... | ... |
@@ -3000,7 +3000,7 @@ addConnections_peak_gene <- function(GRN, overlapTypeGene = "TSS", corMethod = " |
3000 | 3000 |
#' @param filterPeaks Character vector. Default \code{NULL}. Vector of peak IDs (as named in the GRN object) to retain. All peaks not listed will be filtered out. |
3001 | 3001 |
#' @param TF_peak_FDR_selectViaCorBins \code{TRUE} or \code{FALSE}. Default \code{FALSE}. Use a modified procedure for selecting TF-peak links that is based on the user-specified FDR but that retains also links that may have a higher FDR but a more extreme correlation. |
3002 | 3002 |
#' @param silent \code{TRUE} or \code{FALSE}. Default \code{FALSE}. Print progress messages and filter statistics. |
3003 |
-#' @param resetGraphAndStoreInternally \code{TRUE} or \code{FALSE}. Default \code{TRUE}. If set to \code{TRUE}, the stored eGRN graph slot graph) is reset due to the potentially changed connections that |
|
3003 |
+#' @param resetGraphAndStoreInternally \code{TRUE} or \code{FALSE}. Default \code{TRUE}. If set to \code{TRUE}, the stored eGRN graph (slot \code{graph}) is reset due to the potentially changed connections that |
|
3004 | 3004 |
#' would otherwise cause conflicts in the information stored in the object. Also, a GRN object is returned. If set to \code{FALSE}, only the new filtered connections are returned and the object is not altered. |
3005 | 3005 |
#' @param filterLoops \code{TRUE} or \code{FALSE}. Default \code{TRUE}. If a TF regulates itself (i.e., the TF and the gene are the same entity), should such loops be filtered from the GRN? |
3006 | 3006 |
#' @template outputFolder |
... | ... |
@@ -3619,7 +3619,9 @@ filterGRNAndConnectGenes <- function(GRN, |
3619 | 3619 |
|
3620 | 3620 |
} |
3621 | 3621 |
|
3622 |
-#' Add TF-gene correlations to a \code{\linkS4class{GRN}} object. The information is currently stored in \code{GRN@connections$TF_genes.filtered}. Note that raw p-values are not adjusted. |
|
3622 |
+#' Add TF-gene correlations to a \code{\linkS4class{GRN}} object. |
|
3623 |
+#' |
|
3624 |
+#' The information is currently stored in \code{GRN@connections$TF_genes.filtered}. Note that raw p-values are not adjusted. |
|
3623 | 3625 |
#' |
3624 | 3626 |
#' @export |
3625 | 3627 |
#' @template GRN |
... | ... |
@@ -343,7 +343,8 @@ performAllNetworkAnalyses <- function(GRN, ontology = c("GO_BP", "GO_MF"), |
343 | 343 |
#' and \emph{Reactome Pathways}, respectively. \code{GO} ontologies require the \code{topGO}, |
344 | 344 |
#' \code{"KEGG"} the \code{clusterProfiler}, \code{"DO"} the \code{DOSE}, and \code{"Reactome"} the \code{ReactomePA} packages, respectively. |
345 | 345 |
#' As they are listed under \code{Suggests}, they may not yet be installed, and the function will throw an error if they are missing. |
346 |
-#' @param algorithm Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library. |
|
346 |
+#' @param algorithm Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library. |
|
347 |
+#' For general information about the algorithms, see \url{https://academic.oup.com/bioinformatics/article/22/13/1600/193669}. \code{weight01} is a mixture between the \code{elim} and the \code{weight} algorithms. |
|
347 | 348 |
#' @param statistic Character. Default \code{"fisher"}. One of: \code{"fisher"}, \code{"ks"}, \code{"t"}, \code{"globaltest"}, \code{"sum"}, \code{"ks.ties"}. Statistical test to be used. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), and valid inputs are those supported by the topGO library, ignored otherwise. For the other ontologies the test statistic is always Fisher. |
