1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,512 @@ |
1 |
+x1 <- t(scale(t(m))) |
|
2 |
+x1 |
|
3 |
+m[gene.sets[[1]],] |
|
4 |
+x1[gene.sets[[1]], ] |
|
5 |
+x1 <- t(scale(t(m))) |
|
6 |
+x1 <- svd(x1) |
|
7 |
+x1 <- x1$v[,1] |
|
8 |
+x1 |
|
9 |
+x2 <- runExactSVD(m, scale = TRUE, center = TRUE) |
|
10 |
+x2 <- x2$v[,1] |
|
11 |
+x2 |
|
12 |
+x2 <- runExactSVD(t(m), scale = TRUE, center = TRUE) |
|
13 |
+x2 <- x2$v[,1] |
|
14 |
+x2 |
|
15 |
+x1 |
|
16 |
+t(m) |
|
17 |
+scale(t(m)) |
|
18 |
+x2 <- runExactSVD(m, scale = TRUE, center = TRUE) |
|
19 |
+x1 <- t(scale(t(m))) |
|
20 |
+x1 <- svd(x1) |
|
21 |
+x1 <- x1$v[,1] |
|
22 |
+x1 |
|
23 |
+x2 <- runExactSVD(m, scale = colMeans(m), center = TRUE) |
|
24 |
+x2 <- x2$v[,1] |
|
25 |
+x2 |
|
26 |
+colMeans(m) |
|
27 |
+x2 <- runExactSVD(m, scale = colSds(m), center = TRUE) |
|
28 |
+x2 <- x2$v[,1] |
|
29 |
+x2 |
|
30 |
+x1 |
|
31 |
+x2 |
|
32 |
+x2 <- runExactSVD(m, scale = colSds(m), center = colMeans(m)) |
|
33 |
+x2 <- x2$v[,1] |
|
34 |
+x1 |
|
35 |
+x2 |
|
36 |
+colSds(m) |
|
37 |
+colMeans(m) |
|
38 |
+x2 <- runExactSVD(t(m), scale = colSds(m), center = colMeans(m)) |
|
39 |
+x2 <- x2$v[,1] |
|
40 |
+x2 |
|
41 |
+x1 |
|
42 |
+x2 <- runExactSVD(m, scale = colSds(t(m)), center = colMeans(t(m))) |
|
43 |
+x2 <- x2$v[,1] |
|
44 |
+x2 |
|
45 |
+x1 |
|
46 |
+x1 <- t(scale(t(m))) |
|
47 |
+x1 |
|
48 |
+colSds(m) |
|
49 |
+rowSds(m) |
|
50 |
+x1 <- t(scale(t(m))) |
|
51 |
+x1 <- svd(x1) |
|
52 |
+x1 <- x1$v[,1] |
|
53 |
+x1 |
|
54 |
+x2 <- runExactSVD(m, center= colMeans(m), scale= rowSds(m)) |
|
55 |
+x2 <- x2$v[,1] |
|
56 |
+x2 |
|
57 |
+x2 <- runExactSVD(m, center= colMeans(m), scale= rowSds(m)) |
|
58 |
+x2$v[,1] |
|
59 |
+x3 <- runSVD(m, k=Inf) |
|
60 |
+x4 <- runExactSVD(m) |
|
61 |
+x3 |
|
62 |
+x4 <- runExactSVD(m) |
|
63 |
+x4 |
|
64 |
+x1 <- t(scale(t(m))) |
|
65 |
+x1 <- svd(x1[gene.sets[[1]],]) |
|
66 |
+x1 <- x1$v[,1] |
|
67 |
+x1 |
|
68 |
+x2 <- runExactSVD(m[gene.sets[[1]],], center= colMeans(m), scale= rowSds(m)) |
|
69 |
+x2 <- x2$v[,1] |
|
70 |
+x2 |
|
71 |
+x3 <- runSVD(m[gene.sets[[1]],], k=Inf) |
|
72 |
+x3$v[,1] |
|
73 |
+x2 |
|
74 |
+x2 <- runExactSVD(m[gene.sets[[1]],], center= colMeans(m), scale= rowSds(m)) |
|
75 |
+x2 |
|
76 |
+x1 |
|
77 |
+x1 <- t(scale(t(m))) |
|
78 |
+x1 |
|
79 |
+x1 <- svd(x1[gene.sets[[1]],]) |
|
80 |
+x1 |
|
81 |
+x2 <- runExactSVD(m[gene.sets[[1]],], center= colMeans(m), scale= rowSds(m)) |
|
82 |
+x2 |
|
83 |
+rowSds(m) |
|
84 |
+x1 <- t(scale(t(m))) |
|
85 |
+x1 <- svd(x1[gene.sets[[1]],]) |
|
86 |
+x1 <- x1$v[,1] |
|
87 |
+x1 |
|
88 |
