI94Xl\nGt5AAAIxAj/X9uvSKbE0NiEAAQhkQoAAKRPsuam0nQBpGbXqqdy0LFlHD1dxZnVcssVSWpcE\nNtP5f5S+L13dZVmcDoFQCXglzROlfqE62KJfnyifl97/ljS0xXPIBgEIQAACBSYQ6hS7S8T8\njBa5v6d8W7SYt4jZNlejPpW+VMTG5bBN7gdPqzs2h77jMgRaJeAbU89K/5HyHiBFbf6TNjwb\ngRH5iAivEMgHgUJNscsH8uJ7GWqAdKPQn9Qi/mOVr3+LedvJNq0y++5oL8pux49W8jqYfEWa\nu5XM5OkZgZVUsqeG8ltHPUNMwQEQ2Fg++H1+pTRLAP4k5YJH472gytFJFUg5EIBAKgQIkFLB\nXK5KQg2Q/MyGF2rI0hwg+feV8jA6NaP89J3c2yR/UWDpE/CzcH7Q+3zJ7x0MAkUksL8a5Slp\nJ0tFnCq/k9r1kbSUhEEAAvkgQICUj37KlZehBkjPiOKeAZB0oHZEAH604sJCyjRCukDiAr0V\nYsnlWVJFjZQul6ZPrlhKgkAwBBwMeVEYBw9FXxLbv1t2q4RBAAL5IECAlI9+ypWXoQZIb4ii\nfyw2aztbDlyUtRNt1B9N8fICAQRJbYDrIusSOvdl6VrJX9IYBIpIYF41yj+nsGYRG1fVJn+m\n/RyhF23AIACB8AkQIIXfR7nzMMQAyRf2XnRg/QBo/kg+PBKAH+244AuYdySPJPVt50Tytk1g\nsM5wcPQPydMcMQhAoBgEvEKol/72Sn0YBCAQNgECpLD7J5fehRggDRDJz6SVWyDa6znwG8mH\ncVLeAg2PJL0meZrIQAlLnoCfORopXSMRHCXPlxIhkCUBf+c/Kp2bpRPUDQEItESAAKklTGRq\nh0CIAdIgNcABkl8b2aw66Kl4gxpl6vLY/DrfvizfZTlZnL6IKn1YekFaLQsHClznqmqb7y5f\nJvmLGYNAkQg44PeUurLbWgIwXgphNkPZ+4L2Q6ARAQKkRnQ41hGBEAMkjxw5KPFIUiPzRX8r\n+RqV0coxjxJs2krGAPPMLJ98B9SjYF4VsNcjbqqi8OaLpTHSOVIfCYNAkQh4wZH/Sh4ZxaaZ\n5veC4EWDivJbT/QpBIpIgACpiL2acZtCDJB8Aeq7dtM2YbOLjr/aJE8Sh4twJ9Ws3pVulxZP\nAkpJy9hR7f5Y+oXU7P1ZUkQ0O8cEtpbvfn7xemnOHLcjSdd9o26EdEKShVIWBCCQKAECpERx\nUpgJhBggbSu/3myhe45XnmEt5CPLJAKecneLNFb6gcQFviC0YT9WXi8eckAb55AVAnkg4KXp\nHfT7/X20NJ2ETSbg/0kehV9xchJbEIBAQAQIkALqjKK4EmKAtJfg/q8FwJcqzx9ayEeWyQQc\nFO0jeYrYHdLSEtaYgKcp/lVyYLll46wchUDuCCwoj++URksb5c779By+UlX9WyJ4TI85NUGg\nVQKFCpD4kmm128uXby412YsvNLNllOGpZpk4PgUBP7N1hrSC5At+L+JwuOQ7yNjUBJZS0r3S\n6pIf2L5KwiBQJALHVBqzsl5vLlLDEm7L91SeV678fsLlUhwEIAABCARIIMQRpF+J09VNWPnh\neP+i+9ea5ONwYwK76bCnMzpQWq1x1tId9XNb70nXSXOUrvU0uCwEWGik9Z7eV1n9neDpyhgE\nIBAOgUKNIIWDtdyehBggnacuObtJt/jDcIWU1oXrxqprySY+5fXwPHL8YsnPHzg4nVUqs/l3\no8wjWvmPZ7XK/G6g7RCYTMDfBZ6O6B+GxiAAgXAIECCF0xeF8STEAMn/fH4eGGGPaJ0amE9J\nu7OpChwuvSiV9Vmb7dX2V6XHpFUkDAJFIjBTkRqTUVs8tduzF3bOqH6qhQAEpiZAgDQ1E1K6\nJBBigHSf2nRol+1K+vTjVeC/ki40wPJmkU8OTj+RrpWWkMpgS6uRN0hewvunkr9sMQgUicAP\n1Ri/v5ke1n2vHqki/Jzs3N0XRQkQgEACBAiQEoBIEVMSCDFAel4ufmdKNzPf204evJ25F+k5\nsLyq8hLqvlN6kjSbVERbUI3ySogOCG+S/BA2BoEiEfBn92/S+9JuRWpYhm3pq7r93OYlGfpA\n1RCAwGQCBEiTWbCVEIEQA6QxatsWCbUvqWIGqyCvALdoUgXmpJxvyM/h0mvS3lJRVrvz82QO\njBwA+kJnEwmDQNEI+EbHU5J/NoHf8Em2dz0F1zdWyjodOVmalAaB7ggQIHXHj7NrEAgtQJpR\nPjoQWbuGr1kmeVn6sVIZ/xn2U7v/T3pH8oXWjlIel+l3cOfA26vSTZDulbaSWIRBELDCEdhJ\nLfJ31mVS/8K1LowGeXR9pJTWYkFhtBovIBAeAQKk8Pok9x6FFiAtIKIOkJZqQNZTRu6S0v6n\ndI/qPLqBX0U/NKcaeIrkqTpPSF4GO/QRJS9hPFQ6TRolfShdIIUWgMslDAKJEPCFgqd++SbA\nQYmUSCH1CPiGnr8Lz62XgXQIQCAVAgRIqWAuVyWhBUhDhN8B0sAG3fBlHfM//5kb5OnFod+p\n0It6UXDOypxX/jpQ8u+BvCQdJs0lhWKLyRE/w+a+8oPUXr78VmkvaXYJg0CRCXiRkVel0KYp\nF5X5mmqYv2M2K2oDaRcEckCAACkHnZQ3F0MLkNYXQP+zaTTtyT6/kAHouVXnohnUG2qVDja8\n2