348 | 349 |
#' @param background Character. Default \code{"neighborhood"}. One of: \code{"all_annotated"}, \code{"all_RNA"}, \code{"all_RNA_filtered"}, \code{"neighborhood"}. Set of genes to be used to construct the background for the enrichment analysis. This can either be all annotated genes in the reference genome (\code{all_annotated}), all genes from the provided RNA data (\code{all_RNA}), all genes from the provided RNA data excluding those marked as filtered after executing \code{filterData} (\code{all_RNA_filtered}), or all the genes that are within the neighborhood of any peak (before applying any filters except for the user-defined \code{promoterRange} value in \code{addConnections_peak_gene}) (\code{neighborhood}). |
349 | 350 |
#' @param background_geneTypes Character vector of gene types that should be considered for the background. Default \code{"all"}. |
... | ... |
@@ -592,6 +593,8 @@ calculateGeneralEnrichment <- function(GRN, ontology = c("GO_BP", "GO_MF"), |
592 | 593 |
|
593 | 594 |
if (ontology %in% c("GO_BP","GO_MF","GO_CC")){ |
594 | 595 |
|
596 |
+ # https://support.bioconductor.org/p/9141171/ |
|
597 |
+ |
|
595 | 598 |
# go_enrichment = |
596 | 599 |
# clusterProfiler::enrichGO( |
597 | 600 |
# gene = foreground_entrez, |
... | ... |
@@ -604,6 +607,10 @@ calculateGeneralEnrichment <- function(GRN, ontology = c("GO_BP", "GO_MF"), |
604 | 607 |
# minGSSize = minGSSize, |
605 | 608 |
# maxGSSize = maxGSSize, |
606 | 609 |
# pAdjustMethod = pAdjustMethod) |
610 |
+ |
|
611 |
+ # go.res.new = .createEnichmentTable(go_enrichment) |
|
612 |
+ |
|
613 |
+ # The need of p-value adjustment: https://bioconductor.org/packages/devel/bioc/vignettes/topGO/inst/doc/topGO.pdf |
|
607 | 614 |
|
608 | 615 |
go_enrichment = suppressMessages(new("topGOdata", |
609 | 616 |
ontology = gsub("GO_", "", ontology), |
... | ... |
@@ -3322,7 +3322,7 @@ plotTFEnrichment <- function(GRN, rankType = "degree", n = NULL, TF.names = NULL |
3322 | 3322 |
#' @template pdf_width |
3323 | 3323 |
#' @template pdf_height |
3324 | 3324 |
#' @param title \code{NULL} or Character. Default \code{NULL}. Title to be assigned to the plot. |
3325 |
-#' @param maxRowsToPlot Integer > 0. Default 500. Refers to the maximum number of connections to be plotted. If the network size is above this limit, nothing will be drawn. In such a case, it may help to either increase the value of this parameter or set the filtering criteria for the network to be more stringent, so that the network becomes smaller. |
|
3325 |
+#' @param maxEdgesToPlot Integer > 0. Default 500. Refers to the maximum number of connections to be plotted. If the network size is above this limit, nothing will be drawn. In such a case, it may help to either increase the value of this parameter or set the filtering criteria for the network to be more stringent, so that the network becomes smaller. |
|
3326 | 3326 |
#' @param nCommunitiesMax Integer > 0. Default 8. Maximum number of communities that get a distinct coloring. All additional communities will be colored with the same (gray) color. |
3327 | 3327 |
#' @param graph Character. Default \code{TF-gene}. One of: \code{TF-gene}, \code{TF-peak-gene}. Whether to plot a graph with links from TFs to peaks to gene, or the graph with the inferred TF to gene connections. |
3328 | 3328 |
#' @param colorby Character. Default \code{type}. Either \code{type} or \code{community}. Color the vertices by either type (TF/peak/gene) or community. See \code{\link{calculateCommunitiesStats}} |
