Browse code

Removed the parallel.type argument from gsva(). Updated manual page.

Robert Castelo authored on 10/12/2019 13:09:53
Showing 4 changed files

... ...
@@ -1,12 +1,13 @@
1 1
 Package: GSVA
2
-Version: 1.35.3
2
+Version: 1.35.4
3 3
 Title: Gene Set Variation Analysis for microarray and RNA-seq data
4 4
 Authors@R: c(person("Justin", "Guinney", role=c("aut", "cre"), email="justin.guinney@sagebase.org"),
5 5
              person("Robert", "Castelo", role="aut", email="robert.castelo@upf.edu"),
6 6
              person("Joan", "Fernandez", role="ctb", email="joanfernandez1331@gmail.com"))
7 7
 Depends: R (>= 3.5.0)
8
-Imports: methods, BiocGenerics, Biobase, GSEABase (>= 1.17.4),
9
-         parallel, BiocParallel, geneplotter, shiny, shinythemes
8
+Imports: methods, BiocGenerics, Biobase, SummarizedExperiment,
9
+         SingleCellExperiment, GSEABase (>= 1.17.4), parallel,
10
+         BiocParallel, shiny, shinythemes
10 11
 Suggests: limma, RColorBrewer, genefilter, edgeR, snow, GSVAdata
11 12
 Description: Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised method for estimating variation of gene set enrichment through the samples of a expression data set. GSVA performs a change in coordinate systems, transforming the data from a gene by sample matrix to a gene-set by sample matrix, thereby allowing the evaluation of pathway enrichment for each sample. This new matrix of GSVA enrichment scores facilitates applying standard analytical methods like functional enrichment, survival analysis, clustering, CNV-pathway analysis or cross-tissue pathway analysis, in a pathway-centric manner.
12 13
 License: GPL (>= 2)
... ...
@@ -5,6 +5,8 @@ import(BiocGenerics)
5 5
 import(shiny)
6 6
 
7 7
 importClassesFrom(Biobase, ExpressionSet)
8
+importClassesFrom(SummarizedExperiment, SummarizedExperiment)
9
+importClassesFrom(SingleCellExperiment, SingleCellExperiment)
8 10
 importClassesFrom(GSEABase, GeneSetCollection)
9 11
 
10 12
 importMethodsFrom(Biobase, featureNames,
... ...
@@ -37,7 +39,6 @@ importFrom(BiocParallel, SerialParam,
37 39
                          MulticoreParam,
38 40
                          multicoreWorkers,
39 41
                          bpnworkers)
40
-importFrom(geneplotter, multidensity)
41 42
 importFrom(shinythemes, shinytheme)
42 43
 
43 44
 exportMethods(gsva,
... ...
@@ -13,7 +13,6 @@ setMethod("gsva", signature(expr="ExpressionSet", gset.idx.list="list"),
13 13
   min.sz=1,
14 14
   max.sz=Inf,
15 15
   parallel.sz=1L, 
16
-  parallel.type="SOCK",
17 16
   mx.diff=TRUE,
18 17
   tau=switch(method, gsva=1, ssgsea=0.25, NA),
19 18
   ssgsea.norm=TRUE,
... ...
@@ -63,8 +62,7 @@ setMethod("gsva", signature(expr="ExpressionSet", gset.idx.list="list"),
63 62
   }
64 63
 
65 64
   eSco <- .gsva(exprs(expr), mapped.gset.idx.list, method, kcdf, rnaseq, abs.ranking,
66
-                parallel.sz, parallel.type, mx.diff, tau, kernel, ssgsea.norm,
67
-                verbose, BPPARAM) 
65
+                parallel.sz, mx.diff, tau, kernel, ssgsea.norm, verbose, BPPARAM) 
68 66
 
69 67
   eScoEset <- new("ExpressionSet", exprs=eSco, phenoData=phenoData(expr),
70 68
                   experimentData=experimentData(expr), annotation="")
... ...
@@ -82,7 +80,6 @@ setMethod("gsva", signature(expr="ExpressionSet", gset.idx.list="GeneSetCollecti
82 80
   min.sz=1,
83 81
   max.sz=Inf,
84 82
   parallel.sz=1L, 
85
-  parallel.type="SOCK",
86 83
   mx.diff=TRUE,
87 84
   tau=switch(method, gsva=1, ssgsea=0.25, NA),
88 85
   ssgsea.norm=TRUE,
... ...
@@ -138,8 +135,7 @@ setMethod("gsva", signature(expr="ExpressionSet", gset.idx.list="GeneSetCollecti
138 135
   }
139 136
 
140 137
   eSco <- .gsva(exprs(expr), mapped.gset.idx.list, method, kcdf, rnaseq, abs.ranking,
141
-                parallel.sz, parallel.type, mx.diff, tau, kernel, ssgsea.norm,
142
-                verbose, BPPARAM)
138
+                parallel.sz, mx.diff, tau, kernel, ssgsea.norm, verbose, BPPARAM)
143 139
 