+x2 <- runExactSVD(m[gene.sets[[1]],], center= colMeans(m), scale= rowSds(t(m))) |
|
89 |
+x2 <- x2$v[,1] |
|
90 |
+x2 |
|
91 |
+colMeans(m) |
|
92 |
+apply(m, 2, sd) |
|
93 |
+x1 <- t(scale(t(m))) |
|
94 |
+x1 <- svd(x1[gene.sets[[1]],]) |
|
95 |
+x1 <- x1$v[,1] |
|
96 |
+x1 |
|
97 |
+x2 <- runExactSVD(m[gene.sets[[1]],], center= colMeans(m), scale= TRUE) |
|
98 |
+x2 <- x2$v[,1] |
|
99 |
+x2 |
|
100 |
+x1 <- scale(m) |
|
101 |
+x1 <- t(scale(t(m))) |
|
102 |
+x1 <- svd(x1[1,]) |
|
103 |
+x1 |
|
104 |
+x1 <- svd(x1[1,,drop=FALSE]) |
|
105 |
+x1 <- svd(x1[1, , drop=FALSE]) |
|
106 |
+x1[1, , drop=FALSE] |
|
107 |
+x1[1, drop=FALSE] |
|
108 |
+x1 <- t(scale(t(m))) |
|
109 |
+x1 <- t(scale(t(m))) |
|
110 |
+x1 <- svd(x1[1, ,drop=FALSE]) |
|
111 |
+x1 |
|
112 |
+x2 <- runExactSVD(m[1, ]) |
|
113 |
+x2 <- runExactSVD(m[1, , drop=FALSE]) |
|
114 |
+x2 |
|
115 |
+x2 <- runExactSVD(m[1, , drop=FALSE], center=TRUE, scale=TRUE) |
|
116 |
+x2 |
|
117 |
+x1 <- t(scale(t(m))) |
|
118 |
+x1 <- svd(x1[1:2,]) |
|
119 |
+x1 |
|
120 |
+x2 <- runExactSVD(m[1:2,], center=TRUE, scale=TRUE) |
|
121 |
+x2 |
|
122 |
+x2 <- runExactSVD(m[1:2,], center=colMeans(t(m)), scale=TRUE) |
|
123 |
+x2 |
|
124 |
+x <- gene.sets[[1]] |
|
125 |
+x |
|
126 |
+x1 <- svd(x1[x,]) |
|
127 |
+x <- gene.sets[[1]] |
|
128 |
+x1 <- t(scale(t(m))) |
|
129 |
+x1 <- svd(x1[x,]) |
|
130 |
+x1 <- x1$v[,1] |
|
131 |
+x1 |
|
132 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= colSds(t(m))) |
|
133 |
+x2 <- x2$v[,1] |
|
134 |
+x2 |
|
135 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= colSds(m)) |
|
136 |
+x2 <- x2$v[,1] |
|
137 |
+x2 |
|
138 |
+x1 <- t(scale(t(m))) |
|
139 |
+x1 <- svd(x1[x,]) |
|
140 |
+x1 <- x1$v[,1] |
|
141 |
+x1 |
|
142 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= rowSds(t(m))) |
|
143 |
+x2 <- x2$v[,1] |
|
144 |
+x2 |
|
145 |
+x2 <- runExactSVD(m[x,], center= colMeans(m), scale= rowSds(t(m))) |
|
146 |
+x2 <- x2$v[,1] |
|
147 |
+x2 |
|
148 |
+x2 <- runExactSVD(m[x,], center= colMeans(m), scale= colSds(t(m))) |
|
149 |
+x2 <- x2$v[,1] |
|
150 |
+x2 |
|
151 |
+x1 |
|
152 |
+x2 <- runExactSVD(m[x,], center= colMeans(m), scale= colSds(m)) |
|
153 |
+x2 <- x2$v[,1] |
|
154 |
+x2 |
|
155 |
+x1 |
|
156 |
+scale(t(m)) |
|
157 |
+colMeans(t(m)) |
|
158 |
+colSds(m) |
|
159 |
+colSds(t(m)) |
|
160 |
+rowSds(m) |
|
161 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= rowSds(m)) |
|
162 |
+x2 <- x2$v[,1] |
|
163 |
+x2 |
|
164 |
+x1 |
|
165 |
+x1 <- t(scale(t(m))) |
|
166 |
+x1 <- svd(x1[x,]) |
|
167 |
+x1 |
|
168 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= rowSds(m)) |