... | ... |
@@ -3336,11 +3336,11 @@ plotTFEnrichment <- function(GRN, rankType = "degree", n = NULL, TF.names = NULL |
3336 | 3336 |
#' @seealso \code{\link{build_eGRN_graph}} |
3337 | 3337 |
#' @examples |
3338 | 3338 |
#' GRN = loadExampleObject() |
3339 |
-#' GRN = visualizeGRN(GRN, maxRowsToPlot = 700, graph = "TF-gene", colorby = "type") |
|
3339 |
+#' GRN = visualizeGRN(GRN, maxEdgesToPlot = 700, graph = "TF-gene", colorby = "type") |
|
3340 | 3340 |
#' @return The same \code{\linkS4class{GRN}} object, without modifications. |
3341 | 3341 |
#' @export |
3342 | 3342 |
visualizeGRN <- function(GRN, outputFolder = NULL, basenameOutput = NULL, plotAsPDF = TRUE, pdf_width = 12, pdf_height = 12, |
3343 |
- title = NULL, maxRowsToPlot = 500, nCommunitiesMax = 8, graph = "TF-gene" , colorby = "type", layout = "fr", |
|
3343 |
+ title = NULL, maxEdgesToPlot = 500, nCommunitiesMax = 8, graph = "TF-gene" , colorby = "type", layout = "fr", |
|
3344 | 3344 |
vertice_color_TFs = list(h = 10, c = 85, l = c(25, 95)), vertice_color_peaks = list(h = 135, c = 45, l = c(35, 95)), |
3345 | 3345 |
vertice_color_genes = list(h = 260, c = 80, l = c(30, 90)), |
3346 | 3346 |
vertexLabel_cex = 0.4, vertexLabel_dist = 0, forceRerun = FALSE |
... | ... |
@@ -3356,7 +3356,7 @@ visualizeGRN <- function(GRN, outputFolder = NULL, basenameOutput = NULL, plotA |
3356 | 3356 |
checkmate::assertFlag(plotAsPDF) |
3357 | 3357 |
checkmate::assertNumeric(pdf_width, lower = 5, upper = 99) |
3358 | 3358 |
checkmate::assertNumeric(pdf_height, lower = 5, upper = 99) |
3359 |
- checkmate::assertIntegerish(maxRowsToPlot, lower = 1) |
|
3359 |
+ checkmate::assertIntegerish(maxEdgesToPlot, lower = 1) |
|
3360 | 3360 |
checkmate::assertIntegerish(nCommunitiesMax,lower = 1) |
3361 | 3361 |
checkmate::assertChoice(graph, c("TF-gene", "TF-peak-gene")) |
3362 | 3362 |
checkmate::assertChoice(colorby, c("type", "community")) |
... | ... |
@@ -3406,6 +3406,7 @@ visualizeGRN <- function(GRN, outputFolder = NULL, basenameOutput = NULL, plotA |
3406 | 3406 |
|
3407 | 3407 |
grn.merged = GRN@graph$TF_peak_gene$table %>% |
3408 | 3408 |
dplyr::rename(TF.name = .data$V1_name) |
3409 |
+ |
|
3409 | 3410 |
grn.merged$V1[!is.na(grn.merged$TF.name)] = as.character(grn.merged$TF.name[!is.na(grn.merged$TF.name)]) # replace TF ensembl with TF name |
3410 | 3411 |
|
3411 | 3412 |
edges_final = grn.merged %>% |
... | ... |
@@ -3416,22 +3417,22 @@ visualizeGRN <- function(GRN, outputFolder = NULL, basenameOutput = NULL, plotA |
3416 | 3417 |
} |
3417 | 3418 |
|
3418 | 3419 |
edges_final = edges_final %>% |
3419 |
- dplyr::mutate(weight_transformed = dplyr::case_when(weight < 0.2 ~ 1, |
|
3420 |
- weight < 0.4 ~ 1.5, |
|
3421 |
- weight < 0.6 ~ 2, |
|
3422 |
- weight < 0.8 ~ 2.5, |
|
3423 |
- TRUE ~ 3), |
|
3420 |
+ dplyr::mutate(weight_transformed = dplyr::case_when(abs(weight) < 0.2 ~ 0.2, |
|
3421 |
+ abs(weight) < 0.4 ~ 0.3, |
|
3422 |
+ abs(weight) < 0.6 ~ 0.4, |
|
3423 |
+ abs(weight) < 0.8 ~ 0.5, |
|
3424 |
+ TRUE ~ 0.6), |
|
3424 | 3425 |
R_direction = dplyr::case_when(R < 0 ~ "neg", TRUE ~ "pos"), |
3425 |
- color = dplyr::case_when(R < 0 ~ "blue", TRUE ~ "grey")) %>% |
|
3426 |
+ color = dplyr::case_when(R < 0 ~ "gray90", TRUE ~ "gray50")) %>% |
|
3426 | 3427 |
dplyr::select(.data$from, .data$to, .data$weight, .data$R, .data$linetype, .data$weight_transformed, .data$R_direction, .data$color) |
3427 | 3428 |
|
3428 | 3429 |
|
3429 | 3430 |
|
3430 | 3431 |
nRows = nrow(edges_final) |