144 140
   eScoEset <- new("ExpressionSet", exprs=eSco, phenoData=phenoData(expr),
145 141
                   experimentData=experimentData(expr), annotation="")
... ...
@@ -157,7 +153,6 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="GeneSetCollection"),
157 153
   min.sz=1,
158 154
   max.sz=Inf,
159 155
   parallel.sz=1L, 
160
-  parallel.type="SOCK",
161 156
   mx.diff=TRUE,
162 157
   tau=switch(method, gsva=1, ssgsea=0.25, NA),
163 158
   ssgsea.norm=TRUE,
... ...
@@ -218,7 +213,7 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="GeneSetCollection"),
218 213
   }
219 214
 
220 215
   rval <- .gsva(expr, mapped.gset.idx.list, method, kcdf, rnaseq, abs.ranking,
221
-                parallel.sz, parallel.type, mx.diff, tau, kernel, ssgsea.norm,
216
+                parallel.sz, mx.diff, tau, kernel, ssgsea.norm,
222 217
                 verbose, BPPARAM)
223 218
 
224 219
   rval
... ...
@@ -232,7 +227,6 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="list"),
232 227
   min.sz=1,
233 228
   max.sz=Inf,
234 229
   parallel.sz=1L, 
235
-  parallel.type="SOCK",
236 230
   mx.diff=TRUE,
237 231
   tau=switch(method, gsva=1, ssgsea=0.25, NA),
238 232
   ssgsea.norm=TRUE,
... ...
@@ -281,8 +275,7 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="list"),
281 275
   }
282 276
 
283 277
   rval <- .gsva(expr, mapped.gset.idx.list, method, kcdf, rnaseq, abs.ranking,
284
-                parallel.sz, parallel.type, mx.diff, tau, kernel, ssgsea.norm,
285
-                verbose, BPPARAM)
278
+                parallel.sz, mx.diff, tau, kernel, ssgsea.norm, verbose, BPPARAM)
286 279
 
287 280
   rval
288 281
 })
... ...
@@ -293,7 +286,6 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="list"),
293 286
   rnaseq=FALSE,
294 287
   abs.ranking=FALSE,
295 288
   parallel.sz=1L,
296
-  parallel.type="SOCK",
297 289
   mx.diff=TRUE,
298 290
   tau=1,
299 291
   kernel=TRUE,
... ...
@@ -328,8 +320,7 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="list"),
328 320
 		  cat("Estimating ssGSEA scores for", length(gset.idx.list),"gene sets.\n")
329 321
 
330 322
     return(ssgsea(expr, gset.idx.list, alpha=tau, parallel.sz=parallel.sz,
331
-                  parallel.type=parallel.type, normalization=ssgsea.norm,
332
-                  verbose=verbose, BPPARAM=BPPARAM))
323
+                  normalization=ssgsea.norm, verbose=verbose, BPPARAM=BPPARAM))
333 324
   }
334 325
 
335 326
   if (method == "zscore") {
... ...
@@ -339,8 +330,7 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="list"),
339 330
 	  if(verbose)
340 331
 		  cat("Estimating combined z-scores for", length(gset.idx.list), "gene sets.\n")
341 332
 
342
-    return(zscore(expr, gset.idx.list, parallel.sz, parallel.type,
343
-                  verbose, BPPARAM=BPPARAM))
333
+    return(zscore(expr, gset.idx.list, parallel.sz, verbose, BPPARAM=BPPARAM))
344 334
   }
345 335
 
346 336
   if (method == "plage") {
... ...
@@ -350,8 +340,7 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="list"),
350 340
 	  if(verbose)
351 341
 		  cat("Estimating PLAGE scores for", length(gset.idx.list),"gene sets.\n")
352 342
 
353
-    return(plage(expr, gset.idx.list, parallel.sz, parallel.type,
354
-                 verbose, BPPARAM=BPPARAM))
343
+    return(plage(expr, gset.idx.list, parallel.sz, verbose, BPPARAM=BPPARAM))
355 344
   }
356 345
 
357 346
 	if(verbose)
... ...
@@ -367,7 +356,7 @@ setMethod("gsva", signature(expr="matrix", gset.idx.list="list"),
367 356
 	
368 357
 	es.obs <- compute.geneset.es(expr, gset.idx.list, 1:n.samples,
369 358
                                rnaseq=rnaseq, abs.ranking=abs.ranking,
370
-                               parallel.sz=parallel.sz, parallel.type=parallel.type,
359
+                               parallel.sz=parallel.sz,
371 360
                                mx.diff=mx.diff, tau=tau, kernel=kernel,
372 361
                                verbose=verbose, BPPARAM=BPPARAM)
373 362
 	