|
169 |
+x2 |
|
170 |
+min(dim(m[x,])) |
|
171 |
+x2 <- runSvd(m[x,], k=2, center= colMeans(t(m)), scale= rowSds(m)) |
|
172 |
+x2 <- runSVD(m[x,], k=2, center= colMeans(t(m)), scale= rowSds(m)) |
|
173 |
+x2 |
|
174 |
+x1$v[,1] |
|
175 |
+x2$v[,1] |
|
176 |
+x2 <- runSVD(m[x,], k=2, center= colMeans(t(m)), scale= rowSds(m), BSPARAM = ExactParam()) |
|
177 |
+x2$v[,1] |
|
178 |
+x2 <- runSVD(m[x,], k=2, center= colMeans(t(m)), scale= rowSds(m), BSPARAM = FastAutoParam()) |
|
179 |
+x2$v[,1] |
|
180 |
+x2 <- runSVD(m[x,], k=2, center= colMeans(t(m)), scale= rowSds(m), BSPARAM = bsparam()) |
|
181 |
+x2$v[,1] |
|
182 |
+x2 <- runSVD(m[x,], k=2, center= colMeans(t(m)), scale= rowSds(m), BSPARAM = ExactParam(deferred=TRUE)) |
|
183 |
+x2$v[,1] |
|
184 |
+x1 <- t(scale(t(m))) |
|
185 |
+x1 |
|
186 |
+colMeans(t(m)) |
|
187 |
+owSds(m) |
|
188 |
+rowSds(m) |
|
189 |
+m |
|
190 |
+m <- matrix(sample.int(10, 25, T), 5, 5) |
|
191 |
+colnames(m) <- paste0("cell_", 1:5) |
|
192 |
+rownames(m) <- paste0("gene_", 1:5) |
|
193 |
+set.seed(123) |
|
194 |
+m <- matrix(sample.int(10, 25, T), 5, 5) |
|
195 |
+colnames(m) <- paste0("cell_", 1:5) |
|
196 |
+rownames(m) <- paste0("gene_", 1:5) |
|
197 |
+gene.sets <- list("my_list1"= c(1,2)) |
|
198 |
+m <- matrix(sample.int(10, 25, T), 5, 5) |
|
199 |
+colnames(m) <- paste0("cell_", 1:5) |
|
200 |
+rownames(m) <- paste0("gene_", 1:5) |
|
201 |
+x <- c(1,2) |
|
202 |
+x1 <- t(scale(t(m))) |
|
203 |
+x1 <- svd(x1[x,]) |
|
204 |
+x1$v[,1] |
|
205 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= rowSds(m)) |
|
206 |
+x2$v[,1] |
|
207 |
+rowSds(m) |
|
208 |
+scale(t(m)) |
|
209 |
+t(scale(t(m))) |
|
210 |
+x1 <- t(scale(t(m))) |
|
211 |
+x1@scaled |
|
212 |
+str(x) |
|
213 |
+str(x1) |
|
214 |
+x1$scaled |
|
215 |
+x1@scaled |
|
216 |
+attr(x1) |
|
217 |
+attr(x1, "scaled:scale") |
|
218 |
+x2 <- runExactSVD(t(m[x,]), center= colMeans(t(m)), scale= rowSds(m)) |
|
219 |
+x2$v[,1] |
|
220 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= rowSds(m)) |
|
221 |
+x2$v[,1] |
|
222 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= rowSds(t(m))) |
|
223 |
+x1$v[,1] |
|
224 |
+x1 <- t(scale(t(m))) |
|
225 |
+x1 <- svd(x1[x,]) |
|
226 |
+x1$v[,1] |
|
227 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= rowSds(t(m))) |
|
228 |
+x2$v[,1] |
|
229 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= rowSds(m)) |
|
230 |
+x2$v[,1] |
|
231 |
+C <- colMeans(t(m)) |
|
232 |
+i <- 1 |
|
233 |
+sqrt(sum((m[,i] - C[i])^2)/(ncol(m)-1)) |
|
234 |
+x2 <- runExactSVD(m[x,], center= colMeans(t(m)), scale= TRUE) |
