\name{gsva} \alias{gsva} \alias{gsva,HDF5Array,list-method} \alias{gsva,SingleCellExperiment,list-method} \alias{gsva,dgCMatrix,list-method} \alias{gsva,SummarizedExperiment,list-method} \alias{gsva,SummarizedExperiment,GeneSetCollection-method} \alias{gsva,ExpressionSet,list-method} \alias{gsva,ExpressionSet,GeneSetCollection-method} \alias{gsva,matrix,GeneSetCollection-method} \alias{gsva,matrix,list-method} \encoding{latin1} \title{ Gene Set Variation Analysis } \description{ Estimates GSVA enrichment scores. } \usage{ \S4method{gsva}{SingleCellExperiment,list}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) \S4method{gsva}{HDF5Array,list}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) \S4method{gsva}{dgCMatrix,list}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) \S4method{gsva}{SummarizedExperiment,GeneSetCollection}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) \S4method{gsva}{SummarizedExperiment,list}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) \S4method{gsva}{ExpressionSet,list}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) \S4method{gsva}{ExpressionSet,GeneSetCollection}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) \S4method{gsva}{matrix,GeneSetCollection}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) \S4method{gsva}{matrix,list}(expr, gset.idx.list, annotation, method=c("gsva", "ssgsea", "zscore", "plage"), kcdf=c("Gaussian", "Poisson", "none"), abs.ranking=FALSE, min.sz=1, max.sz=Inf, parallel.sz=1L, mx.diff=TRUE, tau=switch(method, gsva=1, ssgsea=0.25, NA), ssgsea.norm=TRUE, verbose=TRUE, BPPARAM=SerialParam(progressbar=verbose)) } \arguments{ \item{expr}{Gene expression data which can be given either as a \code{SummarizedExperiment}, \code{SingleCellExperiment} \code{ExpressionSet} object, or as a matrix of expression values where rows correspond to genes and columns correspond to samples. This matrix can be also in a sparse format, as a \code{dgCMatrix}, or as an on-disk backend representation, such as \code{HDF5Array} .} \item{gset.idx.list}{Gene sets provided either as a \code{list} object or as a \code{GeneSetCollection} object.} \item{annotation}{In the case of calling \code{gsva()} on a \code{SummarizedExperiment} or \code{SingleCellExperiment} object, the \code{annotation} argument can be used to select the assay containing the molecular data we want as input to the \code{gsva()} function, otherwise the first assay is selected. In the case of calling \code{gsva()} with expression data in a \code{matrix} and gene sets as a \code{GeneSetCollection} object, the \code{annotation} argument can be used to supply the name of the Bioconductor package that contains annotations for the class of gene identifiers occurring in the row names of the expression data matrix. In the case of calling \code{gsva()} on a \code{ExpressionSet} object, the \code{annotation} argument is ignored. See details information below.} \item{method}{Method to employ in the estimation of gene-set enrichment scores per sample. By default this is set to \code{gsva} (\enc{H�nzelmann}{Hanzelmann} et al, 2013) and other options are \code{ssgsea} (Barbie et al, 2009), \code{zscore} (Lee et al, 2008) or \code{plage} (Tomfohr et al, 2005). The latter two standardize first expression profiles into z-scores over the samples and, in the case of \code{zscore}, it combines them together as their sum divided by the square-root of the size of the gene set, while in the case of \code{plage} they are used to calculate the singular value decomposition (SVD) over the genes in the gene set and use the coefficients of the first right-singular vector as pathway activity profile.} \item{kcdf}{Character string denoting the kernel to use during the non-parametric estimation of the cumulative distribution function of expression levels across samples when \code{method="gsva"}. By default, \code{kcdf="Gaussian"} which is suitable when input expression values are continuous, such as microarray fluorescent units in logarithmic scale, RNA-seq log-CPMs, log-RPKMs or log-TPMs. When input expression values are integer counts, such as those derived from RNA-seq experiments, then this argument should be set to \code{kcdf="Poisson"}.} \item{abs.ranking}{Flag used only when \code{mx.diff=TRUE}. When \code{abs.ranking=FALSE} (default) a modified Kuiper statistic is used to calculate enrichment scores, taking the magnitude difference between the largest positive and negative random walk deviations. When \code{abs.ranking=TRUE} the original Kuiper statistic that sums the largest positive and negative random walk deviations, is used. In this latter case, gene sets with genes enriched on either extreme (high or low) will be regarded as 'highly' activated.} \item{min.sz}{Minimum size of the resulting gene sets.} \item{max.sz}{Maximum size of the resulting gene sets.} \item{parallel.sz}{Number of threads of execution to use when doing the calculations in parallel. The argument \code{BPPARAM} allows one to set the parallel back-end and fine tune its configuration.} \item{mx.diff}{Offers two approaches to calculate the enrichment statistic (ES) from the KS random walk statistic. \code{mx.diff=FALSE}: ES is calculated as the maximum distance of the random walk from 0. \code{mx.diff=TRUE} (default): ES is calculated as the magnitude difference between the largest positive and negative random walk deviations.