Name Mode Size
.github 040000
R 040000
man 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 0 kb
LICENSE.md 100644 1 kb
NAMESPACE 100644 1 kb
README.md 100644 5 kb
_pkgdown.yml 100644
README.md
# HiContacts <!-- badges: start --> [![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental) [![R-CMD-check-bioc](https://github.com/js2264/HiContacts/actions/workflows/check-bioc.yml/badge.svg)](https://github.com/js2264/HiContacts/actions/workflows/check-bioc.yml) [![pkgdown](https://github.com/js2264/HiContacts/workflows/pkgdown/badge.svg)](https://github.com/js2264/HiContacts/actions) <!-- badges: end --> HiContacts provides tools to import `(m)cool` matrices in R and work with them there. Rather than creating redundant classes, it relies on pre-existing Bioconductor objects, namely `InteractionSet`, `GenomicInterations` and `ContactMatrix` (`Lun, Perry & Ing-Simmons, F1000Research 2016`). ## Installation ```r remotes::install_github('js2264/HiContacts') ``` ## Import a .(m)cool file as `contacts` `contacts()` can be used to import a Hi-C matrix. ```r cool_file <- system.file("extdata", 'CH112.cool', package = 'HiContacts') range <- 'I:20000-80000' # range of interest contacts <- contacts(cool_file, focus = range) contacts ``` `cool2gi` works with `.mcool` files as well: in this case, the user needs to specify the resolution at which count values are recovered. ```r mcool_file <- system.file("extdata", 'CH112.mcool', package = 'HiContacts') range <- 'I:20000-80000' # range of interest lsCoolResolutions(mcool_file) contacts <- contacts(mcool_file, focus = range) # This throws an error! contacts <- contacts(mcool_file, focus = range, res = 1000) contacts ``` ## Plotting matrices ### Plot matrix heatmaps > Diagonal style ```r plotMatrix(contacts, use.assay = 'raw') plotMatrix(contacts, use.assay = 'balanced', limits = c(-4, -1)) ``` > Plot matrix of correlation ```r contacts(mcool_file, focus = 'II', res = 1000) %>% autocorrelate() %>% plotMatrix(scale = 'linear', limits = c(-1, 1)) ``` > Plot signal over expected ```r contacts(mcool_file, focus = 'II', res = 1000) %>% detrend() %>% plotMatrix(use.assay = 'expected') contacts(mcool_file, focus = 'II', res = 1000) %>% detrend() %>% plotMatrix(use.assay = 'detrended', scale = 'linear', limits = c(-2, 2)) ``` ### Plot loops ```r loops <- system.file("extdata", 'CH112_1kb.bedpe', package = 'HiContacts') %>% rtracklayer::import() %>% InteractionSet::makeGInteractionsFromGRangesPairs() contacts(mcool_file, focus = 'IV', res = 1000) %>% detrend() %>% plotMatrix(use.assay = 'detrended', loops = loops, scale = 'linear', limits = c(-2, 2)) ``` ### Plot borders ```r borders <- rtracklayer::import('AT507_borders.bed') contacts(mcool_file, focus = 'IV', res = 1000) %>% detrend() %>% plotMatrix(use.assay = 'detrended', loops = loops, borders = borders, scale = 'linear', limits = c(-2, 2)) ``` ### Many plots at once ```r p <- cowplot::plot_grid( contacts(mcool_file, focus = 'IV', res = 1000) %>% plotMatrix(use.assay = 'raw'), contacts(mcool_file, focus = 'IV', res = 1000) %>% plotMatrix(use.assay = 'balanced'), contacts(mcool_file, focus = 'IV', res = 1000) %>% detrend() %>% plotMatrix(use.assay = 'expected', scale = 'linear'), contacts(mcool_file, focus = 'IV', res = 1000) %>% detrend() %>% plotMatrix(use.assay = 'detrended', scale = 'linear', limits = c(-3, 3)), contacts(mcool_file, focus = 'IV', res = 1000) %>% detrend() %>% plotMatrix(use.assay = 'detrended', scale = 'linear', limits = c(-3, 3), loops = loops), contacts(mcool_file, focus = 'IV', res = 8000) %>% autocorrelate() %>% plotMatrix(scale = 'linear', limits = c(-1, 1)) ) ggsave('tmp.pdf', width = 20, height = 10) ``` ## Analysis in R ### Auto-correlation ```{r} ``` ### Ratio of maps ```{r} divide() %>% smoothen() ``` ### Virtual 4C ```r contacts <- contacts(mcool_file, res = 1000) v4C <- virtual4C(contacts, viewpoint = GRanges('V:150000-170000')) gg4C(v4C, aes = aes(x = center, y = score, col = chr)) + facet_wrap(~chr, scales = 'free_x') ``` ### Cis-trans ratios ```r contacts <- contacts(mcool_file, res = 1000) cis_trans(contacts) ``` ### Compute P(s) ```r pairs <- system.file("extdata", 'CH112.pairs', package = 'HiContacts') %>% pairs2gi() ps <- getPs(pairs) ggPs(ps, aes(x = binned_distance, y = norm_p), xlim = c(5000, 5e5), ylim = c(1e-10, 1e-4)) ``` ### Compute scalograms ```{r} pairs <- pairs2gi('tmp2.gz') df <- getScalogram(pairs, ylim = c(1e4, 1e7)) p <- ggScalogram(df, aes(x = binned_pos, ymin = y0, ymax = dist_quantile, group = prob, fill = prob), ylim = c(1e4, 1e7)) ``` ### APA : Aggregated Plot Analysis ```{r} ```