Name Mode Size
.github 040000
R 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 0 kb
LICENSE.md 100644 1 kb
NAMESPACE 100644 2 kb
README.md 100644 4 kb
_pkgdown.yml 100644
README.md
# HiContacts <!-- badges: start --> [![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental) [![R-CMD-check-bioc](https://github.com/js2264/HiContacts/actions/workflows/check-bioc.yml/badge.svg)](https://github.com/js2264/HiContacts/actions/workflows/check-bioc.yml) [![pkgdown](https://github.com/js2264/HiContacts/workflows/pkgdown/badge.svg)](https://github.com/js2264/HiContacts/actions) <!-- badges: end --> HiContacts provides tools to investigate `(m)cool` matrices imported in R by `HiCExperiment`. It leverages the `HiCExperiment` class of objects, built on pre-existing Bioconductor objects, namely `InteractionSet`, `GenomicInterations` and `ContactMatrix` (`Lun, Perry & Ing-Simmons, F1000Research 2016`), and provides **analytical** and **visualization** tools to investigate contact maps. ## Installation `HiContacts` is available in Bioconductor. To install the current release, use: ```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("HiContacts") ``` To install the most recent version of `HiContacts`, you can use: ```r install.packages("devtools") devtools::install_github("js2264/HiContacts") library(HiContacts) ``` ## Citation If you are using `HiContacts` in your research, please cite: > Serizay J (2022). _HiContacts: HiContacts: R interface to cool files_. > R package version 1.1.0 > <https://github.com/js2264/HiContacts>. ## How to use `HiContacts` `HiContacts` includes a introduction vignette where its usage is illustrated. To access the vignette, please use: ```r vignette('HiContacts') ``` ## Overview ### Import a .(m)cool file as `HiCExperiment` ```r mcool_file <- HiContactsData::HiContactsData('yeast_wt', format = 'mcool') range <- 'I:20000-80000' # range of interest lsCoolResolutions(mcool_file, verbose = TRUE) hic <- HiCExperiment::import(mcool_file, format = 'mcool', focus = range, resolution = 1000) hic ``` ### Plotting matrices ```r plotMatrix(hic, use.scores = 'count') plotMatrix(hic, use.scores = 'balanced', limits = c(-4, -1)) ``` ### Distance law, a.k.a. P(s) ```r hic <- Contacts( mcool_file, pairs = HiContactsData::HiContactsData('yeast_wt', format = 'pairs') ) ps <- distanceLaw(hic) plotPs(ps, aes(x = binned_distance, y = norm_p)) ``` ### Virtual 4C ```r hic <- Contacts(mcool_file, res = 1000) v4C <- virtual4C(hic, viewpoint = GRanges('V:150000-170000')) gg4C(v4C, aes(x = center, y = score, col = chr)) + facet_wrap(~chr, scales = 'free_x') ``` ### Cis-trans ratios ```r hic <- Contacts(mcool_file, res = 1000) cisTransRatio(hic) ``` ### Mapping topological features #### Compartments ```r mcool_file <- '/home/rsg/Projects/20221214_HiContacts_compartments-TADs-loops/HFFc6.mcool' hic <- import(mcool_file, format = 'mcool', resolution = 100000) genome <- Biostrings::readDNAStringSet('~/genomes/hg38/hg38.fa') # - Get compartments hic <- getCompartments(hic, genome, autocorrelation = TRUE, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE)) # - Export compartments as bigwig and bed files rtracklayer::export(IRanges::coverage(metadata(hic)$eigens, weight = 'eigen'), 'HFFc6_compartments.bw') rtracklayer::export( topologicalFeatures(hic, 'compartments')[topologicalFeatures(hic, 'compartments')$compartment == 'A'], 'HFFc6_A-compartments.bed' ) rtracklayer::export( topologicalFeatures(hic, 'compartments')[topologicalFeatures(hic, 'compartments')$compartment == 'B'], 'HFFc6_B-compartments.bed' ) # - Generate saddle plot p <- plotSaddle(hic) ``` #### Insulation and chromatin domains ```r mcool_file <- '/home/rsg/Projects/20221214_HiContacts_compartments-TADs-loops/HFFc6.mcool' hic <- import(mcool_file, format = 'mcool', resolution = 100000) # - Compute insulation score hic <- getDiamondInsulation( hic, resolution = 10000, window_size = 100000, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE) ) |> getBorders() # - Export insulation as bigwig track and borders as bed file rtracklayer::export(IRanges::coverage(metadata(hic)$insulation, weight = 'insulation'), 'HFFc6_insulation.bw') rtracklayer::export(topologicalFeatures(hic, 'borders'), 'HFFc6_borders.bed') ```