3431 | 3432 |
|
3432 |
- futile.logger::flog.info(paste0("Number of rows: ",nRows)) |
|
3433 |
- if (maxRowsToPlot > 500 & nRows > 500) { |
|
3434 |
- futile.logger::flog.info(paste0("Plotting many connections takes a lot of time and memory")) |
|
3433 |
+ futile.logger::flog.info(paste0("Number of edges for the ", graph, " eGRN graph: ",nRows)) |
|
3434 |
+ if (maxEdgesToPlot > 500 & nRows > 500) { |
|
3435 |
+ futile.logger::flog.info(paste0("Plotting many connections may need a lot of time and memory")) |
|
3435 | 3436 |
} |
3436 | 3437 |
|
3437 | 3438 |
|
... | ... |
@@ -3443,10 +3444,10 @@ visualizeGRN <- function(GRN, outputFolder = NULL, basenameOutput = NULL, plotA |
3443 | 3444 |
futile.logger::flog.info(paste0("Plotting GRN network")) |
3444 | 3445 |
} |
3445 | 3446 |
|
3446 |
- if (nRows > maxRowsToPlot) { |
|
3447 |
- futile.logger::flog.info(paste0("Number of rows to plot (", nRows, ") exceeds limit of the maxRowsToPlot parameter. Plotting only empty page")) |
|
3447 |
+ if (nRows > maxEdgesToPlot) { |
|
3448 |
+ futile.logger::flog.info(paste0("Number of edges to plot (", nRows, ") exceeds limit of the maxEdgesToPlot parameter. Plotting only empty page")) |
|
3448 | 3449 |
plot(c(0, 1), c(0, 1), ann = FALSE, bty = 'n', type = 'n', xaxt = 'n', yaxt = 'n', main = title) |
3449 |
- message = paste0(title, "\n\nPlotting omitted.\n\nThe number of rows in the GRN (", nRows, ") exceeds the maximum of ", maxRowsToPlot, ".\nSee the maxRowsToPlot parameter to increase the limit") |
|
3450 |
+ message = paste0(title, "\n\nPlotting omitted.\n\nThe number of rows in the GRN (", nRows, ") exceeds the maximum of ", maxEdgesToPlot, ".\nSee the maxEdgesToPlot parameter to increase the limit") |
|
3450 | 3451 |
text(x = 0.5, y = 0.5, message, cex = 1.6, col = "red") |
3451 | 3452 |
|
3452 | 3453 |
if (plotAsPDF) { |
... | ... |
@@ -3525,8 +3526,14 @@ visualizeGRN <- function(GRN, outputFolder = NULL, basenameOutput = NULL, plotA |
3525 | 3526 |
|
3526 | 3527 |
## VERTICES ## |
3527 | 3528 |
|
3528 |
- shape_vertex = c("square","circle", "circle") |
|
3529 |
- names(shape_vertex) = names(colors_categories.l) |
|
3529 |
+ if (graph == "TF-peak-gene"){ |
|
3530 |
+ shape_vertex = c("square","circle", "circle") |
|
3531 |
+ names(shape_vertex) = names(colors_categories.l) |
|
3532 |
+ } else { |
|
3533 |
+ shape_vertex = c("square","circle") |
|
3534 |
+ names(shape_vertex) = names(colors_categories.l) |
|
3535 |
+ } |
|
3536 |
+ |
|
3530 | 3537 |
|
3531 | 3538 |
|
3532 | 3539 |
vertices = tibble::tribble(~id, |
... | ... |
@@ -3778,7 +3785,7 @@ visualizeGRN <- function(GRN, outputFolder = NULL, basenameOutput = NULL, plotA |
3778 | 3785 |
# TODO: E(net)$lty = edges_final$linetype |
3779 | 3786 |
# TODO: E(net)$width <- 1+E(net)$weight/12 |
3780 | 3787 |
#igraph::E(net)$width <- 1+igraph::E(net)$weight/12 |
3781 |
- igraph::E(net)$width <- igraph::E(net)$weight |
|
3788 |
+ igraph::E(net)$width <- igraph::E(net)$weight_transformed |
|
3782 | 3789 |
#igraph::E(net)$weight <- edges_final$weight_transformed # too block-y for large networks. stick to givren weight. |
3783 | 3790 |
|
3784 | 3791 |
|
... | ... |
@@ -3882,7 +3889,8 @@ visualizeGRN <- function(GRN, outputFolder = NULL, basenameOutput = NULL, plotA |
3882 | 3889 |
vertex.size= igraph::V(net)$vertex.size, |
3883 | 3890 |
vertex.color=igraph::V(net)$vertex.color, |
3884 | 3891 |
edge.color = igraph::E(net)$color, |
3885 |
- edge.width = igraph::E(net)$weight, |
|
3892 |
+ edge.width = igraph::E(net)$weight_transformed, |