uBwyatj+UFwX5T5rmpa5lFEv2cOkf4ujZAcYPsC8UJpV8kjXxgEykJggBpqYekR8Mqf/u5J\ne1ZDei2kJgiETYAAKez+yaV3DjZ8QTlLIN5/U36MbuLLr3T8uiZ5OJwegelUlRc5cID0ofSu\ndIt0vDRYSsLmUyEeOdxD8ujVP6SXJL93/aD0f6U/ST6+tIRBAAIQSIuAn9P0VLvz0qqQeiAA\ngSkIFCpACv3ZhSnIs5MaAU/Ver1Jbcvq+ONN8nA4PQKe7nh9RbPqdVPpB9J+0pHS29Ij0jPS\ni5KfBXKagymPFjrA8gWGz/UdWI/UOSBaSFpE8qidA3gHQw6KvCqXL0YulVzuY9JHEgYBCEAg\nCwL+/tldulu6XLpSwiAAAQh0RIAAqSNshT/JAZKfG2lkDpB8cYyFR2CsXPJIkmXz80CrS15i\neEnJI03zSJ6eN7PUR3KA5Sl6PteBkwPk1yQHPh4pGi49Jz0vEQgJAgYBEfiS5FFTTyP9j4Rl\nS+A+VX+ydKZ0l9TsRp+yYBCAAAQgECqB0KbYebWxyxrA8kiCL6hZhawBJA5BAAKFJeDnMw+V\nPpF8Md5XwsIg4L54SLoiDHfwAgKlIVCoKXal6bXAGxpagPRX8fpDA2bz6tjT0mwN8vTykKeC\nbdTLCigbAhCAQB0Cnn7q6axjpB3r5CE5WwIrqHqPdH87WzeoHQKlIkCAVKruTqexoQVI/1Kz\nj0mn6R3V4uli46X+HZ3NSRCAAAQ6I7CBThspPSgN7qwIzkqJwIGqx0Hs4inVRzUQKDsBAqSy\nvwN60P7QAiSPDu3dg3YmVeRMKshTW76SVIGUAwEIQKAJgWV03Ddmfi3N2CQvh7Mn4GmQ/5Tu\nlvycJQYBCPSWQKECJK9chUGgmsB8SvAD+qGaV157XFotVAfxCwIQKBwB3zhaSvLIxMeFa13x\nGuQVN78l+ScHfly85tEiCECglwQIkHpJN59le3TGU9dCDpBM9gGJAMkkMAhAIA0CvuB+Lo2K\nqCMxAiNU0p7SUdKXEyuVgiAAgcITIEAqfBe33UCPHtnyECD5WSQMAhCAQNIE5lKBni6C5Z+A\nV7P7s3Sh5N94wyAAAQg0JUCA1BRR6TJEAdKoOi1fQOmNVrirc1riyf69i8Uk/54PBgEIQCAJ\nAn5uxc9f+ve+PD0LKwaBaMGGs4vRHFoBAQhAoBwEQlqkYWshf6cB9t10zNMWsjY/dOsVijbP\n2hHqhwAECkFgcbXiFul9aX/JwRJWHALLqSnu2x8Wp0m0BAJBEWCRhqC6A2eSJtBsgYYVVeFj\nSVfaQXleTeqr0rAOzuUUCEAAAhEB32z5kfSo5KBoiHSq5GeOsOIQeEJN+Z70c2mN4jSLlkAA\nAr0gMH0vCqXMXBNoFiD5B/h8IRGC3ROCE/gAAQjkloC/766RBksHSH5WhcBIEApq56hd60p/\nl1aR3pQwCEAAAlMR4BmkqZCUPqFZgBTKCFLpOwoAEIBA1wRmVQn3S8tKf5IIjgSh4OZRJE8j\n96INXAMVvLNpHgQ6JcCXQ6fkinteowDJKwAtKIUyglTcXqBlEIBAGgSeVSX7Sa+mURl1BEHA\nv6O3jbSmdFwQHuEEBCAQHAECpOC6JHOH5pUH9Zb49vS6CZLncmMQgAAE8kTAzxphEDAB/57V\nLtLhkoMlDAIQgMAUBAiQpsDBjgh4Ge96d1MdPHn0yHfgQrFZ5MhXQnEGPyAAgeAIeGWlI6S3\nJT9rhEHABK6TjpHOlTx1HIMABCAAgcAIfFf+eO67L/azNN9h/URav4ETMzU4lsWh9VTpx9Js\nWVROnRCAQNAEvNLl09JoaXcJg0A1gb8q4QVp7uoD7EMAAm0RKNQy3221nMw9IxBKgLSQWuhA\nLU93WWeUv2OlrSQMAhCAgAksJl0pfSqdLs0uYRCoRcA3/R6Q7pL8/wSDAAQ6I1CoAIkpdp29\nCYp61sKVhr2SowZ69OhWadMc+YyrEIBA7wjsraKflAZKq0rfl7xqGQaBWgQ8ZXwLaRHpL9K0\nEgYBCJScAAFSyd8AVc13gPSGFNIzRlUu1tz9h1I3qXmERAhAoGwEHAztJq0r/bdsjae9HREY\nqbO+XtEJHZXASRCAAAQgkDiBUKbYHaSWPZh463pf4KKqwlMDedC296ypAQIQgEBRCfiZNT+H\nu29RG0i7INBDAkyx6yFcis6WgEeQXq7jwteU3mjxhjqnpZL8omrxlJrNUqmNSiAAgRAIrCQn\nhoTgCD4UhsCNasme0mnStoVpFQ2BAATaJsAUu7aRFfqERgHSYWr5hgG33isR8RxSwB2EaxBI\niMCyKudvkke7t0yoTIqBQETAy357WfgLpQ2iRF4hAAEIQCB9AqFMsbtPTXcgVMs8r3/7WgcC\nSfPQbrTIRCAu4QYEIJAggeVV1sXSeOkWaS0Jg0CvCJyigt+T1uxVBZQLgYIRKNQUu4L1TW6b\nE0qA9KoI7lSD4uJK8zM+S9Q4RhIEIACBXhLw98+V0gTJgZEXX8AgkAaBP6qStyRP58QgAIHG\nBAoVIE3fuK0cLREBv7HnlWo9g7SK0sdIz0sYBCAAgTQJrKzK/HtGa0v/TrNi6io9gX1EYGbp\nZukr0mMSBgEIQAACKREIYQTJo0MeJfKKcNX2cyX8szqRfQhAAAIQgEDBCfRR+/yM6yhpuYK3\nleZBoBsChRpBYpGGbt4KxTrXAdI4qdYIkuf6c+e2WP1NayAQCgH/H/Lyyr4I/VYoTuEHBCoE\n/MzbztLt0jDJz8JhEIBAwQkQIBW8g9to3pLK+4Lkef7VtowS/M8hL+Z54zvmxVn8hEBJCfh7\n5UTJy/RfI/lO/f0SBoHQCHiKp/+n/Eu6TfqChEEAAhCAQI8JhDDF7ldq43V12ulnk/JkR8nZ\nV6RZ8+Q0vkKgJAR2VTsfkD6TvFT3AdJcEgaB0Ak4iL9Q8sINq4fuLP5BIGUChZpilzI7qqtD\nIIQA6Sr59ts6/uUt2YHRM9IleXMcfyFQAgKnq40nSSuUoK00sXgEPPPmLMkLF7GiYvH6lxZ1\nToAAqXN2nFmHQAgB0uPy7Qd1/MtjsqdAfCjt36Hz0+o8C4MABNonsKBOWb/90zgDArkg4P8N\nvqH4gbRpLjzGSQj0ngABUu8Zl66GrAMkf9k7mCjaF70f+Pbccd+t9tSIejajDqwneWqen4Xw\n6NMn0hVSLdtbicdK20mDJd9RxCBQdgJLC8D/SfdKfpbRN10wCBSZwHFqnBc32qnIjaRtEGiR\nAAFSi6DI1jqBrAOkheSqnwdYqnWXc5NzE3nq+eJn1vH4cqU7OHRA5AfET5UcAG0oLSDVsh8q\n8Q7pbcnc3pd8UehpFw7KMAiUhcCiaujPpKckfxaelE6UeD5DELBSEPAsBd+I87N0GATKTKBQ\nAdL0Ze5J2v45gSW15aVMh3+eMmljWb14qlqen+W5Xv6vKM0s1bKrlejA5nbpvVoZaqR5akX0\nvJYvEIdU5OVfPQp3rlRtOythc+kN6c2KvG29Kj0qYRDIGwHfgFhbOlu6SnpawiBQJgK+qfa6\ndI40v+RRVN8swCAAAQhAoEsCWY8g7SX/n6vRhj8ozRc9WPcENlARZ0iXSsOkR6SR0seS/5k6\nuKq2AUr4prSy1K/6IPsQSIGAp4+uJnnUdNYU6qMKCOSVgGcdjJEuknwnHYNA2Qj4fe/rmbXK\n1nDa2zsCWQdIvgNWKxDy3eADe9dsSq4QqDe65S8Zjy75C8dTODx96WLpEGl9iWefBAFLnMAg\nlbin5JFj3xn3++9BaWEJgwAE6hPwjItXpH9JA+tn4wgECkmAAKmQ3Zpto7IOkIap+SdUIVhQ\n+74w8hc+li0B/6MdKnmVQU9leljyM1PbShgEkiLggPx5yZ/7kdJ50q7SfBIGAQi0RsDP9P5X\n+p80uLVTyAWBQhAgQCpEN4bViKwDJN8l3qEKiS+MnO4V7rDwCPSt49JSSr9b+qO0j7SmVG+E\nSoewEhIYpDbXGn30TZG9JT97iEEAAp0T8HTUa6W3JE+vxiBQBgIESGXo5ZTbmGWA5LvDvmO8\nQlWb/6L9v1elsRs+gVnkoqfgue/8XJn7drzk6ZKXSX6eBCsPAT+79iXpYOkKaZTk98S6EgYB\nCPSOgG9CnCJ5tN/P8GEQKDqBQgVI0xe9t2hfUwIOjPwF7gvouPmu10nxBLZzQcBLjvufcmQD\ntBFfZc9fYNXmEaZfSm9LL0kvSyMqekOvvqDG8kVgJbl7puQFPvpIT0h3SQ6e75BekDAIQKB3\nBCaoaH/eHpE8or+q5BHaDyUMAhCAAARaIJDlCJIXYaheYnpepflLfJEWfCdL/gl4lOH30s2S\nA2UHWQ6KLAfPp0u17CtK9NTMjaU1pKWkeaRaQZiSsQQJ+ObW8tL20kw1yvVn93BpI6l/jeMk\nQQAC6RFYRVUNl/xs0mAJg0ARCfh/v68b1ipC4xhBKkIvdteGL+h03+GKm6fhOEgaE09ku7AE\nPlLL9qtq3RzaX0CaX/KIUi3bS4kOkpy3OigaobSFJX9Zxs1fnFtIHq2K5Hn6ln8fql5dOlRa\nm10t/6q0tLSM5MDIr2buz+pTUvVNDo8EniRhEIBA9gQelAsOki6Q/iPtLV0sYRCAQKAECJAC\n7ZgU3fIF6+9q1EdwVANKiZKi4OXxBm3eMXbM0/R8IR/JI0/VwZGzzyX5QsFBVSSf42lgNgdc\nt0n+bhomeZGQKICKfPLrQ9KdUh4tYuX2zymZydySR4JOk/zMWNy2046DHa+K5WDoXMn98oj0\nqoRBAALhE/D32GbSodJ50sbS/tJ7EgYBCARGwBcfWPYEPMXOc5S98s37KbrjC7PXpdWlB1Ks\nl6ogECfg76EBUn/JIx+R7aqNRaWBFUUBlV8dIO0mVdv5SthG8kWHNTYmX6D4zq3T4uaRLgch\n/q0pywGK5QDPulEaKcXNPnvUzb7NKHmaouUgxwGQ/fu5VG2XKmHbWKLLf0fy5/BFaWspze8A\nVYdBAAIpE1hT9V0oTSftLt0uYRDIOwHPavhYWlu6J++NYQQp7z3Ynf8ePfpAeri7YjgbAl0R\niIIEBwpxc7DTrh2lEy6RZqvINx2sWSQHNQ6Aqm0JJews+cvd34l9KnJ+mwMtBzZxc1C0leRX\n/0PwNEXLz+6NkUZLtexHSnTg5La+XVEtn3QIgwAECkrgXrXrC5IXxxkm/V46XKq+eaMkDAIQ\ngEB5CXgEyReJvohL005SZbelWSF1QQACEIAABCDwOYENtfW85NFz33TBIJBXAr7J6GtZ33zP\nvXl4FysvgS+p6XfFmu+pRr5THt05jx1iEwIQgAAEIACBhAn8U+WtIHnk++/SP6SlJAwCEMiQ\nAAFShvAzrtrTjjwP+l8