test_inputdatacontainers <- function() { p <- 10 ## number of genes n <- 30 ## number of samples nGrp1 <- 15 ## number of samples in group 1 nGrp2 <- n - nGrp1 ## number of samples in group 2 ## consider three disjoint gene sets geneSets <- list(set1=paste("g", 1:3, sep=""), set2=paste("g", 4:6, sep=""), set3=paste("g", 7:10, sep="")) ## sample data from a normal distribution with mean 0 and st.dev. 1 ## seeding the random number generator for the purpose of this test set.seed(123) y <- matrix(rnorm(n*p), nrow=p, ncol=n, dimnames=list(paste("g", 1:p, sep="") , paste("s", 1:n, sep=""))) ## genes in set1 are expressed at higher levels in the last 'nGrp1+1' to 'n' samples y[geneSets$set1, (nGrp1+1):n] <- y[geneSets$set1, (nGrp1+1):n] + 2 ## estimate GSVA enrichment scores with input as a matrix es.mat <- gsva(y, geneSets, verbose=FALSE) ## estimate GSVA enrichment scores with input as an ExpressionSet object y2 <- y rownames(y2) <- NULL eset <- Biobase::ExpressionSet(assayData=y2, phenoData=as(data.frame(dummy=1:ncol(y), row.names=colnames(y)), "AnnotatedDataFrame"), featureData=as(data.frame(dummy=1:nrow(y), row.names=rownames(y)), "AnnotatedDataFrame")) es.eset <- gsva(eset, geneSets, verbose=FALSE) checkTrue(identical(es.mat, Biobase::exprs(es.eset))) ## estimate GSVA enrichment scores with input as a SummarizedExperiment object se <- SummarizedExperiment::SummarizedExperiment(assay=list(counts=y2), rowData=S4Vectors::DataFrame(data.frame(dummy=1:nrow(y), row.names=rownames(y))), colData=S4Vectors::DataFrame(data.frame(dummy=1:ncol(y), row.names=colnames(y)))) es.se <- gsva(se, geneSets, verbose=FALSE) checkTrue(identical(es.mat, SummarizedExperiment::assays(es.se)[[1]])) ## estimate GSVA enrichment scores with input as a dgCMatrix object yMat <- Matrix::Matrix(y, sparse=TRUE) es.dgCMat <- gsva(yMat, geneSets, verbose=FALSE) checkTrue(identical(es.mat, es.dgCMat)) }