} \item{tau}{Exponent defining the weight of the tail in the random walk performed by both the \code{gsva} (\enc{H�nzelmann}{Hanzelmann} et al., 2013) and the \code{ssgsea} (Barbie et al., 2009) methods. By default, this \code{tau=1} when \code{method="gsva"} and \code{tau=0.25} when \code{method="ssgsea"} just as specified by Barbie et al. (2009) where this parameter is called \code{alpha}.} \item{ssgsea.norm}{Logical, set to \code{TRUE} (default) with \code{method="ssgsea"} runs the SSGSEA method from Barbie et al. (2009) normalizing the scores by the absolute difference between the minimum and the maximum, as described in their paper. When \code{ssgsea.norm=FALSE} this last normalization step is skipped.} \item{verbose}{Gives information about each calculation step. Default: \code{FALSE}.} \item{BPPARAM}{An object of class \code{\link{BiocParallelParam}} specifiying parameters related to the parallel execution of some of the tasks and calculations within this function.} } \details{ GSVA assesses the relative enrichment of gene sets across samples using a non-parametric approach. Conceptually, GSVA transforms a p-gene by n-sample gene expression matrix into a g-geneset by n-sample pathway enrichment matrix. This facilitates many forms of statistical analysis in the 'space' of pathways rather than genes, providing a higher level of interpretability. By default, \code{gsva()} will try to match the identifiers in \code{expr} to the identifiers in \code{gset.idx.list} just as they are, unless the \code{annotation} argument is set. The \code{gsva()} function first maps the identifiers in the gene sets in \code{gset.idx.list} to the identifiers in the input expression data \code{expr}. When the input gene sets in \code{gset.idx.list} is provided as a \code{list} object, \code{gsva()} will try to match the identifiers in \code{expr} directly to the identifiers in \code{gset.idx.list} just as they are. Because unmatching identifiers will be discarded in both, \code{expr} and \code{gset.idx.list}, \code{gsva()} may prompt an error if no identifiers can be matched as in the case of different types of identifiers (e.g., gene symbols vs Entrez identitifers). However, then the input gene sets in \code{gset.idx.list} is provided as a \code{GeneSetCollection} object, \code{gsva()} will try to automatically convert those identifiers to the type of identifier in the input expression data \code{expr}. Such an automatic conversion, however, will only occur in three scenarios: 1. when \code{expr} is an \code{ExpressionSet} object with an appropriately set \code{annotation} slot; 2. when \code{expr} is a \code{SummarizedExperiment} or a \code{SingleCellExperiment} object with an appropriately set \code{annotation} slot in the metadata of \code{expr}; 3. when \code{expr} is a \code{matrix} or a \code{dgCMatrix} and the \code{annotation} argument of the \code{gsva()} function is set to the name of the annotation package that provides the relationships between the type of identifiers in \code{expr} and \code{gset.idx.list}. The collection of gene sets resulting from the previous identifier matching, can be further filtered to require a minimun and/or maximum size by using the arguments \code{min.sz} and \code{max.sz}. If you use GSVA in your research, please cite also the corresponding method as described in the \code{method} parameter. } \value{ A gene-set by sample matrix (of \code{matrix} or \code{dgCMatrix} type, depending on the input) of GSVA enrichment scores. } \references{ Barbie, D.A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. \emph{Nature}, 462(5):108-112, 2009. \enc{H�nzelmann}{Hanzelmann}, S., Castelo, R. and Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. \emph{BMC Bioinformatics}, 14:7, 2013. Lee, E. et al. Inferring pathway activity toward precise disease classification. \emph{PLoS Comp Biol}, 4(11):e1000217, 2008. Tomfohr, J. et al. Pathway level analysis of gene expression using singular value decomposition. \emph{BMC Bioinformatics}, 6:225, 2005. } \author{J. Guinney and R. Castelo} \seealso{ \code{\link{filterGeneSets}} \code{\link{computeGeneSetsOverlap}} } \examples{ library(limma) p <- 10 ## number of genes n <- 30 ## number of samples nGrp1 <- 15 ## number of samples in group 1 nGrp2 <- n - nGrp1 ## number of samples in group 2 ## consider three disjoint gene sets geneSets <- list(set1=paste("g", 1:3, sep=""), set2=paste("g", 4:6, sep=""), set3=paste("g", 7:10, sep="")) ## sample data from a normal distribution with mean 0 and st.dev. 1 y <- matrix(rnorm(n*p), nrow=p, ncol=n, dimnames=list(paste("g", 1:p, sep="") , paste("s", 1:n, sep=""))) ## genes in set1 are expressed at higher levels in the last 'nGrp1+1' to 'n' samples y[geneSets$set1, (nGrp1+1):n] <- y[geneSets$set1, (nGrp1+1):n] + 2 ## build design matrix design <- cbind(sampleGroup1=1, sampleGroup2vs1=c(rep(0, nGrp1), rep(1, nGrp2))) ## fit linear model fit <- lmFit(y, design) ## estimate moderated t-statistics fit <- eBayes(fit) ## genes in set1 are differentially expressed topTable(fit, coef="sampleGroup2vs1") ## estimate GSVA enrichment scores for the three sets gsva_es <- gsva(y, geneSets, mx.diff=1) ## fit the same linear model now to the GSVA enrichment scores fit <- lmFit(gsva_es, design) ## estimate moderated t-statistics fit <- eBayes(fit) ## set1 is differentially expressed topTable(fit, coef="sampleGroup2vs1") } \keyword{Pathway variation}