xP/bStr+YfQcAgwAEIAABCECg9wQ81f1QydPufBf+Mek30pwSBgEI\nQKC0BLKYYueHwT3f2c9Q2Bwse4j/QO9gEIAABCAAAQhkQmBL1eoVK9+Vjpa8gA0GgdAJOLgv\nzBS70GGXxb8sAqQ/C+6VMcAba3ucNHcsjU0IQAACEIAABNIn4AVj9pR849IrcB4jedVMDAKh\nEiBACrVnWvRrDuUbJC0tLSilvTCCqpzK0g6Q/IzRSMn1RnajNjwHGoMABCAAAQhAIAwCvujc\nW3pB8qwPT71bTMIgEBoBAqTQeqQFf1ZWHo+YeOldD/9V6zmlnSllNXqSdoDkNer9Oy8LSLbV\npAmS5z9jEIAABCAAAQiERcAjSjtJD0r+aYAHpPhvqmkXg0CmBAiQMsXffuWevxsFRC9q+27p\nWsmjJddL/j2CVyXneUPyF1DalnaA9Cc18KZYIy/V9jWxfTYhAAEIQAACEAiTwFC59aT0ifS0\ndLA0j4RBIEsCBEhZ0m+z7u2V34GPA6FVGpzrKWfrSvdLzr+2lKalGSDNrIb5hyx3iDVwD20v\nFdtnEwIQgAAEIACBsAn4MQHfBB4ujZP8XLFHlWaUMAikTYAAKW3iXdR3oc719LlWvyz8fJKD\nhzOkNC3NAMnBkB/47JdmA6kLAhCAAAQgAIGeEPAqtBtJF0jvS29LZ0kbS56ah0EgDQIESGlQ\nTqiOR1WOvzDasTuVOe3pZmkFSP6idMD403aAkBcCEIAABCAAgVwQ8G8c7iz5UQKPKr0pnS1t\nLs0kYRDoFQECpF6R7UG5fs7G83T7tlh2NIJ0Sov5k8qWVoD0bTn8ruR2YhCAAAQgAAEIFJfA\n7GrabtJVkn+M1qNLV0v7SKyEJwhYogQIkBLF2dvCfBfFzxT5C2HNBlX5GaR1JC/Y4NVhviSl\naWkFSP6i3FPySBJ3ktLsYeqCAAQgAAEIZEfAzx9vIf1RelnytdEzkh8p+KY0n4RBoBsCBEjd\n0Ev5XAc+B0q+a+Ivg1ekf0vXSRdXXu/R60jJxz+RfiilbWkFSG6XR4/ukLysOQYBCEAAAhCA\nQPkILKcm+3rHN5DfkaKA6Rxte4RpFanV2TfKikFgGgKkHL4JFpfPDohGSP4SiMvBk++i/EJa\nWMrC0gqQllDjnpAekRbMoqHUCQEIQAACEIBAUAS8yMPK0g+ki6TnJV8nfSz9R/IzTAdIG0kL\nSRgEahEoVIDkEZayWX81eIDkVdz8w7HvSlmbAyQPe/vhSgdsSZvb6i+3o6XbpW9IYyQMAhCA\nAAQgAAEIVBOYSwmrSg6chkgrSktLfaXoxvKz2nYw9WJFnro3QnpTwspHwAGSg+q1Jc/OyrX5\nWZSymQODMgUHR6q90bTB/bR9joRBAAIQgAAEIACBegTe0IEbK4ry+JrRM1EcKA2WlpS+IG0p\neQaOn3Oy+SJ5lPSa5BvRr0suzz8xYr0teVqfb1Bb71U0Vq8eucIgkDmBMgZImUNP0QEPm68g\nHSOdK3kVGwwCEIAABCAAAQi0S8CLWD1dUa1zByrRU/Dmr2hevc4jzS35WsTHrTmk2aXqa1AH\nR75O8QiVXyN9qO2PYnIAFtc47Vt+jrz61WmR7H/1ttOqNV5pltOj7QmVbb9Wy347za/V21Fa\n/FXZsNAJlHGKXaM+2VcH/XDiH6RufizWzzx53q6HG1uxPv369Zvx5JNPXmbRRRf1hx6DAAQg\nAAEIQAAChSXw3HPP9Rs+fPiso0ePnm3s2LGzfPDBB7OMGzduZmv8+PH9Pv3005n0OtOECRP6\nSTP69bPPPpvB236V+lZeJ24L1PRO06vT/TpxX9sOxLzfp2rbaVldB1cHTNH+NNNOO+3n2/Lv\nc5Pvvunt4w7aInPelmyOOeY446STTjq1pcwdZBo1alTfAw444H8fffRRIabYZfXG6AB9Kqcc\nq1qOkfx6nNSp+U28geQPXyu2rDL9QppR8t0PDAIQgAAEIAABCECgtwR8veYAKq4+lX2/RnI+\nb/u1Wr6Wdppfq7ejtEavOu3zc6u3o32/+rkwB0eenhiZy23VHlbGka1m7iBfoZ5B6qD9hT7F\nw8F+GNGvadpaqsx3AVodcUrTN+qCAAQgAAEIQAACEIBAIwK+hvW1rK9pc2+OmLHJBPxQoYVB\nAAIQgAAEIAABCEAAAiUkUMYAyQ8HDpA8nc0rpnioshdLa6tYDAIQgAAEIAABCEAAAhDIEwHP\nmSyDraxG/lnycpNeYvIF6SnpFclB0nPSmZJXWsEgAAEIQAACEIAABCAAAQgUlsDRapnnRFov\nSndL10qXSNdL90qvSj7udfp3ktI2nkFKmzj1QQACEIAABCAAAQgkRaBQzyAlBSXUcraXYw58\nHAit0sBJrwKyrnS/5PxeojBNI0BKkzZ1QQACEIAABCAAAQgkSYAAKUmaPS7rQpXv6XN+3qgV\n8/NJY6RufgOplXqq8xAgVRNhHwIQgAAEIAABCEAgLwQKFSAV/RkkL9l9j/Rxi++ut5XvEWnB\nFvOTDQIQgAAEIAABCEAAAhAoEIGiB0h+tmhVqdUfbPUIkoMqL+CAQQACEIAABCAAAQhAAAIl\nI1D0AOlc9ecy0mXSmg361s8grSPdIM0sXSlhEIAABCAAAQhAAAIQgEDJCBT9d5AuUn/OIx0v\nbS6NkLy095uSnzXqLw2UFpXmlz6