... ...
@@ -407,7 +396,7 @@ compute.gene.density <- function(expr, sample.idxs, rnaseq=FALSE, kernel=TRUE){
407 396
 }
408 397
 
409 398
 compute.geneset.es <- function(expr, gset.idx.list, sample.idxs, rnaseq=FALSE,
410
-                               abs.ranking, parallel.sz=1L, parallel.type="SOCK",
399
+                               abs.ranking, parallel.sz=1L, 
411 400
                                mx.diff=TRUE, tau=1, kernel=TRUE,
412 401
                                verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) {
413 402
 	num_genes <- nrow(expr)
... ...
@@ -558,8 +547,8 @@ setCores <- function(nCores, parallel.sz) {
558 547
 }
559 548
 
560 549
 ssgsea <- function(X, geneSets, alpha=0.25, parallel.sz,
561
-                   parallel.type, normalization=TRUE,
562
-                   verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) {
550
+                   normalization=TRUE, verbose=TRUE,
551
+                   BPPARAM=SerialParam(progressbar=verbose)) {
563 552
 
564 553
   p <- nrow(X)
565 554
   n <- ncol(X)
... ...
@@ -628,8 +617,8 @@ ssgsea <- function(X, geneSets, alpha=0.25, parallel.sz,
628 617
 
629 618
 combinez <- function(gSetIdx, j, Z) sum(Z[gSetIdx, j]) / sqrt(length(gSetIdx))
630 619
 
631
-zscore <- function(X, geneSets, parallel.sz, parallel.type,
632
-                   verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) {
620
+zscore <- function(X, geneSets, parallel.sz, verbose=TRUE,
621
+                   BPPARAM=SerialParam(progressbar=verbose)) {
633 622
 
634 623
   p <- nrow(X)
635 624
   n <- ncol(X)
... ...
@@ -691,8 +680,8 @@ rightsingularsvdvectorgset <- function(gSetIdx, Z) {
691 680
   s$v[, 1]
692 681
 }
693 682
 
694
-plage <- function(X, geneSets, parallel.sz, parallel.type,
695
-                  verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) {
683
+plage <- function(X, geneSets, parallel.sz, verbose=TRUE,
684
+                  BPPARAM=SerialParam(progressbar=verbose)) {
696 685
 
697 686
   p <- nrow(X)
698 687
   n <- ncol(X)
... ...
@@ -21,7 +21,6 @@ Estimates GSVA enrichment scores.
21 21
     min.sz=1,
22 22
     max.sz=Inf,
23 23
     parallel.sz=1L,
24
-    parallel.type="SOCK",
25 24
     mx.diff=TRUE,
26 25
     tau=switch(method, gsva=1, ssgsea=0.25, NA),
27 26
     ssgsea.norm=TRUE,
... ...
@@ -34,7 +33,6 @@ Estimates GSVA enrichment scores.
34 33
     min.sz=1,
35 34
     max.sz=Inf,
36 35
     parallel.sz=1L,
37
-    parallel.type="SOCK",
38 36
     mx.diff=TRUE,
39 37
     tau=switch(method, gsva=1, ssgsea=0.25, NA),
40 38
     ssgsea.norm=TRUE,
... ...
@@ -47,7 +45,6 @@ Estimates GSVA enrichment scores.
47 45
     min.sz=1,
48 46
     max.sz=Inf,
49 47
     parallel.sz=1L,
50
-    parallel.type="SOCK",
51 48
     mx.diff=TRUE,
52 49
     tau=switch(method, gsva=1, ssgsea=0.25, NA),
53 50
     ssgsea.norm=TRUE,
... ...
@@ -60,7 +57,6 @@ Estimates GSVA enrichment scores.
60 57
     min.sz=1,
61 58
     max.sz=Inf,
62 59
     parallel.sz=1L,
63
-    parallel.type="SOCK",
64 60
     mx.diff=TRUE,
65 61
     tau=switch(method, gsva=1, ssgsea=0.25, NA),
66 62
     ssgsea.norm=TRUE,
... ...
@@ -106,7 +102,6 @@ Estimates GSVA enrichment scores.
106 102
   \item{parallel.sz}{Number of threads of execution to use when doing the calculations in parallel.
107 103
                      The argument \code{BPPARAM} allows one to set the parallel back-end and fine
108 104
                      tune its configuration.}
109
-  \item{parallel.type}{Type of cluster architecture when using \code{snow}.}
110 105
   \item{mx.diff}{Offers two approaches to calculate the enrichment statistic (ES)
111 106
                  from the KS random walk statistic. \code{mx.diff=FALSE}: ES is calculated as
112 107
                  the maximum distance of the random walk from 0. \code{mx.diff=TRUE} (default): ES