Name Mode Size
.github 040000
R 040000
data 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 0 kb
LICENSE.md 100644 1 kb
NAMESPACE 100644 3 kb
README.md 100644 2 kb
_pkgdown.yml 100644
README.md
# HiContacts <!-- badges: start --> [![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental) [![R-CMD-check-bioc](https://github.com/js2264/HiContacts/actions/workflows/check-bioc.yml/badge.svg)](https://github.com/js2264/HiContacts/actions/workflows/check-bioc.yml) [![pkgdown](https://github.com/js2264/HiContacts/workflows/pkgdown/badge.svg)](https://github.com/js2264/HiContacts/actions) <!-- badges: end --> HiContacts provides tools to import `(m)cool` matrices in R and work with them there. It creates a new `contacts` class of objects, built on pre-existing Bioconductor objects, namely `InteractionSet`, `GenomicInterations` and `ContactMatrix` (`Lun, Perry & Ing-Simmons, F1000Research 2016`), and provides **analytical** and **visualization** tools to investigate contact maps. ## Installation ```r remotes::install_github('js2264/HiContacts') ``` ## Import a .(m)cool file as `contacts` ```r mcool_file <- HiContactsData::HiContactsData('yeast_wt', format = 'mcool') range <- 'I:20000-80000' # range of interest lsCoolResolutions(mcool_file) contacts <- contacts(mcool_file, focus = range, res = 1000) contacts ``` ## Plotting matrices ```r plotMatrix(contacts, use.scores = 'raw') plotMatrix(contacts, use.scores = 'balanced', limits = c(-4, -1)) ``` ## P(s) ```r contacts <- contacts( mcool_file, pairs = HiContactsData::HiContactsData('yeast_wt', format = 'pairs') ) ps <- getPs(contacts) plotPs(ps, aes(x = binned_distance, y = norm_p)) ``` ## Virtual 4C ```r contacts <- contacts(mcool_file, res = 1000) v4C <- virtual4C(contacts, viewpoint = GRanges('V:150000-170000')) gg4C(v4C, aes(x = center, y = score, col = chr)) + facet_wrap(~chr, scales = 'free_x') ``` ## Cis-trans ratios ```r contacts <- contacts(mcool_file, res = 1000) cis_trans(contacts) ```