|
3893 |
+ #edge.width = 0.5, |
|
3886 | 3894 |
vertex.label=igraph::V(net)$label, |
3887 | 3895 |
vertex.label.font=1, |
3888 | 3896 |
vertex.label.cex = vertexLabel_cex, |
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/core.R |
3 | 3 |
\name{add_TF_gene_correlation} |
4 | 4 |
\alias{add_TF_gene_correlation} |
5 |
-\title{Add TF-gene correlations to a \code{\linkS4class{GRN}} object. The information is currently stored in \code{GRN@connections$TF_genes.filtered}. Note that raw p-values are not adjusted.} |
|
5 |
+\title{Add TF-gene correlations to a \code{\linkS4class{GRN}} object.} |
|
6 | 6 |
\usage{ |
7 | 7 |
add_TF_gene_correlation( |
8 | 8 |
GRN, |
... | ... |
@@ -30,7 +30,7 @@ A value >1 requires the \code{BiocParallel} package (as it is listed under \code |
30 | 30 |
An updated \code{\linkS4class{GRN}} object, with additional information added from this function. |
31 | 31 |
} |
32 | 32 |
\description{ |
33 |
-Add TF-gene correlations to a \code{\linkS4class{GRN}} object. The information is currently stored in \code{GRN@connections$TF_genes.filtered}. Note that raw p-values are not adjusted. |
|
33 |
+The information is currently stored in \code{GRN@connections$TF_genes.filtered}. Note that raw p-values are not adjusted. |
|
34 | 34 |
} |
35 | 35 |
\examples{ |
36 | 36 |
# See the Workflow vignette on the GRaNIE website for examples |
... | ... |
@@ -27,7 +27,8 @@ and \emph{Reactome Pathways}, respectively. \code{GO} ontologies require the \co |
27 | 27 |
\code{"KEGG"} the \code{clusterProfiler}, \code{"DO"} the \code{DOSE}, and \code{"Reactome"} the \code{ReactomePA} packages, respectively. |
28 | 28 |
As they are listed under \code{Suggests}, they may not yet be installed, and the function will throw an error if they are missing.} |
29 | 29 |
|
30 |
-\item{algorithm}{Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library.} |
|
30 |
+\item{algorithm}{Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library. |
|
31 |
+For general information about the algorithms, see \url{https://academic.oup.com/bioinformatics/article/22/13/1600/193669}. \code{weight01} is a mixture between the \code{elim} and the \code{weight} algorithms.} |
|
31 | 32 |
|
32 | 33 |
\item{statistic}{Character. Default \code{"fisher"}. One of: \code{"fisher"}, \code{"ks"}, \code{"t"}, \code{"globaltest"}, \code{"sum"}, \code{"ks.ties"}. Statistical test to be used. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), and valid inputs are those supported by the topGO library, ignored otherwise. For the other ontologies the test statistic is always Fisher.} |
33 | 34 |
|
... | ... |
@@ -25,7 +25,8 @@ and \emph{Reactome Pathways}, respectively. \code{GO} ontologies require the \co |
25 | 25 |
\code{"KEGG"} the \code{clusterProfiler}, \code{"DO"} the \code{DOSE}, and \code{"Reactome"} the \code{ReactomePA} packages, respectively. |
26 | 26 |
As they are listed under \code{Suggests}, they may not yet be installed, and the function will throw an error if they are missing.} |
27 | 27 |
|
28 |
-\item{algorithm}{Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library.} |
|
28 |
+\item{algorithm}{Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library. |
|
29 |
+For general information about the algorithms, see \url{https://academic.oup.com/bioinformatics/article/22/13/1600/193669}. \code{weight01} is a mixture between the \code{elim} and the \code{weight} algorithms.} |
|
29 | 30 |
|
30 | 31 |
