Browse code

rebased

pablo-rodr-bio2 authored on 22/04/2021 16:03:37
Showing1 changed files

... ...
@@ -1,9 +1,5 @@
1 1
 Package: GSVA
2
-<<<<<<< HEAD
3 2
 Version: 1.39.24
4
-=======
5
-Version: 1.39.23
6
->>>>>>> modules in shinyApp
7 3
 Title: Gene Set Variation Analysis for microarray and RNA-seq data
8 4
 Authors@R: c(person("Justin", "Guinney", role=c("aut", "cre"), email="justin.guinney@sagebase.org"),
9 5
              person("Robert", "Castelo", role="aut", email="robert.castelo@upf.edu"),
... ...
@@ -14,23 +10,9 @@ Imports: methods, stats, utils, graphics, S4Vectors, IRanges,
14 10
          Biobase, SummarizedExperiment, GSEABase, Matrix, parallel,
15 11
          BiocParallel, SingleCellExperiment, sparseMatrixStats, DelayedArray,
16 12
          DelayedMatrixStats, HDF5Array, BiocSingular
17
-<<<<<<< HEAD
18
-<<<<<<< HEAD
19 13
 Suggests: BiocGenerics, RUnit, BiocStyle, knitr, rmarkdown, limma, RColorBrewer,
20 14
           org.Hs.eg.db, genefilter, edgeR, GSVAdata, shiny, shinythemes, ggplot2,
21
-          data.table, plotly
22
-=======
23
-Suggests: BiocGenerics, RUnit, BiocStyle, knitr, markdown, limma, RColorBrewer,
24
-=======
25
-Suggests: BiocGenerics, RUnit, BiocStyle, knitr, rmarkdown, limma, RColorBrewer,
26
->>>>>>> modified imports in igsva()
27
-          genefilter, edgeR, GSVAdata, shiny, shinythemes, ggplot2, data.table,
28
-<<<<<<< HEAD
29
-          plotly, shinyjs, future, promises, shinybusy
30
->>>>>>> modules in shinyApp
31
-=======
32
-          plotly, shinyjs, future, promises, shinybusy, org.Hs.eg.db
33
->>>>>>> hide dwn and close btns
15
+          data.table, plotly, future, promises, shinybusy, org.Hs.eg.db
34 16
 Description: Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised method for estimating variation of gene set enrichment through the samples of a expression data set. GSVA performs a change in coordinate systems, transforming the data from a gene by sample matrix to a gene-set by sample matrix, thereby allowing the evaluation of pathway enrichment for each sample. This new matrix of GSVA enrichment scores facilitates applying standard analytical methods like functional enrichment, survival analysis, clustering, CNV-pathway analysis or cross-tissue pathway analysis, in a pathway-centric manner.
35 17
 License: GPL (>= 2)
36 18
 VignetteBuilder: knitr