Name Mode Size
R 040000
data 040000
man 040000
vignettes 040000
DESCRIPTION 100644 1 kb
NAMESPACE 100644 1 kb
NEWS 100644 0 kb
README.md 100644 3 kb
README.md
GeneBreak R package ==================== Breakpoints of copy number aberrations (CNA) indicate underlying DNA breaks and thereby regions involved in structural variants. The availability of large copy number data cohorts enables to identify genes recurrently affected by structural variants. This package allows you to systematically identify recurrent CNA-associated breakpoint genes. Breakpoint detection and a tailored annotation approach for breakpoint-to-gene mapping are implemented, which takes the gene position in relation to breakpoint interval into account. Furthermore, statistics with multiple testing correction is incorporated to obtain recurrent breakpoint events. The method can be applied both on copy number data obtained from microarrays, such as array Comparative Genomic Hybridization (CGH), and on whole genome sequencing. Installation --------------------- ```R devtools::install_github( "stefvanlieshout/GeneBreak" ) ``` This requires package "devtools": ```R install.packages("devtools") ``` Sample workflow --------------------- Output from the Copy Number analysis workflows of [CGHcall] for cgh data and [QDNAseq] for NGS data can serve as input for the analysis of GeneBreak. The test-data used in this example contains data from one chromosome for a total of 200 samples. [CGHcall]: http://www.bioconductor.org/packages/release/bioc/html/CGHcall.html [QDNAseq]: http://www.bioconductor.org/packages/release/bioc/html/QDNAseq.html ```R library( "GeneBreak" ) # read vignette for more explanation about the workflow vignette( "GeneBreak") # explore built-in data data( package="GeneBreak" ) # get more information about built-in data help( "copynumber.data.chr20" ) # load built-in dataset (object from CGHcall) data( "copynumber.data.chr20" ) # load built-in gene annotation dataset (hg19 and hg38 are also availabe) data( "ens.gene.ann.hg18" ) # setup the breakpoint data breakpoints <- getBreakpoints( data = copynumber.data.chr20 ) # print some information about the object breakpoints # take a peek at the data access options accessOptions( breakpoints ) # optionally filter the data breakpointsFiltered <- bpFilter( breakpoints ) # add/setup the gene data breakpointsFiltered <- addGeneAnnotation( breakpointsFiltered, ens.gene.ann.hg18 ) # perform gene analysis breakpointGenes <- bpGenes( breakpointsFiltered ) # get recurrent breakpoints breakpointStatistics <- bpStats( breakpointGenes ) # print object information to screen breakpointStatistics # print some information of top 5 recurrently affected genes head( recurrentGenes( breakpointStatistics ) ) # A total of 14 recurrent breakpoint genes (at FDR < 0.1) # Gene sampleCount featureTotal pvalue FDR # 25468 PCMTD2 64 4 1.350385e-103 8.899035e-101 # 25481 C20orf69 33 3 5.522293e-44 1.819595e-41 # 14751 BFSP1 8 5 3.941447e-07 8.658045e-05 # 16066 ABHD12 10 9 5.756361e-05 9.483605e-03 # 15305 C20orf26 7 18 2.748743e-04 3.622843e-02 # 3493 HAO1 5 5 6.528175e-04 3.961727e-02 # plot breakpoint frequencies of one chromosome bpPlot( breakpointStatistics, plot.chr=c(20) ) ``` More information or help --------------------- Contact us at... Background --------------------- More background...