VDpLukjAIQAACEIAABCAAAQhAAAKFJLC4WnWx5ADJq9TF\n5R+JfUb6hbSwlIWxSEMW1KkTAhCAAAQgAAEIQCAJAoVapKHoI0hRhz+vjR0rOx41GiD1k/zD\nse9KGAQgAAEIQAACEIAABCAAgWnKEiDFu9pT6ywMAhCAAAQgAAEIQAACEIDAFASKvkjDFI1l\nBwIQgAAEIAABCEAAAhCAQCMCBEiN6HAMAhCAAAQgAAEIQAACECgVAQKkUnU3jYUABCAAAQhA\nAAIQgAAEGhEgQGpEh2MQgAAEIAABCEAAAhCAQKkIECCVqrtpLAQgAAEIQAACEIAABCDQiAAB\nUiM6HIMABCAAAQhAAAIQgAAESkWgjMt8h9zB/pGtMti0aiTvvTL0NG2EAAQgAAEIQKDIBD5V\n4z6TCnUNy0VqGG/ZTypuvBeGO3gBAQhAAAIQgAAEIACBtgmMa/uMAE/wnXwsDAKryY2+YbjS\ncy+uVw2XSP/peU1U0AmBuXTSidJh0tudFMA5PSewumrYTnIfYWES2EFuDZDODNM9vBKBI6QH\npJugESQBX6P68/Mz6bkgPcSpJYTA/4e+LE2QHBxxbScIGAQ6ITBaJ32jkxM5JxUCi6sWD5cv\nnEptVNIJgZ100ohOTuSc1AicppouTa02KuqEwP066eBOTuScVAj0US3+X+SLbyxMAu4b95H7\nqlDGIg2F6k4aAwEIQAACEIAABCAAAQh0Q4AAqRt6nAsBCEAAAhCAAAQgAAEIFIoAAVKhupPG\nQAACEIAABCAAAQhAAALdECBA6oYe50IAAhCAAAQgAAEIQAAChSJAgFSo7qQxEIAABCAAAQhA\nAAIQgEA3BAiQuqHHuRCAAAQgAAEIQAACEIBAoQgQIBWqO2kMBCAAAQhAAAIQgAAEINANAQKk\nbuhxLgQgAAEIQAACEIAABCBQKAIESIXqThoDAQhAAAIQgAAEIAABCHRDgACpG3qc2ymBcTrR\nwsIkEPXNJ2G6h1ci4L6J+gkgYRJw//AZCrNvIq/cR3yOIhrhvX4mlz6lj8LrmJhH/vy4j9xX\nGAQg0CWBQTq/T5dlcHpvCSzZ2+IpvUsC0+v8Rbssg9N7S2CAip+rt1VQepcEFtT5M3VZBqf3\nlsASvS2e0hMgQB8lAJEiIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIFBiAn1K3Haanj4Bv9/WktaQPpXekrCwCCwud9xHy1XcejMs9/CmisD62p9f\nerkqnd1sCcyn6odK/jy9J70vYeEQ6CdXVpXWlmaV3pDGS1i2BLZS9b5OeL2BGwvpmD9bfh0t\nfSJh6RFo1kczy5VVpC9Js0tjpI8lDAIQqENgsNKflD6L6XFtLyxh2RPwBd2VUrx/vH2r5Is8\nLDwCm8ol99GN4blWWo/6q+WXS/HP0YfaP7y0RMJruG8qDJfiffSC9p2OZUfgu6rafXJQAxeO\n0zEHRFHf+UbroQ3ycyhZAs36aDdVN0qK+sevDpD2lzAIQKAGgWmVdrvkD8ou0pKSP2gfSC9K\ns0hYdgSmU9W3Sf4y+6u0iTRUOkuaID0m+Y4rFg6BueXKa5L7jAApnH65r9InJ+p1RWl3yTeC\n3E87SFi2BBZR9e9Ib0u+sF5eOkTySPm70iAJS5/AlqpynOTPSb0AaaPKcd+AWFnyTJQbKmk/\n0CvWWwLN+sj94+uFFyTfEFpBcmD0lOR+3VXCIACBKgL7at8fkL2r0qO7EdXpVdnY7TGBoSrf\n/XN3jXquqxzbvsYxkrIjcJWq9vQS9xsBUnb9EK95s0p/nBFP1PZylfTbqtLZTZ/AwarSn5mf\nVFV9bCX9qKp0dntLYE4Vf4HkPvmo8lorQJpZx16QXpE8BS+yGbThdE8xjqdHx3ntnkCrfTRM\nVbkfN66qcvVK+uNV6exCAAIicK/kLz/PR41bf+14+sn98US2UyfwLdXofzJ71qh5B6X5S++Y\nGsdIyobAXqrWfbJV5fWGbNyg1ioCw7TvkYlao62evuULBSxbAieren92tqhyw/3j9N9VpbPb\nWwK+NjD3v0menuXtWgGSZzX4mPuv2k5Qgo/5BgWWPIFW+sizUO6THATVClSfUrqnQ9Y6pmQM\nAuUk0FfN/lh6pE7zH1K6h9adDwuPwBFyyf98PDUSy57AYLkwVjpd8oW4+4YASRACME8hvrri\nh6cVe/rWEGn6Shov2RPYQC74M3N5lSvnVtJ90wFLj8DvVdWGleoctLpvagVIx1SObVPJG3/x\n1C+f5zxY8gRa7aN6Nfv/lKevPlsvA+kQKCuBedRwf3kNqwPglsrxBeocJzk7AnOp6tclf7nN\nl50b1Fwh4Att36Xz3ThPOSFAEoRArL/88PecA9etJX9uvG/5+ZZtJSx7Ar6DfZzku9mPSR6R\neFDysxO/lLhRJwgZWaMAyRfp/iwNreHbOpVjf6xxjKRkCTTqo3o1HaMD7ruf1ctAOgTKSmBJ\nNdwfjr/XAeB0H/edcSwcArPIlX9L7ps9wnGr1J78VK33Ck7RVC0CpHDeDsvKFX9W/it9JPli\n24HSwZIDJB/7qoRlT2AJueAZDe6TSL67zf8gQcjQGl18XyC/3FfL1/DPaT52YY1jJCVLoFEf\n1arpG0ocL/1PmqlWhpDTPG8Qg0AvCfhiwVbvveY7ejZ/iLAwCHjk6GZpTelU6SwJy5bA2qre\nKwMdL92frSvUXoNA/0raEL36GTFPE7pC+oXkiwTbbya98DdDAu6LR6X3pTUk/waSX1+THpai\nvtImFhCBRtcRXEME1FExV3bXtgPb1yVPg/Tz5hgEIBAjML22PX1hWCwtvnmbdnz3Z854ItuZ\nEfDd1Wck94kvxrHsCcwmF56XHpR8Ie7pddZAyf3kYNb7XtEJy4bAIqrWfTG6RvW+OfRq5fjs\nNY6TlB6Be1SVfxTWn524DdDOSMkjgFg2BLZQtf4M+eZCtf1ECT42tPqA9teTfOw0CestgUZ9\nFK/5aO24T/x/a6n4gTxt17urn6c24GvYBDzX2xcN1f+QIq+d/oH0TpTAa2YE/LsFd0iDJN8F\nP0rCsiewslxYTPLru5LvflueumXbUPK+HzTHsiHgi+sJUq0AyenDKm7NXXnlJX0CZu/RIn/H\nvVVVvT9XvtEwRFqk6hi72RPw58tW6zoiShsxKQt/MyQwrer+rXSc5JkOa0meXpdL8919DAK9\nJvCkKviy5KlbvnsXmf9hee6+7+oxxS6iks3raqrWv6fTV9pMuknCwiDgi4Nad0f9/b2v9JJ0\nlfSghGVDwDeCnpWWljya55s+cZtfO29LzoNlQ8D/Y3xTeJ461c9QSY+mbNXJRnIGBHwNYfMI\nkqeuxs1ptvsmvfA3IwL+bHk6/u7SldLOUvX3oJIwCEAgTmAb7Xi49dB4orb/r5K+XVU6u+kS\n8MOTL0ie5+07Plg+CLBIQ1j9tI/c8ffcsVVueVTCAdQ1Venspk/gcVU5TvINobgtqB3PYngl\nnsh2qgS2UG3+/NSaYmdHHpE8VbW/dyrmqZF+fuwhiRv+FSg9fGnUR75Z5/67XCrETQbeUD18\nJ1H05wR8N8F3gE6S/DzFv6T1pMMl3w26VMKyI+B+GCR5pOIwqZZdq8Q/1zpAGgQgMJHAX/R3\nf+kYyaPjDogWlo6XPHL+QwnLloCD2Nskj5D/TPKowxLSjyVfbO8kYWES8PXDRdIwyduezuX/\nXXNJm0q+CYFlQ2BOVXtipWp/ji6r48YuSh9b5xjJECgtAX+JXS95Pr7vMlg3SvNJWLYEHlL1\nUZ/Ue/W8YiwsAowghdUf9sY3gLzc8MeSP0ufSHdJq0hYGATWkRuPSvHvuqe1v1EY7pXWi0aj\nExEUT9t6S4r6ztt7RAd57TmBen20pWqO+qTR6xw995AKIJBjAr6AWFUiMMpxJ+I6BCDQkMAM\nOjpE8vcdFiYB3/X2/yKP9mH5IeCRoyWl5aUZ8+M2nkIAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEILzH2foAABEt\nSURBVAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQCAsAn3CcgdvIAABCExBYEvtLSs9L42f4sjkHR9fR3pH\nGjs5OdWtrVSbv09fr1NrP6WvKq0tzSq9IdVrjw59bs3K/TyjNgZJm0mPSvVsaR1YVxogjZYm\nSK3Y+so0v/RyK5nbyDOd8rqN7sO4FtX+p9IYKQTrKyf8XuwvjejSodl0vvtpRmlUk7Jardd+\nbSrN0EKZTapM7PBCKmmo5Fe/1z6R2rXFdcJa0nKVE99soYBBytPscxAvptF7exFlnL2O3ld6\nq5+feH1sQwACEIAABCAAga4IfKyzP5N+2qAUH3OezRvk6eWh71bqP6hOJb4AG17JYz+tFySn\nN7Jm5cbP9QXyE9J78cTY9kBtXy1F9fv1A2kvqZn5wtv5b2yWsYPjDhzjPlVvO+D9fgflJn3K\nHBU/L0ug4OUrZf2uhbJq1eug6RDpm7Hzh2jb7E6LpWW5eZwqd0AU9aeD3UPbcGg+5b0ydn5U\nzq1Kc9BUz5p9DqrPa/TenkeZo3prvS5VXRj7EIAABCAAAQhAIA0CUYDki61V61SYZYDkUYVx\nki+gagVIvgP9jvS25AtEXxz74tZ3wt+VBkm1rFm58XN8EX2DZB/qBUg3VY7/Ua9rSC7/jkra\nHnqtZ3PrwGuSy+5lgOSRlG/F5MDNF9mvS677QClLqxWodOrPojrxWmnfFgqoVe/OOs9M4v0W\nUoC0UcW/y/W6suT3W/T+/IG2m9l0ynCb5Db+VdpEGiqdJXnE5jHJgXW1mVVUT73PQfycZu/t\njZXZPtws/bqGfD4GAQhAAAIQgAAEUifgACkKQB7V9gw1PMgiQJpTflwg+QLqo8rrQXqttoOV\n4Dw/qTpwbCX9qKr0VsuNTttaGyMrZZnVe9GB2OtqleP3x9K8uZjkC867vFPHrlK6p0e5Db0M\nkJ6pU79HC6KL4jpZUkn2xbcZJDGC1I7DteoNOUCaWY17QXpF6hNrqD+3Tn+5Kj2W5fPNodoy\n67s/T5m8cV3l2PaTkyZutfI5qDplmmbv7cMqddkfDAIQKBmB6UvWXpoLAQjkj8CzcvkRyVOK\njpGOlDoxT03yBVwze7dZBh3/h+Q743+XPBpwrlTL5qokPlB18PbK/vxV6a2W69N8Z9136T0a\n5RGhY6XBUrV9oAQHkVGd0fEXtGEtGyVUve6l/S0kX3xeIX0mpW3Pq0L3/1KS++8TKTKz3UDy\nc1V+TsT57pT8Xonbetrx3X731SrSetK80sOS+TmwrDbX5+lXLvdW6VEpbttqx