\item{statistic}{Character. Default \code{"fisher"}. One of: \code{"fisher"}, \code{"ks"}, \code{"t"}, \code{"globaltest"}, \code{"sum"}, \code{"ks.ties"}. Statistical test to be used. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), and valid inputs are those supported by the topGO library, ignored otherwise. For the other ontologies the test statistic is always Fisher.} |
31 | 32 |
|
... | ... |
@@ -34,7 +34,8 @@ and \emph{Reactome Pathways}, respectively. \code{GO} ontologies require the \co |
34 | 34 |
\code{"KEGG"} the \code{clusterProfiler}, \code{"DO"} the \code{DOSE}, and \code{"Reactome"} the \code{ReactomePA} packages, respectively. |
35 | 35 |
As they are listed under \code{Suggests}, they may not yet be installed, and the function will throw an error if they are missing.} |
36 | 36 |
|
37 |
-\item{algorithm}{Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library.} |
|
37 |
+\item{algorithm}{Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library. |
|
38 |
+For general information about the algorithms, see \url{https://academic.oup.com/bioinformatics/article/22/13/1600/193669}. \code{weight01} is a mixture between the \code{elim} and the \code{weight} algorithms.} |
|
38 | 39 |
|
39 | 40 |
\item{statistic}{Character. Default \code{"fisher"}. One of: \code{"fisher"}, \code{"ks"}, \code{"t"}, \code{"globaltest"}, \code{"sum"}, \code{"ks.ties"}. Statistical test to be used. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), and valid inputs are those supported by the topGO library, ignored otherwise. For the other ontologies the test statistic is always Fisher.} |
40 | 41 |
|
... | ... |
@@ -78,7 +78,7 @@ keeping backwards compatibility with \code{\linkS4class{GRN}} objects.} |
78 | 78 |
|
79 | 79 |
\item{outputFolder}{Character or \code{NULL}. Default \code{NULL}. If set to \code{NULL}, the default output folder as specified when initiating the object in \code{link{initializeGRN}} will be used. Otherwise, all output from this function will be put into the specified folder. We recommend specifying an absolute path.} |
80 | 80 |
|
81 |
-\item{resetGraphAndStoreInternally}{\code{TRUE} or \code{FALSE}. Default \code{TRUE}. If set to \code{TRUE}, the stored eGRN graph slot graph) is reset due to the potentially changed connections that |
|
81 |
+\item{resetGraphAndStoreInternally}{\code{TRUE} or \code{FALSE}. Default \code{TRUE}. If set to \code{TRUE}, the stored eGRN graph (slot \code{graph}) is reset due to the potentially changed connections that |
|
82 | 82 |
would otherwise cause conflicts in the information stored in the object. Also, a GRN object is returned. If set to \code{FALSE}, only the new filtered connections are returned and the object is not altered.} |
83 | 83 |
|
84 | 84 |
\item{silent}{\code{TRUE} or \code{FALSE}. Default \code{FALSE}. Print progress messages and filter statistics.} |
... | ... |
@@ -31,7 +31,8 @@ and \emph{Reactome Pathways}, respectively. \code{GO} ontologies require the \co |
31 | 31 |
\code{"KEGG"} the \code{clusterProfiler}, \code{"DO"} the \code{DOSE}, and \code{"Reactome"} the \code{ReactomePA} packages, respectively. |
32 | 32 |
As they are listed under \code{Suggests}, they may not yet be installed, and the function will throw an error if they are missing.} |
33 | 33 |
|
34 |
-\item{algorithm}{Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library.} |
|
34 |
+\item{algorithm}{Character. Default \code{"weight01"}. One of: \code{"classic"}, \code{"elim"}, \code{"weight"}, \code{"weight01"}, \code{"lea"}, \code{"parentchild"}. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), ignored otherwise. Name of the algorithm that handles the GO graph structures. Valid inputs are those supported by the \code{topGO} library. |
