<!-- README.md is generated from README.Rmd. Please edit that file -->
# DelayedMatrixStats
**DelayedMatrixStats** is a port of the
[**matrixStats**](https://CRAN.R-project.org/package=matrixStats) API to
work with *DelayedMatrix* objects from the
[**DelayedArray**](http://bioconductor.org/packages/DelayedArray/)
package.
For a *DelayedMatrix*, `x`, the simplest way to apply a function, `f()`,
from **matrixStats** is`matrixStats::f(as.matrix(x))`. However, this
“*realizes*” `x` in memory as a *base::matrix*, which typically defeats
the entire purpose of using a *DelayedMatrix* for storing the data.
The **DelayedArray** package already implements a clever strategy called
“block-processing” for certain common “matrix stats” operations (e.g.
`colSums()`, `rowSums()`). This is a good start, but not all of the
**matrixStats** API is currently supported. Furthermore, certain
operations can be optimized with additional information about `x`. I’ll
refer to these “seed-aware” implementations.
## Installation
You can install **DelayedMatrixStats** from Bioconductor with:
``` r
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("DelayedMatrixStats")
```
## Example
This example compares two ways of computing column sums of a
*DelayedMatrix* object:
1. `DelayedMatrix::colSums()`: The ‘block-processing strategy’,
implemented in the **DelayedArray** package. The block-processing
strategy works for any *DelayedMatrix* object, regardless of the
type of *seed*.
2. `DelayedMatrixStats::colSums2()`: The ‘seed-aware’ strategy,
implemented in the **DelayedMatrixStats** package. The seed-aware
implementation is optimized for both speed and memory but only for
*DelayedMatrix* objects with certain types of *seed*.
``` r
library(DelayedMatrixStats)
library(sparseMatrixStats)
library(microbenchmark)
library(profmem)
```
``` r
set.seed(666)
# Fast column sums of DelayedMatrix with matrix seed
dense_matrix <- DelayedArray(matrix(runif(20000 * 600), nrow = 20000,
ncol = 600))
class(seed(dense_matrix))
#> [1] "matrix" "array"
dense_matrix
#> <20000 x 600> DelayedMatrix object of type "double":
#> [,1] [,2] [,3] ... [,599] [,600]
#> [1,] 0.7743685 0.6601787 0.4098798 . 0.89118118 0.05776471
#> [2,] 0.1972242 0.8436035 0.9198450 . 0.31799523 0.63099417
#> [3,] 0.9780138 0.2017589 0.4696158 . 0.31783791 0.02830454
#> [4,] 0.2013274 0.8797239 0.6474768 . 0.55217184 0.09678816
#> [5,] 0.3612444 0.8158778 0.5928599 . 0.08530977 0.39224147
#> ... . . . . . .
#> [19996,] 0.19490291 0.07763570 0.56391725 . 0.09703424 0.62659353
#> [19997,] 0.61182993 0.01910121 0.04046034 . 0.59708388 0.88389731
#> [19998,] 0.12932744 0.21155070 0.19344085 . 0.51682032 0.13378223
#> [19999,] 0.18985573 0.41716539 0.35110782 . 0.62939661 0.94601427
#> [20000,] 0.87889047 0.25308041 0.54666920 . 0.81630322 0.73272217
microbenchmark(DelayedArray::colSums(dense_matrix),
DelayedMatrixStats::colSums2(dense_matrix),
times = 10)
#> Warning in microbenchmark(DelayedArray::colSums(dense_matrix), DelayedMatrixStats::colSums2(dense_matrix), :
#> less accurate nanosecond times to avoid potential integer overflows
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> DelayedArray::colSums(dense_matrix) 36.26811 40.05528 87.89183 42.91652 49.70672 278.0928 10
#> DelayedMatrixStats::colSums2(dense_matrix) 12.07319 12.24256 12.50835 12.53206 12.70734 12.8938 10
profmem::total(profmem::profmem(DelayedArray::colSums(dense_matrix)))
#> [1] 96106072
profmem::total(profmem::profmem(DelayedMatrixStats::colSums2(dense_matrix)))
#> [1] 6064
# Fast, low-memory column sums of DelayedMatrix with sparse matrix seed
sparse_matrix <- seed(dense_matrix)
zero_idx <- sample(length(sparse_matrix), 0.6 * length(sparse_matrix))
sparse_matrix[zero_idx] <- 0
sparse_matrix <- DelayedArray(Matrix::Matrix(sparse_matrix, sparse = TRUE))
class(seed(sparse_matrix))
#> [1] "dgCMatrix"
#> attr(,"package")
#> [1] "Matrix"
sparse_matrix
#> <20000 x 600> sparse DelayedMatrix object of type "double":
#> [,1] [,2] [,3] ... [,599] [,600]
#> [1,] 0.7743685 0.0000000 0.0000000 . 0.89118118 0.00000000
#> [2,] 0.1972242 0.0000000 0.9198450 . 0.00000000 0.00000000
#> [3,] 0.9780138 0.0000000 0.4696158 . 0.31783791 0.00000000
#> [4,] 0.0000000 0.8797239 0.6474768 . 0.55217184 0.00000000
#> [5,] 0.3612444 0.0000000 0.0000000 . 0.08530977 0.39224147
#> ... . . . . . .