/8/PcIRtw21\ns6Dk6Yxvxw6sqG3X7f51G9xfT0n3SnFrVq+ftbNsa0ufSu6buPkZt62kL0jDpWHSE1IzS+Lz\nMVSVDJJ+JsWfsfNNjoukI6SvSQ506tkgHRgunS1V2/lKcL8sFzuwibZb+RzETpk4tbTZe3sl\nneD3/IPxE9mGAAQgAAEIQAACWRPwxasv7nwxPEryxeVqUtx88e8Lmc3jiTW2v1PJ57yN5Ivi\nZvZ7ZfDFsM0XWi7vIO9UmS/gfcwXcHFzQOV0X8jGrdVyfc5Gkts+0DsyX8jVGkGaeLDGn5WV\n5otYBw7V5kBrrHS6FD0n5OlLSVtU9jN1Cp5H6Q4ChlUdd4DxumSGDmijUTy351ApbmY/UvqR\n5NEov4d8nmVmET9tTrTf6a+P+aI+quPPlbRoBOnSyv7Ceo3bq9rxubvEE7VtHz6UZpGWl5zH\n9cStlXov1Ak+N5Lb4wBxSCXNffRkZdufHeczv+2kZpbE5+MYVeI6t6lRmfvMx5ynU3OA5TLi\nfNv9HLT63jZHB7FzSjtKB0pflWaSMAhAAAIQgAAEIJAZgShAsgO+6PLF0WPSjFJkrQZIa+kE\nX/A3U7sXQFuoTPtVK0Dqo/TjJF+k2u+TJV+U+8L2l1JfqZ41KrfWOS63WYA0rfLsLl0sjZEe\nkQZJcfPIyH2SLw5nlqIgxhffSVtUtgMYB7iRfEF6iPSK5GMO5iLrrw37/qa0mmTGDjwcbPr9\n8oE0QIrscm2Y92hpH2kOaT7pWsn9drgU2Z7acNr5kttu20ByXU6/TLLtJnnf+SMbog2nWWdH\niXqdQXK/XFNJqxUgtVqvi9hZch17eKdi8brd3sUls91JctDo+t33jSyJz4cDfPs2tEZF61SO\n/bHGsVaS5lKm1yUHxO6/evagDtT7HEyvY628t9335vaa5Pea2xTpf9peQ8IgAAEIQAACEIBA\nJgR8wftErGZf2PtC5cRY2k8rab64zsK2UKX26aA6lS+hdAci0QWWX5+VfCe7kTUrt/rcRheG\nUd4FtBH343jtVwdp5ulRltUlWxTE9DJAivtUvX3wJDc+//tFbdmXeIAQHXQQ4vNXiBL0enkl\nbe9YmjeXq6T7eGQva8MXxdVB8v5Kc7lRgDSnth30/k2KzP1vbvdIw6XINtKGz438rRUgtVqv\ny2wUIL2k4+6vuN2pHde/SDyxR9sXVOpyG6staveF1Qda2J9Fef4txTnWO63R5+CnOqmV97bf\nY67L3z8O1JeV/H7x9477fZQ0UMIgAIGCEpiuoO2iWRCAQDEJfF/N8sXJoVJ0AR9yS78h5x6V\n3pd819nPh/jVF+EPSz6epr2tynyhbHZnSodJ9sN+2daWDpccON0vpWWjVdGeMTkgOUXyxa5f\nr5Jmlmy+UP6adJZ3ZA7wlpF2kOaVbFHeSXuT/t4d39H28Mp+/8qrg56FpJukDytp0ctfo43K\nq0eU7pI2lPpU0jbW6wOSg7dFJY/i2L4uTZCu8U4Na6feGqdPkfRf7X00RcqkFeGcFPlTdTjR\n3ajuWtcWESePzLRjHjm6WVpTOlWK+l2bbVk77+3nVfKO0vqS339PSk9IR0i/lOaRfiRhEIBA\nQQlMX9B20SwIQKCYBHxhuq90uXSOtIrUqvkC9oAWMjtoGdtCvlayHKhMH0ibSW9VTri/su+L\nriOlv1XS03jxhb9HKyxfzPvifDvpq5IDgwukR6RfS1GQ0U/bNl/gOs130MdJSdoYFVbrwtf/\no8xna2lzKQpUltT2QdJ6kredz0HIe5Kt1nSy1yYd+vxv9cX8ipUjIz7PMXljtDY9mhC3q7Wz\nrrSa5MBkHckXz8OkYyVfXPtC2wGSgzOXUcvarbdWGVHaS9FG7DXyOwpQYoem2Ezi8zGyUuLA\nKUqetBOlvVvjWL2kJXTAAaf7+ATpKKkTm00nXSA9IrXy3nZfXSLVsvOUeKi0cq2DpEEAAsUg\n4H8qGAQgAIE8EbhCzl4s+Q7vcZKnzLRicyuT70I3s2YXks3Oj467vjUkX0hHwVF0zBeJviu+\nm7SIVOvCVsk9NwclDpAcwL0uLSbZal3Ebqh0j4T5wtHs0zAHY/Zx64ocIC0jOeDwRe+N0vmS\nR8EceB4r7SfVsgm1EmNpb1a2Z4mlRZsOuKaLdiqv7tdfSA4u7ctM0i3SPZI5rS95lGlx6fdS\nPWu33nrlOL1ZGxudm8Tno5UAqVYAWsuvFZTooN1+7SX9SerUHMwk9d7258QWjTxO2uMvBCBQ\nKAIESIXqThoDgdIQ+IFa6gvQg6VbW2z1hcpnpWXjVZEvquepU+EMlfSkArI61Ux8hsJTg7aV\nqllFF9RjdcwXt6dJ1eb/Ex61e0m6SnpQStNmrVQWjfjsr/05pN2lc6W4LVXZ6YTpEzrXI2wO\nwKrNU+b6ViU+o32PAjpAmlHyuQ6OHLDfLvn96cDNduWkl5p/2623ZiEJJCbx+TAP21DJNzLi\n5jTbfZNeGv71qJyDXzPfTHKg1I21+94+UJXtIx0rXSzFLXp/PB1PZBsCEIAABCAAAQikReBj\nVeQLyFq2lRI/i2nzWplSSNui4oOnfFXb40rwdDRf8MVtQe28I70ST6zablRuVdaJuw5coilm\n8ePmYk7VF6zOc13l2JbeqWP9lO7zPdUpaYvKdrBRy+ZSooMM17+7ZLte8v663omZRwkc6PnY\n0Fj65ZW0OWNp3nTw6rzxoPFm7TtoXEWK26+147yXxRO1fbLkUa7HpPhF/I+07/wvS49KcVte\nOz72u1hiO/V+o3L+/rHzh1TSToulRZs/rhzbIEro8esjKv9VqX+sngHafk16SGp2Y9YjcS9I\nDojXktq1B3VCrc9BrXKi91/1e3tbZXYfuV89ehiZt53Xx6rff1EeXiEAgQIQaPZFVYAm0gQI\nQKCgBHxX3ne9dw64ffvIt9skXzz/TPLd8yUkX7T6onEnqdd2rSpwUOGA0n6cI30g2bevSn+X\nPDKUpc2vyt2fkTl4mV1aU5pBst/nSTYHNF+THLR4ituL0jrSwZID6lmkgVIn9h2d5D5ywOI+\nelbaUvq2NF6qtquVcJjkoCfyz3n+6T+yhaRzvNHE2ql3dKWs7+t1Qen0JmWnffgkVXiRNEzy\ntoOKw6W5pE0lB5SRXa6NraVtpCsqic47SPKoj9nWMr+n/1zrQEJpfi/a/69Ifr+dLY2VPJK6\nkeS6b5cwCEAAAhCAAAQgkDoBX/DWG0GyM74Q9t1q39ENcQRJbk28ePcogn2M9LS2faHVyLbQ\nQec/qFGm2LFGd877K9+pki9OIx/e1/ZRUl+pkdW7y97onFaPRWVHPkWvn6gAj77cJe0neVQh\nsj7a+IMUb8tr2v+utJrkMs6QIvNFuNPmjBIqr9NV0n0BHDeXcYs0TvJ5Lnuo9J5UPYLkMkZJ\nzreqFJmDglrpPl5rBMnprdbrG5uXSGbkereThlS2T9NrtTnQc760RpBc/87SW5Lrtby9h1Rt\nUd84SIrsIW1E59V7/W2Uucbrg0pzX7Vi0fuvegTJ584hVb/P3lDaIT6IQQACEIAABCAAAQh0\nT2BOFeGL6Lm7L6rjEhxorCQtJTnQyLP1l/NuywI9asQAlTu4R2U3KrbVet2X8zQqKONjDhKX\nlBwQzpixL91U7yBqRWlQN4VwLgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCA\nAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQ\ngAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABLIl8P8AWMzOkwMWsQAAAABJRU5ErkJggg==",
      "text/plain": [
       "Plot with title “Densities of log BRCA2 and GAPDH abundance”"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plot(density(logbrca2), main=\"Densities of log BRCA2 and GAPDH abundance\")\n",
    "lines(density(loggapdh), lty=2)\n",
    "legend(6,.4, lty=c(1,2), legend=c(\"log BRCA2\", \"log GAPDH\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Summary <a id=\"summary\"></a>\n",
    "\n",
    "This notebook has demonstrated how one may interact directly with an image of 181000 uniformly preprocessed RNA-seq experiments.  Through the use of Bioconductor's SummarizedExperiment data structure and the restfulSE/DelayedArray protocols, the quantifications are tightly coupled with substantive metadata.  The use of HSDS to manage the quantifications is new, and methods for efficient extraction of large subsets for multivariate analysis are under development.\n",
    "\n",
    "Comments regarding this work should be filed at the [HumanTranscriptomeCompendium](https://github.com/vjcitn/HumanTranscriptomeCompendium/issues) repository.  \n",
    "\n",
    "This work was supported by grants from NIH NCI U01 CA214846, U24 CA180996, and Chan Zuckerberg Initiative DAF 2018-183436. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "R",
   "language": "R",
   "name": "ir"
  },
  "language_info": {
   "codemirror_mode": "r",
   "file_extension": ".r",
   "mimetype": "text/x-r-source",
   "name": "R",
   "pygments_lexer": "r",
   "version": "3.6.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}