|
235 |
+x2$v[,1] |
|
236 |
+x1$v[,1] |
|
237 |
+colMeans(t(m)) |
|
238 |
+rowMeans(m) |
|
239 |
+rowSds(m) |
|
240 |
+x1 <- t(scale(t(m))) |
|
241 |
+x1 <- svd(x1[x,]) |
|
242 |
+x1$v[,1] |
|
243 |
+x2 <- runExactSVD(m[x,], center= rowMeans(m), scale= rowSds(m)) |
|
244 |
+x2$v[,1] |
|
245 |
+library(BiocSingular) |
|
246 |
+set.seed(123) |
|
247 |
+m <- matrix(sample.int(10, 25, T), 5, 5) |
|
248 |
+x <- c(1,2) |
|
249 |
+x1 <- t(scale(t(m))) |
|
250 |
+x1 <- svd(x1[x,]) |
|
251 |
+x1$v[,1] |
|
252 |
+x2 <- runExactSVD(t(scale(t(m)))) |
|
253 |
+x2$v[,1] |
|
254 |
+x1 <- t(scale(t(m))) |
|
255 |
+res1 <- svd(x1[x,]) |
|
256 |
+res1$v[,1] |
|
257 |
+x2 <- runExactSVD(x1[x,]) |
|
258 |
+x2$v[,1] |
|
259 |
+x3 <- runExactSVD(m[x,], center=colMeans(t(m))) |
|
260 |
+x3 |
|
261 |
+library(matrixStats) |
|
262 |
+x1 <- t(scale(t(m))) |
|
263 |
+x2 <- t( (t(m) - colMeans(t(m))) / colSds(t(m)) ) |
|
264 |
+x1 |
|
265 |
+x2 |
|
266 |
+x2 <- t( (t(m) - colMeans(t(m))) / rowSds(t(m)) ) |
|
267 |
+x2 |
|
268 |
+x1 <- t(scale(t(m))) |
|
269 |
+x2 <- t( (t(m) - colMeans(t(m))) / apply(t(m), 2, sd) ) |
|
270 |
+x1 |
|
271 |
+x2 |
|
272 |
+apply(t(m), 2, sd) |
|
273 |
+m |
|
274 |
+x1 |
|
275 |
+t(m) |
|
276 |
+scale(m) |
|
277 |
+m |
|
278 |
+x1 <- t(scale(t(m))) |
|
279 |
+x1 |
|
280 |
+x1 <- t(scale(t(m))) |
|
281 |
+x2 <- t( (t(m) - colMeans(t(m))) / apply(t(m), 2, sd) ) |
|
282 |
+x1 |
|
283 |
+x2 |
|
284 |
+colMeans(t(m)) |
|
285 |
+apply(t(m), 2, sd) |
|
286 |
+m |
|
287 |
+x1 <- scale(t(m)) |
|
288 |
+x2 <- (t(m) - colMeans(t(m))) / apply(t(m), 2, sd) |
|
289 |
+x1 |
|
290 |
+x2 |
|
291 |
+x2 <- (t(m) - colMeans(t(m))) / (apply(t(m), 2, sd)) |
|
292 |
+x1 |
|
293 |
+x2 |
|
294 |
+x1 <- scale(m) |
|
295 |
+x2 <- (m - colMeans(m)) / (apply(m, 2, sd)) |
|
296 |
+x1 |
|
297 |
+x2 |
|
298 |
+library(bench) |
|
299 |
+m <- matrix(sample.int(10, 25, T), 10, 10) |
|
300 |
+genes <- c(1,2) |
|
301 |
+x <- t(scale(t(m))) |
|
302 |
+m <- matrix(sample.int(10, 25, T), 10, 10) |
|
303 |
+genes <- c(1,2) |
|
304 |
+bench::mark( |
|
305 |
+svd(x[genes,]), |
|
306 |
+runExactSVD(x[genes,]) |
|
307 |
+) |
|
308 |
+library(Matrix) |
|
309 |
+m<-rsparsematrix(10,10,.5) |
|
310 |
+m |
|
311 |
+# m <- matrix(sample.int(10, 25, T), 10, 10) |
|
312 |
+m<-rsparsematrix(1000,10000,.5) |
|
313 |
+genes <- c(1:400) |
|
314 |
+x <- t(scale(t(m))) |
|
315 |
+X |
|
316 |
+x |
|
317 |
+x1 <- t(scale(t(m))) |
|
318 |
+x2 <- as(x1, "dgCMatrix") |
|
319 |
+bench::mark( |
|
320 |
+svd(x1[genes,]), |
|
321 |
+runExactSVD(x2[genes,]) |
|
322 |
+) |
|
323 |
+bench::mark( |
|
324 |
+svd(x1[genes,]), |
|
325 |
+runExactSVD(m[genes,]) |
|
326 |
+) |
|
327 |
+bench::mark( |
|
328 |
+svd(x1[genes,]), |
|
329 |
+runExactSVD(m[genes,]), |
|
330 |
+check=FALSE |
|
331 |
+) |
|
332 |
+bench::mark( |
|
333 |
+svd(x1[genes,]), |
|
334 |
+runExactSVD(x1[genes,]), |
|
335 |
+check=FALSE |
|
336 |
+) |
|
337 |
+x1 <- NULL |
|
338 |
+x2 <- NULL |
|
339 |
+m <- NULL |
|
340 |
+x <- NULL |
|
341 |
+library(BiocSingular) |
|
342 |
+set.seed(123) |
|
343 |
+m <- matrix(sample.int(10, 25, T), 10, 10) |
|
344 |
+genes <- 1:2 |
|
345 |
+genes |
|
346 |
+genes <- c(1:2) |
|
347 |
+genes |
|
348 |
+genes <- 1:2 |
|
349 |
+m <- matrix(sample.int(10, 25, T), 10, 10) |
|
350 |
+genes <- 1:2 |
|
351 |
+x1 <- t(scale(t(m))) |
|
352 |
+res1 <- svd(x1[genes,]) |
|
353 |
+res$v[,1] |
|
354 |
+res1$v[,1] |
|
355 |
+m |
|
356 |
+t(m) |
|
357 |
+apply(t(m),2,sd) |
|
358 |
+res2 <- runExactSVD(m, center=colMeans(t(m)), scale=apply(t(m),2,sd)) |
|
359 |
+res2$v[,1] |
|
360 |
+res1$v[,1] |
|
361 |
+res2 <- runExactSVD(m, center=colMeans(t(m)), scale=apply(m,2,sd)) |
|
362 |
+res2$v[,1] |
|
363 |
+svd( t( (t(m) - C) / colSds(t(m)) )[genes,] ) |
|
364 |
+t(m) - colMeans(t(m)) |
|
365 |
+t(m) |
|
366 |
+colMeans(t(m)) |
|
367 |
+colSds(t(m)) |
|
368 |
+( t(m) - colMeans(t(m)) ) / colSds(t(m)) |
|
369 |
+sweep(t(m), 2, colMeanst(m)) |
|
370 |
+sweep(t(m), 2, colMeans(t(m))) |
|
371 |
+svd( t( sweep(t(m), 2, colMeans(t(m))) / colSds(t(m)) ) ) |
|
372 |
+svd( t( sweep(t(m), 2, colMeans(t(m))) / colSds(t(m)) )[genes,] ) |
|
373 |
+svd( t( sweep(t(m), 2, colMeans(t(m))) / colSds(t(m)) )[genes,] )$v[,1] |
|
374 |
+x1 <- t(scale(t(m))) |
|
375 |
+res1 <- svd(x1[genes,]) |
|
376 |
+res1$v[,1] |
|
377 |
+svd( t( sweep(t(m), 2, colMeans(t(m))) / rowSds(t(m)) )[genes,] )$v[,1] |
|
378 |
+res1$v[,1] |
|
379 |
+X <- m |
|
380 |
+Z <- Matrix::t(X) |
|
381 |
+Z <- .dgCapply(Z, scale, 2) |
|
382 |
+Z <- Matrix::t(Z) |
|
383 |
+Z |
|
384 |
+library(Matrix) |
|
385 |
+library(SingleCellExperiment) |
|
386 |
+library(BiocParallel) |
|
387 |
+library(sparseMatrixStats) |
|
388 |
+m<-rsparsematrix(10,10,.5) |
|
389 |
+colnames(m) <- paste0("cell_", 1:10) |
|
390 |
+rownames(m) <- paste0("gene_", 1:10) |
|
391 |
+# gset.idx.list <- list("my_genes" = sample(rownames(m), 2)) |
|
392 |
+geneSets <- list("my_genes1" = c(1,3)) |
|
393 |
+library(GSVA) |
|
394 |
+x <- gsva(m, geneSets, method="plage") |
|
395 |
+colnames(m) <- paste0("cell_", 1:10) |
|
396 |
+rownames(m) <- paste0("gene_", 1:10) |
|
397 |
+x <- gsva(m, geneSets, method="plage") |
|
398 |
+# gset.idx.list <- list("my_genes" = sample(rownames(m), 2)) |
|
399 |
+geneSets <- list("my_genes1" = c("gene_1","gene_3")) |
|
400 |
+x <- gsva(m, geneSets, method="plage") |
|
401 |
+x |
|
402 |
+x <- gsva(m, geneSets, method="zscore") |
|
403 |
+x |
|
404 |
+x <- gsva(m, geneSets, method="ssgsea") |
|
405 |
+x |
|
406 |
+X <- m |
|
407 |
+n <- ncol(X) |
|
408 |
+if(is(X, "dgCMatrix")){ |
|
409 |
+R <- t(sparseMatrixStats::colRanks(X, ties.method = "average")) |
|
410 |
+mode(R) <- "integer" |
|
411 |
+} else { |
|
412 |
+R <- apply(X, 2, function(x, p) as.integer(rank(x)), p) |
|
413 |
+} |
|
414 |
+R |
|
415 |
+R <- t(sparseMatrixStats::colRanks(X, ties.method = "average")) |
|
416 |
+mode(R) <- "integer" |
|
417 |
+R |
|
418 |
+R <- apply(X, 2, function(x, p) as.integer(rank(x)), p) |
|
419 |
+R |
|
420 |
+R <- t(sparseMatrixStats::colRanks(X, ties.method = "average")) |
|
421 |
+source('~/curro/gsva-devel/devel3_ssgsea.R', echo=TRUE) |
|
422 |
+mode(R) <- "integer" |
|
423 |
+R |
|
424 |
+Ra <- abs(R)^alpha |
|
425 |
+Ra |
|
426 |
+es <- bplapply(as.list(1:n), function(j) { |
|
427 |
+geneRanking <- order(R[, j], decreasing=TRUE) |
|
428 |
+es_sample <- lapply(geneSets, .fastRndWalk, geneRanking, j, Ra) |
|
429 |
+unlist(es_sample) |
|
430 |
+}, BPPARAM=BPPARAM) |
|
431 |
+.fastRndWalk <- function(gSetIdx, geneRanking, j, Ra) { |
|
432 |
+n <- length(geneRanking) |
|
433 |
+k <- length(gSetIdx) |
|
434 |
+idxs <- sort.int(fastmatch::fmatch(gSetIdx, geneRanking)) |
|
435 |
+stepCDFinGeneSet2 <- |
|
436 |
+sum(Ra[geneRanking[idxs], j] * (n - idxs + 1)) / |
|
437 |
+sum((Ra[geneRanking[idxs], j])) |
|
438 |
+stepCDFoutGeneSet2 <- (n * (n + 1) / 2 - sum(n - idxs + 1)) / (n - k) |
|
439 |
+walkStat <- stepCDFinGeneSet2 - stepCDFoutGeneSet2 |
|
440 |
+walkStat |
|
441 |
+} |
|
442 |
+n <- ncol(X) |
|
443 |
+es <- bplapply(as.list(1:n), function(j) { |
|
444 |
+geneRanking <- order(R[, j], decreasing=TRUE) |
|
445 |
+es_sample <- lapply(geneSets, .fastRndWalk, geneRanking, j, Ra) |
|
446 |
+unlist(es_sample) |
|
447 |
+}, BPPARAM=BPPARAM) |
|
448 |
+es |
|
449 |
+geneSets <- 1,3 |
|
450 |
+geneSets <- c(1,3) |
|
451 |
+es <- bplapply(as.list(1:n), function(j) { |
|
452 |
+geneRanking <- order(R[, j], decreasing=TRUE) |
|
453 |
+es_sample <- lapply(geneSets, .fastRndWalk, geneRanking, j, Ra) |
|
454 |
+unlist(es_sample) |
|
455 |
+}, BPPARAM=BPPARAM) |
|
456 |
+es |
|
457 |
+es <- do.call("cbind", es) |
|
458 |
+es |
|
459 |
+geneSets <- 1 |
|
460 |
+es <- bplapply(as.list(1:n), function(j) { |
|
461 |
+geneRanking <- order(R[, j], decreasing=TRUE) |
|
462 |
+es_sample <- lapply(geneSets, .fastRndWalk, geneRanking, j, Ra) |
|
463 |
+unlist(es_sample) |
|
464 |
+}, BPPARAM=BPPARAM) |
|
465 |
+es |
|
466 |
+es <- do.call("cbind", es) |
|
467 |
+es |
|
468 |
+if (normalization) { |
|
469 |
+## normalize enrichment scores by using the entire data set, as indicated |
|
470 |
+## by Barbie et al., 2009, online methods, pg. 2 |
|
471 |
+es <- apply(es, 2, function(x, es) x / (range(es)[2] - range(es)[1]), es) |
|
472 |
+} |
|
473 |
+normalization=TRUE |
|
474 |
+if (normalization) { |
|
475 |
+## normalize enrichment scores by using the entire data set, as indicated |
|
476 |
+## by Barbie et al., 2009, online methods, pg. 2 |
|
477 |
+es <- apply(es, 2, function(x, es) x / (range(es)[2] - range(es)[1]), es) |
|
478 |
+} |
|
479 |
+es |
|
480 |
+rownames(es) <- names(geneSets) |
|
481 |
+colnames(es) <- colnames(X) |
|
482 |
+geneSets <- c(1,3) |
|
483 |
+es <- bplapply(as.list(1:n), function(j) { |
|
484 |
+geneRanking <- order(R[, j], decreasing=TRUE) |
|
485 |
+es_sample <- lapply(geneSets, .fastRndWalk, geneRanking, j, Ra) |
|
486 |
+unlist(es_sample) |
|
487 |
+}, BPPARAM=BPPARAM) |
|
488 |
+es <- do.call("cbind", es) |
|
489 |
+if (normalization) { |
|
490 |
+## normalize enrichment scores by using the entire data set, as indicated |
|
491 |
+## by Barbie et al., 2009, online methods, pg. 2 |
|
492 |
+es <- apply(es, 2, function(x, es) x / (range(es)[2] - range(es)[1]), es) |
|
493 |
+} |
|
494 |
+es |
|
495 |
+if(is(X, "dgCMatrix")){ |
|
496 |
+es <- as(es, "dgCMatrix") |
|
497 |
+} |
|
498 |
+es |
|
499 |
+rownames(es) <- names(geneSets) |
|
500 |
+colnames(es) <- colnames(X) |
|
501 |
+if(is(X, "dgCMatrix")){ |
|
502 |
+es <- as(es, "dgCMatrix") |
|
503 |
+} |
|
504 |
+es |
|
505 |
+setwd("~/curro/gsva-devel/GSVA") |
|
506 |
+devtools::check(vignettes = FALSE) |
|
507 |
+devtools::check(vignettes = FALSE) |
|
508 |
+devtools::build(vignettes = FALSE) |
|
509 |
+devtools::install(build_vignettes = FALSE) |
|
510 |
+x <- gsva(sce, gset.idx.list, method="zscore") |
|
511 |
+x <- gsva(sce, gset.idx.list, method="ssgsea") |
|
512 |
+X |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
.filterFeatures <- function(expr, method) { |
2 | 2 |
|
3 | 3 |
## filter out genes with constant expression values |
4 |
- sdGenes <- apply(expr, 1, sd) |
|
4 |
+ sdGenes <- DelayedMatrixStats::rowSds(expr) |
|
5 | 5 |
if (any(sdGenes == 0) || any(is.na(sdGenes))) { |
6 | 6 |
warning(sum(sdGenes == 0 | is.na(sdGenes)), |
7 | 7 |
" genes with constant expression values throuhgout the samples.") |