|
35 |
+For general information about the algorithms, see \url{https://academic.oup.com/bioinformatics/article/22/13/1600/193669}. \code{weight01} is a mixture between the \code{elim} and the \code{weight} algorithms.} |
|
35 | 36 |
|
36 | 37 |
\item{statistic}{Character. Default \code{"fisher"}. One of: \code{"fisher"}, \code{"ks"}, \code{"t"}, \code{"globaltest"}, \code{"sum"}, \code{"ks.ties"}. Statistical test to be used. Only relevant if ontology is GO related (GO_BP, GO_MF, GO_CC), and valid inputs are those supported by the topGO library, ignored otherwise. For the other ontologies the test statistic is always Fisher.} |
37 | 38 |
|
... | ... |
@@ -12,7 +12,7 @@ visualizeGRN( |
12 | 12 |
pdf_width = 12, |
13 | 13 |
pdf_height = 12, |
14 | 14 |
title = NULL, |
15 |
- maxRowsToPlot = 500, |
|
15 |
+ maxEdgesToPlot = 500, |
|
16 | 16 |
nCommunitiesMax = 8, |
17 | 17 |
graph = "TF-gene", |
18 | 18 |
colorby = "type", |
... | ... |
@@ -40,7 +40,7 @@ visualizeGRN( |
40 | 40 |
|
41 | 41 |
\item{title}{\code{NULL} or Character. Default \code{NULL}. Title to be assigned to the plot.} |
42 | 42 |
|
43 |
-\item{maxRowsToPlot}{Integer > 0. Default 500. Refers to the maximum number of connections to be plotted. If the network size is above this limit, nothing will be drawn. In such a case, it may help to either increase the value of this parameter or set the filtering criteria for the network to be more stringent, so that the network becomes smaller.} |
|
43 |
+\item{maxEdgesToPlot}{Integer > 0. Default 500. Refers to the maximum number of connections to be plotted. If the network size is above this limit, nothing will be drawn. In such a case, it may help to either increase the value of this parameter or set the filtering criteria for the network to be more stringent, so that the network becomes smaller.} |
|
44 | 44 |
|
45 | 45 |
\item{nCommunitiesMax}{Integer > 0. Default 8. Maximum number of communities that get a distinct coloring. All additional communities will be colored with the same (gray) color.} |
46 | 46 |
|
... | ... |
@@ -70,7 +70,7 @@ This function can visualize a filtered eGRN in a very flexible manner and requir |
70 | 70 |
} |
71 | 71 |
\examples{ |
72 | 72 |
GRN = loadExampleObject() |
73 |
-GRN = visualizeGRN(GRN, maxRowsToPlot = 700, graph = "TF-gene", colorby = "type") |
|
73 |
+GRN = visualizeGRN(GRN, maxEdgesToPlot = 700, graph = "TF-gene", colorby = "type") |
|
74 | 74 |
} |
75 | 75 |
\seealso{ |
76 | 76 |
\code{\link{build_eGRN_graph}} |
... | ... |
@@ -490,7 +490,7 @@ As you can see, some details about the TF-peak-gene and TF-gene are shown as out |
490 | 490 |
The `GRaNIE` package also offers a function to visualize a filtered *eGRN* network! It is very easy to invoke, but provides many options to customize the output and the way the graph is drawn. We recommend to explore the options in the R help (`?getGRNConnections`), and here just run the default visualization. |
491 | 491 |
|
492 | 492 |
|
493 |
-```{r visualizeGRN, echo=TRUE, include=TRUE, eval = TRUE, fig.cap="<i>eGRN example visualization</i>", fig.height = 10, class.output="scroll-200"} |
|
493 |
+```{r visualizeGRN, echo=TRUE, include=TRUE, eval = TRUE, fig.cap="<i>eGRN example visualization</i>", fig.height = 9, class.output="scroll-200"} |
|
494 | 494 |
GRN = visualizeGRN(GRN, plotAsPDF = FALSE) |
495 | 495 |
|
496 | 496 |
``` |