#> [19996,] 0.1949029 0.0776357 0.0000000 . 0.09703424 0.00000000
#> [19997,] 0.0000000 0.0000000 0.0000000 . 0.00000000 0.88389731
#> [19998,] 0.0000000 0.2115507 0.1934408 . 0.00000000 0.00000000
#> [19999,] 0.1898557 0.0000000 0.3511078 . 0.62939661 0.94601427
#> [20000,] 0.8788905 0.2530804 0.0000000 . 0.00000000 0.73272217
microbenchmark(DelayedArray::colSums(sparse_matrix),
DelayedMatrixStats::colSums2(sparse_matrix),
times = 10)
#> Unit: milliseconds
#> expr min lq mean median uq max
#> DelayedArray::colSums(sparse_matrix) 145.485138 147.451908 199.555520 151.754715 173.112209 384.247039
#> DelayedMatrixStats::colSums2(sparse_matrix) 5.284654 5.392238 5.455612 5.449802 5.522536 5.643978
#> neval
#> 10
#> 10
profmem::total(profmem::profmem(DelayedArray::colSums(sparse_matrix)))
#> [1] 249647440
profmem::total(profmem::profmem(DelayedMatrixStats::colSums2(sparse_matrix)))
#> [1] 4848
# Fast column sums of DelayedMatrix with Rle-based seed
rle_matrix <- RleArray(Rle(sample(2L, 200000 * 6 / 10, replace = TRUE), 100),
dim = c(2000000, 6))
class(seed(rle_matrix))
#> [1] "SolidRleArraySeed"
#> attr(,"package")
#> [1] "DelayedArray"
rle_matrix
#> <2000000 x 6> RleMatrix object of type "integer":
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 2 2 1 1 1 2
#> [2,] 2 2 1 1 1 2
#> [3,] 2 2 1 1 1 2
#> [4,] 2 2 1 1 1 2
#> [5,] 2 2 1 1 1 2
#> ... . . . . . .
#> [1999996,] 1 2 2 1 1 1
#> [1999997,] 1 2 2 1 1 1
#> [1999998,] 1 2 2 1 1 1
#> [1999999,] 1 2 2 1 1 1
#> [2000000,] 1 2 2 1 1 1
microbenchmark(DelayedArray::colSums(rle_matrix),
DelayedMatrixStats::colSums2(rle_matrix),
times = 10)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> DelayedArray::colSums(rle_matrix) 393.768059 397.620132 448.117179 412.378390 476.314179 605.87922 10
#> DelayedMatrixStats::colSums2(rle_matrix) 1.946147 2.239174 8.924917 2.819098 3.871302 61.91156 10
profmem::total(profmem::profmem(DelayedArray::colSums(rle_matrix)))
#> [1] 168003192
profmem::total(profmem::profmem(DelayedMatrixStats::colSums2(rle_matrix)))
#> [1] 1968
```
## Benchmarking
An extensive set of benchmarks is under development at
<http://peterhickey.org/BenchmarkingDelayedMatrixStats/>.
## API coverage
- ✔ = Implemented in **DelayedMatrixStats**
- ☑️ = Implemented in
[**DelayedArray**](http://bioconductor.org/packages/DelayedArray/) or
[**sparseMatrixStats**](http://bioconductor.org/packages/sparseMatrixStats/)
- ❌: = Not yet implemented
| Method | Block processing | *base::matrix* optimized | *Matrix::dgCMatrix* optimized | *Matrix::lgCMatrix* optimized | *DelayedArray::RleArray* (*SolidRleArraySeed*) optimized | *DelayedArray::RleArray* (*ChunkedRleArraySeed*) optimized | *HDF5Array::HDF5Matrix* optimized | *base::data.frame* optimized | *S4Vectors::DataFrame* optimized |
|:-----------------------|:-----------------|:-------------------------|:------------------------------|:------------------------------|:---------------------------------------------------------|:-----------------------------------------------------------|:----------------------------------|:-----------------------------|:---------------------------------|
| `colAlls()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colAnyMissings()` | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colAnyNAs()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colAnys()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colAvgsPerRowSet()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colCollapse()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colCounts()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colCummaxs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colCummins()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colCumprods()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colCumsums()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colIQRDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colIQRs()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colLogSumExps()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colMadDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colMads()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colMaxs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colMeans2()` | ✔ | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ |
| `colMedians()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colMins()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colOrderStats()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colProds()` | ✔ | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ |
| `colQuantiles()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colRanges()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colRanks()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colSdDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colSds()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colsum()` | ☑️ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colSums2()` | ✔ | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ |
| `colTabulates()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colVarDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colVars()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colWeightedMads()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colWeightedMeans()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colWeightedMedians()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colWeightedSds()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `colWeightedVars()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowAlls()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowAnyMissings()` | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowAnyNAs()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowAnys()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowAvgsPerColSet()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowCollapse()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowCounts()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowCummaxs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowCummins()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowCumprods()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowCumsums()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowIQRDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowIQRs()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowLogSumExps()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowMadDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowMads()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowMaxs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowMeans2()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowMedians()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowMins()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowOrderStats()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowProds()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowQuantiles()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowRanges()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowRanks()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowSdDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowSds()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowsum()` | ☑️ | ❌ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowSums2()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowTabulates()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowVarDiffs()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowVars()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowWeightedMads()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowWeightedMeans()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowWeightedMedians()` | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowWeightedSds()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
| `rowWeightedVars()` | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |